Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-14T17:57:55.636Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 December 2013

Rolf Schneider
Affiliation:
Albert-Ludwigs-Universität Freiburg, Germany
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Abardia, J., Difference bodies in complex vector spaces. J. Funct. Anal. 263 (2012), 3588–3603.Google Scholar
[2] Abardia, J., Bernig, A., Projection bodies in complex vector spaces. Adv. Math. 227 (2011), 830–846.Google Scholar
[3] Abardia, J., Gallego, E., Solanes, G., The Gauss–Bonnet theorem and Crofton type formulas in complex space forms. Israel J. Math. 187 (2012), 287–315.Google Scholar
[4] Aczél, J., Functional Equations and Their Applications.Academic Press, New York, 1966.
[5] Ader, O. B., An affine invariant of convex regions. Duke Math. J. 4 (1938), 291–299.Google Scholar
[6] Adiprasito, K., Infinite curvature on typical convex surfaces. Geom. Dedicata 159 (2012), 267–275.Google Scholar
[7] Ahrens, I., Über unendliche Reihen von Punktmengen bei Minkowskischer Addition und Subtraktion. Dissertation, Freie Universität Berlin, 1970.
[8] Ahrens, I., Über Folgen und Reihen von Punktmengen. Arch. Math. 23 (1972), 92–103.Google Scholar
[9] Alberti, G., On the structure of singular sets of convex functions. Calc. Var. Partial Differential Equations 2 (1994), 17–27.Google Scholar
[10] Alberti, G., Ambrosio, L., Cannarsa, P., On the singularities of convex functions. Manuscripta Math. 76 (1992), 421–435.Google Scholar
[11] Aleksandrov, A. D., A theorem on convex polyhedra (in Russian). Trudy Fiz.-Mat. Inst. Im. Steklova 4 (1933), 87.Google Scholar
[12] Aleksandrov, A. D., Zur Theorie der gemischten Volumina von konvexen Körpern, I: Verallgemeinerung einiger Begriffe der Theorie der konvexen Körper (in Russian). Mat. SbornikN. S. 2 (1937), 947–972. (English in [29].)Google Scholar
[13] Aleksandrov, A. D., Zur Theorie der gemischten Volumina von konvexen Körpern, II: Neue Üngleichungen zwischen den gemischten Volumina und ihre Anwendungen (in Russian). Mat. SbornikN. S. 2 (1937), 1205–1238. (English in [29].)Google Scholar
[14] Aleksandrov, A. D., Über die Frage nach der Existenz eines konvexen Körpers, bei dem die Summe der Hauptkrümmungsradien eine gegebene positive Funktion ist, welche den Bedingungen der Geschlossenheit genügt. C. R. (Doklady) Acad. Sci. URSS 14 (1937), 59–60.Google Scholar
[15] Aleksandrov, A. D., Zur Theorie der gemischten Volumina von konvexen Körpern, III: Die Erweiterung zweier Lehrsätze Minkowskis über die konvexen Polyeder auf beliebige konvexe Flachen (in Russian). Mat. Sbornik N. S. 3 (1938), 27–46. (English in [29].)Google Scholar
[16] Aleksandrov, A. D., Zur Theorie der gemischten Volumina von konvexen Körpern, IV: Die gemischten Diskriminanten und die gemischten Volumina (in Russian). Mat. SbornikN. S. 3 (1938), 227–251. (English in [29].)Google Scholar
[17] Aleksandrov, A. D., Anwendung des Satzes über die Invarianz des Gebietes auf Existenzbeweise (in Russian). Izv. Akad. Nauk SSSR 3 (1939), 243–256.Google Scholar
[18] Aleksandrov, A. D., Über die Oberflachenfunktion eines konvexen Korpers (in Russian). Mat. Sbornik N.S. 6 (1939), 167–174. (English in [29].)Google Scholar
[19] Aleksandrov, A. D., Almost everywhere existence of the second differential of a convex function and some properties of convex surfaces connected with it (in Russian). Uchenye Zapiski Leningrad. Gos. Univ., Math. Ser. 6 (1939), 3–35.Google Scholar
[20] Aleksandrov, A. D., On uniqueness theorems for closed surfaces (in Russian). Doklady Akad. Nauk SSSR 22 (1939), 99–102.Google Scholar
[21] Aleksandrov, A. D., Existence and uniqueness of a convex surface with a given integral curvature. C. R. (Doklady) Acad Sci. URSS 35 (1942), 131–134.Google Scholar
[22] Aleksandrov, A.D., Smoothness of the convex surface of bounded Gaussian curvature. C. R. (Doklady) Acad. Sci. URSS 36 (1942), 195–199.Google Scholar
[23] Aleksandrov, A. D., Die Innere Geometrie der Konvexen Flachen. Akademie-Verlag, Berlin, 1955 (Russian original: 1948).
[24] Aleksandrov, A. D., Üniqueness theorems for surfaces in the large, I, II, III, IV, V (in Russian). Vestnik Leningrad. Univ. 11 (1956), No. 19, 5-17; 12 (1957), No. 7, 15-44; 13 (1958), No. 7, 14-26; 13 (1958), No. 13, 27-34; 13 (1958), No. 19, 5–8. English translation: Amer. Math. Soc. Transl., Ser. 2, 21 (1962), 341–416.Google Scholar
[25] Aleksandrov, A. D., Konvexe Polyeder.Akademie-Verlag, Berlin, 1958 (Russian original: 1950).
[26] Aleksandrov, A. D., A congruence condition for closed convex surfaces (in Russian). Vestnik Leningrad. Univ. 16 (1961), 5–7.Google Scholar
[27] Aleksandrov, A. D., On the curvatures of surfaces (in Russian). Vestnik Leningrad. Univ. 21, No. 19 (Ser. Mat. Meh. Astron. No. 4) (1966), 5–11.Google Scholar
[28] Aleksandrov, A. D., On mean values of support functions (in Russian)Dokl. Akad. Nauk SSSR 172 (1967), 755–758. English translation: Soviet Math. Dokl. 8 (1967), 149-153.Google Scholar
[29] Aleksandrov, A. D. [Alexandrov, A. D.], Selected Works. Part I: Selected Scientific Papers. (Yu. G., Reshetnyak, S. S., Kutateladze, eds), trans. from the Russian by P. S. Naidu. Classics of Soviet Mathematics, 4. Gordon and Breach, Amsterdam, 1996.
[30] Alesker, S., Integrals of smooth and analytic functions over Minkowski's sums of convex sets. In Convex Geometric Analysis, Berkeley, CA, 1996 (K. M., Ball, V., Milman, eds), Math. Sci. Res. Inst. Publ. 34, pp. 1–15, Cambridge Üniv. Press, Cambridge, 1999.
[31] Alesker, S., Continuous valuations on convex sets. Geom. Func. Anal. 8 (1998), 402–409.Google Scholar
[32] Alesker, S., Continuous rotation invariant valuations on convex sets. Ann. of Math. 149 (1999), 977–1005. Erratum: Ann. of Math. 166 (2007), 947-948.Google Scholar
[33] Alesker, S., Description of continuous isometry covariant valuations on convex sets. Geom. Dedicata 74 (1999), 241–248.Google Scholar
[34] Alesker, S., On P. McMullen's conjecture on translation invariant valuations. Adv. Math. 155 (2000), 239–263.Google Scholar
[35] Alesker, S., Description of translation invariant valuations on convex sets with solution of P. McMullen's conjecture. Geom. Funct. Anal. 11 (2001), 244–272.Google Scholar
[36] Alesker, S., Hard Lefschetz theorem for valuations, complex integral geometry, and unitarily invariant valuations. J. Differential Geom. 63 (2003), 63–95.Google Scholar
[37] Alesker, S., On GLn(ℝ)-invariant classes of convex bodies. Mathematika 50 (2003), 57–61.Google Scholar
[38] Alesker, S., The multiplicative structure on continuous polynomial valuations. Geom. Funct. Anal. 14 (2004), 1–26.Google Scholar
[39] Alesker, S., Hard Lefschetz theorem for valuations and related questions of integral geometry. In Geometric Aspects of Functional Analysis (V.D., Milman, G., Schechtman, eds), Lecture Notes in Math. 1850, pp. 9–20, Springer, Berlin, 2004.
[40] Alesker, S., SU(2)-invariant valuations. In Geometric Aspects of Functional Analysis (V. D., Milman, G., Schechtman, eds), Lecture Notes in Math. 1850, pp. 21–29, Springer, Berlin, 2004.
[41] Alesker, S., Valuations on convex sets, non-commutative determinants, and pluripo-tential theory. Adv. Math. 195 (2005), 561–595.Google Scholar
[42] Alesker, S., Theory of valuations on manifolds, I: Linear spaces. Israel J. Math. 156 (2006), 311–339.Google Scholar
[43] Alesker, S., Theory of valuations on manifolds, II.Adv. Math. 207 (2006), 420–434.Google Scholar
[44] Alesker, S., Theory of valuations on manifolds, IV: New properties of the multiplicative structure. In Geometric Aspects ofFunctional Analysis (V.D., Milman, G., Schechtman, eds), Lecture Notes in Math. 1910, pp. 1–44, Springer, Berlin, 2007.
[45] Alesker, S., Theory of valuations on manifolds: a survey. Geom. Funct. Anal. 17 (2007), 1321–1341.Google Scholar
[46] Alesker, S., Plurisubharmonic functions on the octonian plane and Spin(9)-invariant valuations on convex sets. J. Geom. Anal. 18 (2008), 651–686.Google Scholar
[47] Alesker, S., Valuations on manifolds and integral geometry. Geom. Funct. Anal. 20 (2010), 1073–1143.Google Scholar
[48] Alesker, S., New structures on valuations and applications. (Advanced Course on Integral Geometry and Valuation Theory), Notes of the Course, pp. 1–33, Centre de Recerca Matematica, Bellaterra 2010. Available at www.crm.es/Publications/quaderns/Quadern60.pdf.
[49] Alesker, S., A Fourier type transform on translation invariant valuations on convex sets. Israel J. Math. 181 (2011), 189–294.Google Scholar
[50] Alesker, S., On extendability by continuity of valuations on convex polytopes. arXiv:1205.1336v3.
[51] Alesker, S., Bernig, A., The product on smooth and generalized valuations. Amer. J. Math. 134 (2012), 507–560.Google Scholar
[52] Alesker, S., Bernig, A., Schuster, F. E., Harmonic analysis of translation invariant valuations. Geom. Func. Anal. 21 (2011), 751–773.Google Scholar
[53] Alesker, S., Bernstein, J., Range characterization of the cosine transform on higher Grassmannians. Adv. Math. 184 (2004), 367–379.Google Scholar
[54] Alesker, S., Dar, S., Milman, V., A remarkable measure preserving difeomorphism between two convex bodies in ℝn. Geom. Dedicata 74 (1999), 201–212.Google Scholar
[55] Alesker, S., Fu, J. H. G., Theory of valuations on manifolds, III: Multiplicative structure in the general case. Trans. Amer. Math. Soc. 360 (2008), 1951–1981.Google Scholar
[56] Alexander, R., Zonoid theory and Hilbert's fourth problem. Geom. Dedicata 28 (1988), 199–211.Google Scholar
[57] Alexandrov, V., Kopteva, N., Kutateladze, S. S., Blaschke addition and convex polyhedra. Tr. Semin. Vektorn. Tenzorn. Anal. 26 (2005), 8–30. English translation: arXiv:math/0502345v1.Google Scholar
[58] Alfonseca, M. A., An extension of a result of Lonke to intersection bodies. J. Math. Anal. Appl. 371 (2010), 146–157.Google Scholar
[59] Alfsen, E. M., Compact Convex Sets and Boundary Integrals. Springer, Berlin, 1971.
[60] Allendoerfer, C. B., Steiner's formula on a general Sn+1. Bull. Amer. Math. Soc. 54 (1948), 128–135.Google Scholar
[61] Alonso-Gutiérrez, D., On an extension of the Blaschke-Santalo inequality and the hyperplane conjecture. J. Math. Anal. Appl. 344 (2008), 292–300.Google Scholar
[62] Alonso-Gutiérrez, D., Volume estimates for Lp-zonotopes and best best constants in Brascamp-Lieb inequalities. Mathematika 56 (2010), 45–60.Google Scholar
[63] Alonso-Gutiérrez, D., Bastero, J., Bernues, J., Wolff, P., On the isotropy constant of projections of polytopes. J. Funct. Anal. 258 (2010), 1452–1465.Google Scholar
[64] Alonso-Gutiérrez, D., Bastero, J., Bernues, J., Factoring Sobolev inequalities through classes of functions. Proc. Amer. Math. Soc. 140 (2012), 3557–3566.Google Scholar
[65] Alonso-Gutiérrez, D., Jimenez, C. H., Villa, R., Brunn–Minkowski and Zhang inequalities for convolution bodies. Adv. Math. 238 (2013), 50–69.Google Scholar
[66] Alvino, A., Ferone, V., Nitsch, C., A sharp isoperimetric inequality in the plane involving Hausdorf distance. Rend. Lincei Mat. Appl. 20 (2009), 397–412.Google Scholar
[67] Ambartzumian, R. V., Combinatorial integral geometry, metrics, and zonoids. Acta Appl. Math. 9 (1987), 3–27.Google Scholar
[68] Ambrus, G., Boroczky, K. J., Stability results for the volume of random simplices. arXiv:1005.5024v2.
[69] Anderson, R. D., Klee, V. L., Convex functions and upper semi-continuous collections. Duke Math. J. 19 (1952), 349–357.Google Scholar
[70] Andrews, B., Contraction of convex hypersurfaces by their affine normal. J. Differential Geom. 43 (1996), 207–230.Google Scholar
[71] Andrews, B., Gauss curvature flow: the fate of the rolling stones. Invent. Math. 138 (1999), 151–161.Google Scholar
[72] Andrews, B., Classification of limiting shapes for isotropic curve flows. J. Amer. Math. Soc. 16 (2003), 443–459.Google Scholar
[73] Anikonov, Yu. E., Stepanov, V. N., Üniqueness and stability of the solution of a problem of geometry in the large (in Russian). Mat. Sbornik 116 (1981), 539–546.Google Scholar
[74] Arnold, R., Zur L2-Bestapproximation eines konvexen Körpers durch einen bewegten konvexen Körper. Monatsh. Math. 108 (1981), 277–293.Google Scholar
[75] Arnold, R., On the Aleksandrov-Fenchel inequality and the stability of the sphere. Monatsh. Math. 115 (1993), 1–11.Google Scholar
[76] Arnold, R., Wellerding, A., On the Sobolev distance of convex bodies. Aequationes Math. 44 (1992), 72–83.Google Scholar
[77] Arocha, J. J., Barany, I., Bracho, J., Fabila, R., Montejano, L., Very colorful theorems. Discrete Comput. Geom. 42 (2009), 142–154.Google Scholar
[78] Arrow, K. J., Hahn, F. H., General Competitive Analysis. Holden-Day, San Francisco, 1971.
[79] Artstein, Z., On the calculus of closed set-valued functions. Indiana Univ. Math. J. 24 (1974), 433–441.Google Scholar
[80] Artstein, Z., Discrete and continuous bang-bang and facial spaces or: Look for the extreme points. SIAM Review 22 (1980), 172–185.Google Scholar
[81] Artstein, Z., Convergence of sums of random sets. In Stochastic Geometry, Geometric Statistics, Stereology, Oberwolfach 1983 (R., Ambartzumian, W., Weil, eds), pp. 34–42, Teubner, Leipzig, 1984.
[82] Artstein, Z., Vitale, R. A., A strong law of large numbers for random compact sets. Ann. Probab. 3 (1975), 879–882.Google Scholar
[83] Artstein-Avidan, S., Florentin, D., Milman, V., Order isomorphisms in windows. Electron. Res. Announc. Math. Sci. 18 (2011), 112–118.Google Scholar
[84] Artstein-Avidan, S., Florentin, D., Milman, V., Order isomorphisms on convex functions in windows. In Geometric Aspects of Functional Analysis (B., Klartag, S., Mendelson, V. D., Milman, eds), Lecture Notes in Math. 2050, pp. 61–122, Springer, Berlin, 2012.
[85] Artstein-Avidan, S., Klartag, B., Milman, V., The Santaló point of a function, and a functional form of the Santaló inequality. Mathematika 51 (2004), 33–48.Google Scholar
[86] Artstein-Avidan, S., Klartag, B., Schutt, C., Werner, E., Functional affine-isoperimetry and an inverse logarithmic Sobolev inequality. J. Funct. Anal. 262 (2012), 4181–4204.Google Scholar
[87] Artstein-Avidan, S., Milman, V., A characterization of the concept of duality. Electron. Res. Announc. Math. Sci. 14 (2007), 48–65.Google Scholar
[88] Artstein-Avidan, S., Milman, V., The concept of duality for measure projections of convex bodies. J. Funct. Anal. 254 (2008), 2648–2666.Google Scholar
[89] Artstein-Avidan, S., Milman, V., A new duality transform. C. R. Math. Acad. Sci. Paris 346, No. 21-22 (2008), 1143–1148.Google Scholar
[90] Artstein-Avidan, S., Milman, V., The concept of duality in convex analysis, and the characterization of the Legendre transform. Ann. of Math. 168 (2009), 661–674.Google Scholar
[91] Artstein-Avidan, S., Milman, V., A characterization of the support map. Adv. Math. 223 (2010), 379–391.Google Scholar
[92] Artstein-Avidan, S., Milman, V., Hidden structures in the class of convex functions and a new duality transform. J. European Math. Sci. 13 (2011), 975–1004.Google Scholar
[93] Artstein-Avidan, S., Milman, V., Stability results for some classical convexity operations. Adv. Geom. 13 (2013), 51–70.Google Scholar
[94] Ash, R. B., Measure, Integration, and Functional Analysis. Academic Press, New York, 1972.
[95] Asplund, E., A k-extreme point is the limit of k-exposed points. Israel J. Math. 1 (1963), 161–162.Google Scholar
[96] Asplund, E., Differentiability of the metric projection in finite dimensional Euclidean space. Proc. Amer. Math. Soc. 38 (1973), 218–219.Google Scholar
[97] Assouad, P., Charactérisations de sous-espaces normés de L1 de dimension finie. Séminaire d'Analyse Fonctionnelle (Ecole Polytechnique Palaiseau), 1979-80, exposé No. 19.
[98] Atkinson, K., Han, W., Spherical Harmonics and Approximations on the Unit Sphere: An Introduction. Lecture Notes in Math. 2044, Springer, Heidelberg, 2012.
[99] Auneau, J., Jensen, E. V. B., Expressing intrinsic volumes as rotational integrals. Adv. in Appl. Math. 45 (2010), 1–11.Google Scholar
[100] Auneau-Cognacq, J., Rataj, J., Jensen, E. V. B., Closed form of the rotational Crofton formula. Math. Nachr. 285 (2012), 164–180.Google Scholar
[101] Auneau-Cognacq, J., Ziegel, J., Jensen, E. V. B., Rotational integral geometry of tensor valuations. Adv. in Appl. Math. 50 (2013), 429–444.Google Scholar
[102] Averkov, G., Bianchi, G., Confirmation of Matheron's conjecture on the covariogram of a planar convex body. J. Eur. Math. Soc. 11 (2009), 1187–1202.Google Scholar
[103] Avriel, M., r-convex functions. Math. Program. 2 (1972), 309–323.Google Scholar
[104] Baddeley, A. J., Absolute curvatures in integral geometry. Math. Proc. Camb. Philos. Soc. 88 (1980), 45–58.Google Scholar
[105] Baebler, F., Zum isoperimetrischen Problem. Arch. Math. 8 (1957), 52–65.Google Scholar
[106] Bair, J., Une mise au point sur la décomposition des convexes. Bull. Soc. Roy. Sci. Liège 44 (1975), 698–705.Google Scholar
[107] Bair, J., Extension du théorème de Straszewicz. Bull. Soc. Roy. Sci. Liège 45 (1976), 166–168.Google Scholar
[108] Bair, J., Une étude des sommands d'un polyèdre convexe. Bull. Soc. Roy. Sci. Liège 45 (1976), 307–311.Google Scholar
[109] Bair, J., Description des sommands de quelques ensembles convexes. Rend. Ist. Mat. Univ. Trieste 9 (1977), 83–92.Google Scholar
[110] Bair, J., Décompositions d'un convexe a l'aide de certains de ses dilatés. Bull. Soc. Roy. Sci. Liège 46 (1977), 167–171.Google Scholar
[111] Bair, J., Sur la structure extrémale de la somme de deux convexes. Canad. Math. Bull. 22 (1979), 1–7.Google Scholar
[112] Bair, J., Fourneau, R., Étude géometrique des espaces vectoriels, II: Polyèdres et polytopes convexes. Lecture Notes in Math. 802, Springer, Berlin, 1980.
[113] Bair, J., Fourneau, R., Jongmans, F., Vers la domestication de l'extrémisme. Bull. Soc. Roy. Sci. Liège 46 (1977), 126–132.Google Scholar
[114] Bair, J., Jongmans, F., Sur les graves questions qui naissent quand la décomposition des ensembles atteint un stade avancé. Bull. Soc. Roy. Sci. Liège 46 (1977), 12–26.Google Scholar
[115] Balashov, M. V., Polovinkin, E. S., M-strongly convex subsets and their generating sets. Sbornik. Math. 191 (2000), 25–60.Google Scholar
[116] Ball, K., Isometric problems in lp and sections of convex sets. PhD dissertation, Cambridge, 1986.
[117] Ball, K., Some remarks on the geometry of convex sets. In Geometric Aspects of Functional Analysis (J., Lindenstrauss, V. D., Milman, eds), Lecture Notes in Math. 1317, pp. 224–231, Springer, Heidelberg, 1988.
[118] Ball, K., Logarithmically concave functions and sections of convex sets in Rn. Studia Math. 88 (1988), 69–84.Google Scholar
[119] Ball, K., Volumes of sections of cubes and related problems. In Geometric Aspects of Functional Analysis (J., Lindenstrauss, V. D., Milman, eds), Lecture Notes in Math. 1376, pp. 251–260, Springer, Berlin, 1989.
[120] Ball, K., Volume ratios and a reverse isoperimetric inequality. J. London Math. Soc. 44 (1991), 351–359.Google Scholar
[121] Ball, K., Shadows of convex bodies. Trans. Amer. Math. Soc. 327 (1991), 891–901.Google Scholar
[122] Ball, K., Ellipsoids of maximal volume in convex bodies. Geom. Dedicata 41 (1992), 241–250.Google Scholar
[123] Ball, K., An elementary introduction to modern convex geometry. In Flavors of Geometry, Math. Sci. Res. Inst. Publ. 31, pp. 1–58, Cambridge Univ. Press, Cambridge, 1997.
[124] Ball, K., Convex geometry and functional analysis. In Handbook of the Geometry of Banach Spaces (W. B., Johnson, J., Lindenstrauss, eds), vol. 1, pp. 161–194, Elsevier, Amsterdam, 2001.
[125] Ball, K., An elementary introduction to monotone transportation. In Geometric Aspects of Functional Analysis (Israel Seminar 2002–2003), Lecture Notes in Math. 1850, pp. 41–52, Springer, Berlin, 2004.
[126] Ball, K., Böröczky, K. J., Stability of the Prékopa–Leindler inequality. Mathematika 56 (2010), 339–356.Google Scholar
[127] Ball, K. M., Böröczky, K. J., Stability of some versions of the Prékopa–Leindler inequality. Monatsh. Math. 163 (2011), 1–14.Google Scholar
[128] Bambah, R. P., Polar reciprocal convex bodies. Proc. Cambridge Phil. Soc. 51 (1955), 377–378.Google Scholar
[129] Banchoff, T. F., Critical points and curvature for embedded polyhedra. J. Differential Geom. 1 (1967), 245–256.Google Scholar
[130] Banchoff, T. F., Critical points and curvature for embedded polyhedral surfaces. Amer. Math Monthly 77 (1970), 475–485.Google Scholar
[131] Bandle, C., Isoperimetric Inequalities and Applications. Pitman, Boston, 1980.
[132] Bandt, Ch., On the metric structure of hyperspaces with Hausdorff metric. Math. Nachr. 129 (1986), 175–183.Google Scholar
[133] Bandt, Ch., Estimates for the Hausdorff dimension of hyperspaces. In General Topology and its Relations to Modern Analysis and Algebra VI, Proc. 6th Prague Topological Symp. 1986, pp. 33–42, Heldermann, Berlin, 1988.
[134] Bandt, Ch., Baraki, G., Metrically invariant measures on locally homogeneous spaces and hyperspaces. Pacific J. Math. 121 (1986), 13–28.Google Scholar
[135] Bangert, V., Konvexitat in Riemannschen Mannigfaltigkeiten. Dissertation, University of Dortmund, 1977.
[136] Bangert, V., Analytische Eigenschaften konvexer Funktionen auf Riemannschen Mannigfaltigkeiten. J. Reine Angew. Math. 307/308 (1979), 309–324.Google Scholar
[137] Bangert, V., Convex hypersurfaces with bounded first mean curvature measure. Calc. Van 8 (1999), 259–278.Google Scholar
[138] Bantegnie, R., Convexite des hyperespaces. Arch. Math. 26 (1975), 414–420.Google Scholar
[139] Bapat, R. B., Mixed discriminants of positive semidefinite matrices. Linear Algebra Appl. 126 (1989), 107–124.Google Scholar
[140] Bárány, I., Intrinsic volumes and f-vectors of random polytopes. Math. Ann. 285 (1989), 671–699.Google Scholar
[141] Bárány, I., Affine perimeter and limit shape. J. Reine Angew. Math. 484 (1997), 71–84.Google Scholar
[142] Bárány, I., Sylvester's question: the probability that n points are in convex position. Ann. Probab. 27 (1999), 2020–2034.Google Scholar
[143] Bárány, I., The technique of M-regions and cap-coverings: a survey. Rend. Circ. Mat. Palermo, Ser. II, Suppl. 65 (1999), 21–38.Google Scholar
[144] Bárány, I., Random polytopes, convex bodies, and approximation. In Stochastic Geometry, CIME Summer School, Martina Franca 2004 (Weil, W., ed.), Lecture Notes in Math. 1892, pp. 77–118, Springer, Berlin, 2007.
[145] Bárány, I., Random points and lattice points in convex bodies. Bull. Amer. Math. Soc. 45 (2008), 339–365.Google Scholar
[146] Bárány, I., Karasev, R., Notes about the Caratheodory number. Discrete Comp. Geom. 48 (2012), 783–792.Google Scholar
[147] Bárány, I., Larman, D. G., Convex bodies, economic cap coverings, random polytopes. Mathematika 35 (1988), 274–291.Google Scholar
[148] Bárány, I., Random polytopes in smooth convex bodies. Mathematika 39 (1992), 81–92. Corrigendum: Mathematika 51 (2005), 31.Google Scholar
[149] Bárány, I., Larman, D. G., A colored version of Tverberg's theorem. J. London Math. Soc. 45 (2) (1992), 314–320.Google Scholar
[150] Bárány, I., Prodromou, M., On maximal convex lattice polygons inscribed in a plane convex set. Israel J. Math. 154 (2006), 337–360.Google Scholar
[151] Bárány, I., Reitzner, M., On the variance of random polytopes. Adv. Math. 225 (2010), 1986–2001.Google Scholar
[152] Bárány, I., Schneider, R., Universal points of convex bodies and bisectors in Minkowski spaces. Adv. Geom. (in press).
[153] Bárány, I., Steiger, W., On the variance of random polygons. Comput. Geom.: Theory. Appl. 46 (2013), 173–180.Google Scholar
[154] Bárány, I., Zamfirescu, T., Diameters in typical convex bodies. Canad. J. Math. 42 (1990), 50–61.Google Scholar
[155] Barthe, F., Inégalités fonctionnelles et géométriques obtenues par transport des mesures. PhD thesis, Université de Marne-la-Vallée, 1997.
[156] Barthe, F., Inégalités de Brascamp–Lieb et convexité. C. R. Acad. Sci. Paris Sér. I Math. 324 (1997), No. 8, 885–888.Google Scholar
[157] Barthe, F., An extremal property of the mean width of a simplex. Math. Ann. 310 (1998), 685–693.Google Scholar
[158] Barthe, F., On a reverse form of the Brascamp–Lieb inequality. Invent. Math. 134 (1998), 335–361.Google Scholar
[159] Barthe, F., Autour de l'inégalité de Brunn–Minkowski. Ann. Fac. Sci. Toulouse 12 (2003), 127–178.Google Scholar
[160] Barthe, F., Restricted Prékopa–Leindler inequality. Pacific J. Math. 189 (1999), 211–222.Google Scholar
[161] Barthe, F., A continuous version of the Brascamp–Lieb inequalities. In Geometric Aspects of Functional Analysis (V. D., Milman, G., Schechtman, eds), Lecture Notes in Math. 1850, pp. 53–63, Springer, Berlin, 2004.
[162] Barthe, F., Böröczky, K. J., Fradelizi, M., Stability of the functional forms of the Blaschke–Santalo inequality. Monatsh. Math. (in press), arXiv:1206.0369v1.
[163] Barthe, F., Fradelizi, M., The volume product of convex bodies with many hyperplane symmetries. Amer. J. Math. 135 (2013), 1–37.Google Scholar
[164] Barthel, W., Zum Busemannschen und Brunn–Minkowskischen Satz. Math. Z. 70 (1958/1959), 407–429.Google Scholar
[165] Barthel, W., Zur isodiametrischen und isoperimetrischen Ungleichung in der Relativgeometrie. Comment. Math. Helvet. 33 (1059), 241–257.Google Scholar
[166] Barthel, W., Bettinger, W., Die isoperimetrische Ungleichung für die innere Minkowskische Relativoberfläche. Math. Ann. 142 (1960/1961), 322–327.Google Scholar
[167] Barthel, W., Bettinger, W., Bemerkungen zum isoperimetrischen Problem. Arch. Math. 14 (1963), 424–429.Google Scholar
[168] Barthel, W., Franz, G., Eine Verallgemeinerung des Busemannschen Satzes vom Brunn–Minkowskischen Typ. Math. Ann. 144 (1961), 183–198.Google Scholar
[169] Barvinok, A., A Course in Convexity. Amer. Math. Soc., Providence, RI, 2002.
[170] Bastero, J., Bernués, J., Peña, A., An extension of Milman's reverse Brunn–Minkowski inequality. Geom. Funct. Anal. 5 (1995), 572–581.Google Scholar
[171] Bastero, J., Bernués, J., Romance, M., Dual quermassintegrals, extremal positions and isotropic measures. In Seminar of Mathematical Analysis, pp. 11–26, Univ. Sevilla Secr. Publ., Seville, 2006.
[172] Bastero, J., Bernués, J., Romance, M., From John to Gauss–John positions via dual mixed volumes. J. Math. Anal. Appl. 328 (2007), 550–566.Google Scholar
[173] Bastero, J., Romance, M., John's decomposition of the identity in the non-convex case. Positivity 6 (2002), 1–16.Google Scholar
[174] Bastero, J., Romance, M., Positions of convex bodies associated to extremal problems and isotropic measures. Adv. Math. 184 (2004), 64–88.Google Scholar
[175] Batson, R. G., Necessary and sufficient conditions for boundedness of extreme points of unbounded convex sets. J. Math. Anal. Appl. 130 (1988), 365–374.Google Scholar
[176] Bauer, C., Intermediate surface area measures and projection functions of convex bodies. Arch. Math. 64 (1995), 69–74.Google Scholar
[177] Bauer, C., Minimal and reduced pairs of convex bodies. Geom. Dedicata 62 (1996), 179–192.Google Scholar
[178] Bauer, C., Infinitesimal rigidity of convex polytopes. Discrete Comput. Geom. 22 (1999), 177–192.Google Scholar
[179] Bauer, H., Konvexität in topologischen Vektorräumen. Vorlesungsausarbeitung, Hamburg, 1964.
[180] Bauer, H., Wahrscheinlichkeitstheorie und Grundzuge der Maßtheorie, 2nd edn. W. de Gruyter, Berlin, 1974.
[181] Baum, D., Zur analytischen Darstellung des Randes konvexer Körper durch Stützhyperboloide. I: Halbachsenfunktion und Scheitelsätze. Manuscripta Math. 9 (1973), 113–141.Google Scholar
[182] Baum, D., Zur analytischen Darstellung des Randes konvexer Körper durch Stützhyperboloide. II: Die Randdarstellung durch die Halbachsenfunktion. Manuscripta Math. 9 (1973), 307–322.Google Scholar
[183] Baum, D., Bemerkungen zur Halbachsenfunktion. Analysis 7 (1987), 221–235.Google Scholar
[184] Baum, D., Randdarstellungen konvexer Körper. Analysis 9 (1989), 185–194.Google Scholar
[185] Bayen, T., Lachand-Robert, T., Oudet, É., Analytic parametrization of three-dimensional bodies of constant width. Arch. Rat. Mech. Anal. 186 (2007), 225–249.Google Scholar
[186] Bazylevych, L. E., Zarichnyi, M. M., On convex bodies of constant width. Topology Appl. 153 (2006), 1699–1704.Google Scholar
[187] Beckenbach, E. F., Bellman, R., Inequalities, 2nd rev. edn. Springer, Berlin, 1965.
[188] Beer, G. A., Starshaped sets and the Hausdorff metric. Pacific J. Math. 61 (1975), 21–27.Google Scholar
[189] Beer, G. A., Support and distance functionals for convex sets. Numer. Funct. Anal. Optim. 10 (1989), 15–36.Google Scholar
[190] Behrend, F., Über einige Affininvarianten konvexer Bereiche. Math. Ann. 113 (1937), 713–747.Google Scholar
[191] Behrend, F., Über die kleinste umbeschriebene und die größte einbeschriebene Ellipse eines konvexen Bereiches. Math. Ann. 115 (1938), 397–411.Google Scholar
[192] Bensimon, D., Sur l'espace topologique des points extrémaux d'un convexe compact. C. R. Acad. Sci. Paris, Sér. I Math. 304 (1987), No. 13, 391–392.Google Scholar
[193] Benson, R. V.Euclidean Geometry and Convexity. McGraw–Hill, New York, 1966.
[194] Benson, D. C., Sharpened forms of the plane isoperimetric inequality. Amer. Math. Monthly 77 (1970), 29–34.Google Scholar
[195] Benyamini, Y., Two point symmetrization, the isoperimetric inequality on the sphere and some applications. Longhorn Notes, Univ. of Texas, Texas Funct. Anal. Seminar (19831984), 53–76.
[196] Berck, G., Convexity of Lp-intersection bodies. Adv. Math. 222 (2009), 920–936.Google Scholar
[197] Berg, Ch., Shephard's approximation theorem for convex bodies and the Milman theorem. Math. Scand. 25 (1069), 19–24.Google Scholar
[198] Berg, Ch., Corps convexes et potentiels spheriques. Danske Vid. Selskab. Mat.-fys. Medd. 37 (1969), No. 6, 64 pp.Google Scholar
[199] Berg, Ch., Abstract Steiner points of convex bodies. J. London Math. Soc. 4 (2) (1971), 176–180.Google Scholar
[200] Berger, M., Convexité dans le Plan, dans l'Espace at Au-delà, vol. 1, 2. Ellipses Edition, Paris, 2006.
[201] Berger, M., Geometry Revealed: A Jacob's Ladder to Modern Higher Geometry. Springer, Heidelberg, 2010.
[202] Bernig, A., A Hadwiger type theorem for the special unitary group. Geom. Funct. Anal. 19 (2009), 356–372.Google Scholar
[203] Bernig, A., Integral geometry under G2 and Spin(7). Israel J. Math. 184 (2011), 301–316.Google Scholar
[204] Bernig, A., A product formula for valuations on manifolds with applications to the integral geometry of the quaternionic line. Comment. Math. Helvet. 84 (2009), 1–19.Google Scholar
[205] Bernig, A., Invariant valuations on quaternionic vector spaces. J. Inst. Math. Jussieu 11 (2012), 467–199.Google Scholar
[206] Bernig, A., Algebraic integral geometry. In Global Differential Geometry (C., Bär, J., Lohkamp, M., Schwarz, eds), pp. 107–145, Springer, Berlin, 2012.
[207] Bernig, A., Bröcker, L., Lipschitz–Killing invariants. Math. Nachr. 245 (2002), 5–25.Google Scholar
[208] Bernig, A., Bröcker, L., Courbures intrinsèques dans les catégories analytico-géométriques. Ann. Inst. Fourier 53 (2003), 1897–1924.Google Scholar
[209] Bernig, A., Bröcker, L., Valuations on manifolds and Rumin cohomology. J. Differential Geom. 75 (2007), 433–457.Google Scholar
[210] Bernig, A., Fu, J. H. G., Convolution of convex valuations. Geom. Dedicata 123 (2006), 153–169.Google Scholar
[211] Bernig, A., Fu, J. H. G., Hermitian integral geometry. Ann. of Math. 173 (2011), 907–945.Google Scholar
[212] Bernig, A., Fu, J. H. G., Solanes, G., Integral geometry of complex space forms. arXiv:1204.0604v2.
[213] Bernštein, D. N., The number of roots of a system of equations. Functional Anal. Appl. 9 (1975), 183–185.Google Scholar
[214] Besicovitch, A. S., On singular points of convex surfaces. In Convexity, Proc. Symp. Pure Math., vol. 7 (V., Klee, ed.), pp. 21–23, Amer. Math. Soc., Providence, RI, 1963.
[215] Besicovitch, A. S., On the set of directions of linear segments on a convex surface. In Convexity, Proc. Symp. Pure Math., vol. 7 (V., Klee, ed.), pp. 24–25, Amer. Math. Soc., Providence, RI, 1963.
[216] Betke, U., Mixed volumes of polytopes. Arch. Math. 58 (1992), 388–391.Google Scholar
[217] Betke, U., Gritzmann, P., An application of valuation theory to two problems in discrete geometry. Discrete Math. 58 (1986), 81–85.Google Scholar
[218] Betke, U., McMullen, P., Estimating the sizes of convex bodies from projections. J. London Math. Soc. 27 (1983), 525–538.Google Scholar
[219] Betke, U., Weil, W., Isoperimetric inequalities for the mixed area of plane convex sets. Arch. Math. 57 (1991), 501–507.Google Scholar
[220] Bianchi, G., Poliedri di 5 vertici inscritti in convessi: una proprietá estremale. Boll. Un. Mat. Ital. B 5 (6) (1986), 767–780.Google Scholar
[221] Bianchi, G., Matheron's conjecture for the covariogram problem. J. London Math. Soc. 71 (2) (2005), 203–220.Google Scholar
[222] Bianchi, G., The covariogram determines three-dimensional convex polytopes. Adv. Math. 220 (2009), 1771–1808.Google Scholar
[223] Bianchi, G., The cross covariogram of a pair of polygons determines both polygons, with a few exceptions. Adv. Appl. Math. 42 (2009), 519–544.Google Scholar
[224] Bianchi, G., Burchard, A., Gronchi, P., Volčič, A., Convergence in shape of Steiner symmetrizations. Indiana Univ. Math. J. (in press), arXiv:1206.2041v1.
[225] Bianchi, G., Colesanti, A., Pucci, C., On the second differentiability of convex surfaces. Geom. Dedicata 60 (1996), 39–48.Google Scholar
[226] Bianchi, G., Gardner, R. J., Kiderlen, M., Phase retrieval for characteristic functions of convex bodies and reconstruction from covariograms. J. Amer. Math. Soc. 24 (2011), 293–343.Google Scholar
[227] Bianchi, G., Gronchi, P., Steiner symmetrals and their distance from a ball. Israel J. Math. 135 (2003), 181–192.Google Scholar
[228] Bianchi, G., Klain, D. A., Lutwak, E., Yang, D., Zhang, G., A countable set of directions is sufficient for Steiner symmetrization. Adv. Math. 47 (2011), 869–873.Google Scholar
[229] Bianchini, C., Colesanti, A., A sharp Rogers and Shephard inequality for the p-difference body of planar convex bodies. Proc. Amer. Math. Soc. 136 (2008), 2575–2582.Google Scholar
[230] Biehl, Th., Über affine Geometrie XXXVIII: Über die Schuttelung von Eikörpern. Abh. Math. Sem. Univ. Hamburg 2 (1923), 69–70.Google Scholar
[231] Bisztriczky, T., Böröczky, K. Jr, About the centroid body and the ellipsoid of inertia. Mathematika 48 (2001), 1–13.Google Scholar
[232] Bisztriczky, T., McMullen, P., Schneider, R., Ivić Weiss, A. (eds), Polytopes: Abstract, Convex and Computational. NATO ASI Series C, Math. Phys. Sci. 440, Kluwer, Dordrecht, 1994.
[233] Björck, G., The set of extreme points of a compact convex set. Ark. Mat. 3 (1958), 463–468.Google Scholar
[234] Blackwell, D., The range of certain vector integrals. Proc. Amer. Math. Soc. 2 (1951), 390–395.Google Scholar
[235] Blagojević, P. V. M., Matschke, B., Ziegler, G. M., A tight colored Tverberg theorem for maps to manifolds. Topology Appl. 158 (2011), 1445–1452.Google Scholar
[236] Blagojević, P. V. M., Matschke, B., Ziegler, G. M., Optimal bounds for a colorful Tverberg–Vrećica type problem. Adv. Math. 226 (2011), 5198–5215.Google Scholar
[237] Blaschke, W., Beweise zu Sätzen von Brunn und Minkowski über die Minimaleigenschaft des Kreises. Jahresber. DeutscheMath.-Ver. 23 (1914), 210–234. Also in [254], pp. 106–130.Google Scholar
[238] Blaschke, W., Konvexe Bereiche gegebener konstanter Breite und kleinsten Inhalts. Math. Ann. 76 (1915), 504–513. Also in [254], pp. 157–166.Google Scholar
[239] Blaschke, W., Über affine Geometrie I: Isoperimetrische Eigenschaften von Ellipse und Ellipsoid. Ber. Verh. Sächs. Akad. Wiss., Math.-Phys. Kl. 68 (1916), 217–239. Also in [254], pp. 181–203.Google Scholar
[240] Blaschke, W., Eine kennzeichnende Eigenschaft des Ellipsoids und eine Funktionalgleichung auf der Kugel. Ber. Verh. Sächs. Akad. Wiss., Math.-Phys. Kl. 68 (1916), 129–136. Also in [254], pp. 173–180.Google Scholar
[241] Blaschke, W., Kreis und Kugel, 2nd edn. W. de Gruyter, Berlin, 1956 (1st edn: 1916).
[242] Blaschke, W., Über affine Geometrie III: Eine Minimumeigenschaft der Ellipse. Ber. Verh. Sachs. Akad. Wiss., Math.-Phys. Kl. 69 (1917), 3–12. Also in [254], pp. 217–226.Google Scholar
[243] Blaschke, W., Über affine Geometrie VII: Neue Extremeigenschaften von Ellipse und Ellipsoid. Ber. Verh. Sachs. Akad. Wiss., Math.-Phys. Kl. 69 (1917), 3–12. Also in [254], pp. 246–258.Google Scholar
[244] Blaschke, W., Affine Geometrie IX: Verschiedene Bemerkungen und Aufgaben. Ber. Verh. Sächs. Akad. Wiss., Math.-Phys. Kl. 69 (1917), 412–420. Also in [254], pp. 259–267.Google Scholar
[245] Blaschke, W., Über affine Geometrie X: Eine Minimumeigenschaft des Ellipsoids. Ber. Verh. Sächs. Akad. Wiss., Math.-Phys. Kl. 69 (1917), 421–435. Also in [254], pp. 269–283.Google Scholar
[246] Blaschke, W., Über affine Geometrie XI: Lösung des ‘Vierpunktproblems’ von Sylvester aus der Theorie der geometrischen Wahrscheinlichkeiten. Ber. Verh. Sächs. Akad. Wiss., Math.-Phys. Kl. 69 (1917), 436–453. Also in [254], pp. 284–301.Google Scholar
[247] Blaschke, W., Über affine Geometrie XIV: Eine Minimumaufgabe für Legendres Trägheitsellipsoid. Ber. Verh. Sächs. Akad. Wiss., Math.-Phys. Kl. 70 (1918), 72–75. Also in [254], pp. 307–310.Google Scholar
[248] Blaschke, W., Vorlesungen Über Differentialgeometrie, II: Affine Differentialgeometrie. Springer, Berlin, 1923.
[249] Blaschke, W., Vorlesungen über Differentialgeometrie I., 3rd edn. Springer, Berlin, 1930.
[250] Blaschke, W., Über die Schwerpunkte von Eibereichen. Math. Z. 36 (1933), 166. Also in [254], p. 350.Google Scholar
[251] Blaschke, W., Integralgeometrie 10: Eine isoperimetrische Eigenschaft der Kugel. Bull. Math. Soc. Roum. Sci. 37 (1936), 3–7. Also in [253], pp. 265–269.Google Scholar
[252] Blaschke, W., Vorlesungen Über Integralgeometrie, 3rd edn. VEB Deutsch. Verl. d. Wiss., Berlin, 1955 (1st edn: PartI, 1935; Part II, 1937).
[253] Blaschke, W., Gesammelte Werke (W., Burauet al., eds), vol. 2, Kinematik und Integralgeometrie, Thales, Essen, 1985.
[254] Blaschke, W., Gesammelte Werke (W., Burauet al., eds), vol. 3, Konvexgeometrie, Thales, Essen, 1985.
[255] Blaschke, W., Reidemeister, K., Über die Entwicklung der Affingeometrie. Jahresber. Deutsche Math.-Ver. 31 (1922), 63–82.Google Scholar
[256] Blind, R., Eine Charakterisierung der Sphäre im E3. Manuscripta Math. 21 (1977), 243–253.Google Scholar
[257] Blumenthal, L. M., Theory and Applications of Distance Geometry. Clarendon Press, Oxford, 1953.
[258] Bobkov, S. G., A remark on the surface Brunn–Minkowski inequality. In Geometric Aspects of Functional Analysis (V. D., Milman, G., Schechtman, eds), Lecture Notes in Math. 1910, pp. 177–79, Springer, Berlin, 2007.
[259] Bobkov, S. G., Convex bodies and norms associated to convex measures. Probab. Theory Relat. Fields 147 (2010), 303–332.Google Scholar
[260] Bobkov, S. G., Colesanti, A., Fragalà, I., Quermassintegrals of quasi-concave functions and generalized Prékopa–Leindler inequalities. Manuscripta Math. (in press), arXiv:1210.6364v1.
[261] Bobkov, S. G., Ledoux, M., From Brunn–Minkowski to sharp Sobolev inequalities. Ann. Mat. Pura Appl. 187 (2008), 369–384.Google Scholar
[262] Boček, L., Eine Verschärfung der Poincaré-Ungleichung. Casopis Pĕst. Mat. 108 (1983), 78–81.Google Scholar
[263] Böhm, J., Hertel, E., Polyedergeometrie in n-dimensionalen Raumen Konstanter Krümmung. VEB Deutsch. Verl. d. Wiss., Berlin, 1980.
[264] Bokowski, J., Eine verschärfte Ungleichung zwischen Volumen, Oberfläche und Inkugelradius im Rn. Elem. Math. 28 (1973), 43–44.Google Scholar
[265] Bokowski, J., Hadwiger, H., Wills, J. M., Eine Erweiterung der Croftonschen Formeln für konvexe Körper. Mathematika 23 (1976), 212–229.Google Scholar
[266] Bokowski, J., Heil, E., Integral representations of quermassintegrals and Bonnesenstyle inequalities. Arch. Math. 47 (1986), 79–89.Google Scholar
[267] Bol, G., Zur Theorie der konvexen Körper. Jahresber. Deutsche Math.-Ver. 49 (1939), 113–123.Google Scholar
[268] Bol, G., Ein isoperimetrisches Problem. NieuwArch. Wiskunde 20 (2)(1940), 171–175.Google Scholar
[269] Bol, G., Isoperimetrische Ungleichungen für Bereiche auf Flächen. Jahresber. Deutsche Math.-Ver. 51 (1941), 219–257.Google Scholar
[270] Bol, G., Zur Theorie der Eikörper. Jahresber. Deutsche Math.-Ver. 52 (1942), 250–266.Google Scholar
[271] Bol, G., Einfache Isoperimetrie-Beweise für Kreis und Kugel. Abh. Math. Sem. Univ. Hamburg 15 (1943), 27–36.Google Scholar
[272] Bol, G., Beweis einer Vermutung von H. Minkowski. Abh. Math. Sem. Univ. Hamburg 15 (1943), 37–56.Google Scholar
[273] Bol, G., Knothe, H., Über konvexe Körper mit Ecken und Kanten. Arch. Math. 1 (1948/1949), 427–431.Google Scholar
[274] Bolker, E. D., A class of convex bodies. Trans. Amer. Math. Soc. 145 (1969), 323–346.Google Scholar
[275] Bolker, E. D., The zonoid problem (Research Problem). Amer. Math. Monthly 78 (1971), 529–531.Google Scholar
[276] Boltjanskiĭ, V. G., Soltan, P. S., Combinatorial Geometry of Several Classes of Convex Sets (in Russian). ‘Stiinca’, Kishinev, 1978.
[277] Boltyanski, V., Martini, H., Soltan, P. S., Excursions into Combinatorial Geometry. Springer, Berlin, 1997.
[278] Boman, J., The sum of two plane convex C∞ sets is not always C5. Math. Scand. 66 (1990), 216–224.Google Scholar
[279] Boman, J., Smoothness of sums of convex sets with real analytic boundaries. Math. Scand. 66 (1990), 225–230.Google Scholar
[280] Bonnesen, T., Über eine Verschärfung der isoperimetrischen Üngleichheit des Kreises in der Ebene und auf der Kugeloberfläche nebst einer Anwendung auf eine Minkowskische Ungleichheit für konvexe Körper. Math. Ann. 84 (1921), 216–227.Google Scholar
[281] Bonnesen, T., Über das isoperimetrische Defizit ebener Figuren. Math. Ann. 91 (1924), 252–268.Google Scholar
[282] Bonnesen, T., Les Problèmes des Isopérimètres et des Isépiphanes. Gauthiers–Villars, Paris, 1929.
[283] Bonnesen, T., Beweis einer Minkowskischen Ungleichung. Mat. Tidsskr. B (1932), 25–27.Google Scholar
[284] Bonnesen, T., Fenchel, W., Theorie der Konvexen Körper. Springer, Berlin, 1934. Reprint: Chelsea Publ. Co., New York, 1948. English translation: BCS Associates, Moscow, Idaho, 1987.
[285] Bonnice, W., Klee, V. L., The generation of convex hulls. Math. Ann. 152 (1963), 1–29.Google Scholar
[286] Borell, C., Convex set functions in d-space. Period. Math. Hungar. 6 (1975), 111–136.Google Scholar
[287] Borell, C., Capacitary inequalities of the Brunn–Minkowski type. Math. Ann. 263 (1983), 179–184.Google Scholar
[288] Böröczky, K. J., The stability of the Rogers–Shephard inequality and of some related inequalities. Adv. Math. 190 (2005), 47–76.Google Scholar
[289] Böröczky, K. J., Stability of the Blaschke–Santaló and theaffine isoperimetric inequality. Adv. Math. 225 (2010), 1914–1928.Google Scholar
[290] Böröczky, K. J., Stronger versions of the Orlicz–Petty projection inequality. arXiv:1105.3251v2.
[291] Böröczky, K., Bárány, I., Makai, E. Jr, Pach, J., Maximal volume enclosed by plates and proof of the chessboard conjecture. Discrete Math. 60 (1986), 101–120.Google Scholar
[292] Böröczky, K. J., Hernández Cifre, M. A., Salinas, G., Optimizing area and perimeter of convex sets for fixed circumradius and inradius. Monatsh. Math. 138 (2003), 95–110.Google Scholar
[293] Böröczky, K. J., Hug, D., Stability of the reverse Blaschke–Santaló inequality for zonoids and applications. Adv. Appl. Math. 44 (2010), 309–328.Google Scholar
[294] Böröczky, K. J., Lutwak, E., Yang, D., Zhang, G., The logarithmic Minkowski problem. J. Amer. Math. Soc. 26 (2013), 831–852.Google Scholar
[295] Böröczky, K. J., Lutwak, E., Yang, D., Zhang, G., The log-Brunn–Minkowski inequality. Adv. Math. 231 (2012), 1974–1997.Google Scholar
[296] Böröczky, K. J., Lutwak, E., Yang, D., Zhang, G., Affine images of isotropic measures. Preprint.
[297] Böröczky, K. J., Makai, E. Jr, Meyer, R., Reisner, S., Volume product in the plane: lower estimates with stability. Studia Sci. Math. Hungar. 50 (2013), 159–189.Google Scholar
[298] Böröczky, K. J., Schneider, R., A characterization of the duality mapping for convex bodies. Geom. Funct. Anal. 18 (2008), 657–667.Google Scholar
[299] Böröczky, K. J., Serra, O., Remarks on the equality case of the Bonnesen inequality. Arch. Math. 99 (2012), 189–199.Google Scholar
[300] Borowska, D., Grzybowski, J., Minkowski difference and Sallee elements in an ordered semigroup. Comment. Math. Prace Mat. 47 (2007), 77–83.Google Scholar
[301] Borowska, D., Grzybowski, J., Strongly monotypic polytopes in ℝ3. Demonstratio Math. 41 (2008), 165–169.Google Scholar
[302] Borowska, D., Grzybowski, J., The intersection property in the family of compact convex sets. J. Convex Anal. 17 (2010), 173–181.Google Scholar
[303] Borwein, J. M., Noll, D., Second order differentiability of convex functions in Banach spaces. Trans. Amer. Math. Soc. 342 (1994), 43–81.Google Scholar
[304] Borwein, J. M., O'Brien, R. C., Cancellation characterizes convexity. Nanta Math. 11 (1978), 100–102.Google Scholar
[305] Borwein, J. M., Vanderwerff, J. D., Convex Functions: Constructions, Characterizations and Counterexamples. Cambridge Univ. Press, Cambridge, 2010.
[306] Bose, R. C., Roy, S. N., Some properties of the convex oval with reference to its perimeter centroid. Bull. Calcutta Math. Soc. 27 (1935), 79–86.Google Scholar
[307] Bose, R. C., Roy, S. N., A note on the area centroid of a closed convex oval. Bull. Calcutta Math. Soc. 27 (1935), 111–118.Google Scholar
[308] Bose, R. C., Roy, S. N., On the four centroids of a closed surface. Bull. Calcutta Math. Soc. 27 (1935), 119–146.Google Scholar
[309] Botts, T., Convex sets. Amer. Math. Monthly 49 (1942), 527–535.Google Scholar
[310] Bourbaki, N., Espaces Vectoriels Topologiques, Chap. I, II. Hermann, Paris, 1953.
[311] Bourbaki, N., Espaces Vectoriels Topologiques, Chap. III, IV, V. Hermann, Paris, 1955.
[312] Bourgain, J., On high-dimensional maximal functions associated to convex bodies. Amer. J. Math. 108 (1986), 1467–1476.Google Scholar
[313] Bourgain, J., Remarques sur les zonoides (Projection bodies, etc.). In Sémin. d'Analyse Fonctionnelle, Paris 1985/1986/1987, Publ. Math. Univ. Paris VII 28 (1987), 171–186.Google Scholar
[314] Bourgain, J., On the Busemann–Petty problem for perturbations of the ball. Geom. Funct. Anal. 1 (1991), 1–3.Google Scholar
[315] Bourgain, J., Lindenstrauss, J., Nouveaux résultats sur les zonoïdes et les corps de projection. C. R. Acad. Sci. Paris Śer. I Math. 306 (1988), No. 8, 377–380.Google Scholar
[316] Bourgain, J., Lindenstrauss, J., Projection bodies. In Geometric Aspects of Functional Analysis (J., Lindenstrauss, V. D., Milman, eds), Lecture Notes in Math. 1317, pp. 250–270, Springer, Berlin, 1988.
[317] Bourgain, J., Lindenstrauss, J., Distribution of points on spheres and approximation by zonotopes. Israel J. Math. 64 (1988), 25–31.Google Scholar
[318] Bourgain, J., Lindenstrauss, J., Almost euclidean sections in spaces with a symmetric basis. In Geometric Aspects of Functional Analysis (J., Lindenstrauss, V. D., Milman, eds), Lecture Notes in Math. 1376, pp. 278–288, Springer, Berlin, 1989.
[319] Bourgain, J., Lindenstrauss, J., Milman, V. D., Sur l'approximation de zonoïdes par des zonotopes. C. R. Acad. Sci. Paris Sér. I Math. 303 (1986), No. 20, 987–988.Google Scholar
[320] Bourgain, J., Lindenstrauss, J., Milman, V., Minkowski sums and symmetrizations. In Geometric Aspects of Functional Analysis (J., Lindenstrauss, V. D., Milman, eds), Lecture Notes in Math. 1317, pp. 44–66, Springer, Berlin, 1988.
[321] Bourgain, J., Lindenstrauss, J., Milman, V., Approximation of zonoids by zonotopes. Acta Math. 162 (1989), 73–141.Google Scholar
[322] Bourgain, J., Lindenstrauss, J., Milman, V., Estimates related to Steiner symmetrizations. In Geometric Aspects of Functional Analysis (J., Lindenstrauss, V. D., Milman, eds), Lecture Notes in Math. 1376, pp. 264–273, Springer, Berlin, 1989.
[323] Bourgain, J., Meyer, M., Milman, V., Pajor, A., On a geometric inequality. In Geometric Aspects of Functional Analysis (J., Lindenstrauss, V. D., Milman, eds), Lecture Notes in Math. 1317, pp. 271–282, Springer, Berlin, 1988.
[324] Bourgain, J., Milman, V., On Mahler's conjecture on the volume of a convex symmetric body and its polar. Preprint IHES/M/85/17.
[325] Bourgain, J., Milman, V., Sections euclidiennes et volume des corps symétriques convexes dans Rn. C. R. Acad. Sci. Paris Sér. I Math. 300 (1985), No. 13, 435–138.Google Scholar
[326] Bourgain, J., Milman, V., New volume ratio properties for convex symmetric bodies in Rn. Invent. Math. 88 (1987), 319–340.Google Scholar
[327] Bourgain, J., Zhang, G., On a generalization of the Busemann–Petty problem. In Convex Geometric Analysis, Berkeley, CA, 1996 (K. M., Ball, V., Milman, eds), Math. Sci. Res. Inst. Publ. 34, pp. 75–76, Cambridge Univ. Press, Cambridge, 1999.
[328] Brandolini, L., Colzani, L., Iosevich, A., Travaglini, G. (eds), Fourier Analysis and Convexity. Birkhauser, Boston, 2004.
[329] Brannen, N. S., Volumes of projection bodies. Mathematika 43 (1996), 255–264.Google Scholar
[330] Brannen, N. S., The Wills conjecture. Trans. Amer. Math. Soc. 349 (1997), 3977–3987.Google Scholar
[331] Brannen, N. S., Three-dimensional projection bodies. Adv. Geom. 5 (2005), 1–13.Google Scholar
[332] Brascamp, H. J., Lieb, E. H., On extensions of the Brunn–Minkowski and Prékopa–Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation. J. Funct. Anal. 22 (1976), 366–389.Google Scholar
[333] Brehm, U., Kühnel, W., Smooth approximation of polyhedral surfaces regarding curvatures. Geom. Dedicata 12 (1982), 435–461.Google Scholar
[334] Brickell, F., A new proof of Deicke's theorem on homogeneous functions. Proc. Amer. Math. Soc. 16 (1965), 190–191.Google Scholar
[335] Bröcker, L., Kuppe, M., Integral geometry of tame sets. Geom. Dedicata 82 (2000), 285–328.Google Scholar
[336] Brøndsted, A., Convex sets and Chebyshev sets, II. Math. Scand. 18 (1966), 5–15.Google Scholar
[337] Brøndsted, A., The inner aperture of a convex set. Pacific. J. Math. 72 (1977), 335–340.Google Scholar
[338] Brøndsted, A., An Introduction to Convex Polytopes. Springer, New York, 1983.
[339] Brøndsted, A., Continuous barycenter functions on convex polytopes. Expo. Math. 4 (1986), 179–187.Google Scholar
[340] Bronshtein, E. M., ε-entropy of convex sets and functions (in Russian). Sibirskii Mat. Zh. 17 (1976), 508–514. English translation: Siberian Math. J. 17 (1976), 393–398.Google Scholar
[341] Bronshtein, E. M., ε-entropy of the affine-equivalent convex bodies and Minkowski compacta (in Russian). Optimizatsiya 22 (1978), 5–11.Google Scholar
[342] Bronshtein, E. M., Extremal convex functions (in Russian). Sibirskii Mat. Zh. 19 (1978), 10–18. English translation: Siberian Math J. 19 (1978), 6–12.Google Scholar
[343] Bronshtein, E. M., Extremal convex functions and sets (in Russian). Optimizatsiya 22 (1978), 12–23.Google Scholar
[344] Bronshtein, E. M., Extremal H-convex bodies (in Russian). Sibirskii Mat. Zh. 20 (1979), 412–415. English translation: Siberian Math. J. 20 (1979), 295–297.Google Scholar
[345] Bronshtein, E. M., On extreme boundaries of finite-dimensional convex compacts (in Russian). Optimizatsiya 26 (43) (1981), 119–128.Google Scholar
[346] Bronshtein, E. M., Approximation of convex sets by polytopes (in Russian). Sovrem. Mat. Fundam. Napravl. 22 (2007), 5–37. English translation: J. Math. Sci. 155 (2008), 727–762.Google Scholar
[347] Brooks, J. N., Strantzen, J. B., Blaschke's rolling theorem in ℝn. Memoirs Amer. Math. Soc. 80 (1989), 101 pp.Google Scholar
[348] Brown, A. L., Chebyshev sets and facial systems of convex sets in finite-dimensional spaces. Proc. London Math. Soc. 41 (1980), 297–339.Google Scholar
[349] Brunn, H., Über Ovale und Eiflächen. Dissertation, München, 1887.
[350] Brunn, H., Über Curven ohne Wendepunkte. Habilitationsschrift, München, 1887.
[351] Brunn, H., Referat über eine Arbeit: Exacte Grundlagen für eine Theorie der Ovale. S.-B.Bayer. Akad. Wiss. (1894), 93–111.
[352] Buchta, C., Reitzner, M., Equiaffine inner parallel curves of a plane convex body and the convex hulls of randomly chosen points. Probab. Theory Related Fields 108 (1997), 385–415.Google Scholar
[353] Budach, L., Lipschitz–Killing curvatures of angular partially ordered sets. Adv. Math. 78 (1989), 140–167.Google Scholar
[354] Bunt, L. N. H., Bijdrage tot de theorie der convexe puntverzamelingen. Thesis, University of Groningen, Amsterdam, 1934.
[355] Burago, Yu. D., Kalinin, B. V., Smoothness and singularities of convex hypersurfaces (in Russian). Algebra i Analiz 8 (1996), 39–55. English translation: St. Petersburg Math. J. 8 (1997), 399–411.Google Scholar
[356] Burago, Yu. D., Zalgaller, V. A., Sufficient criteria of convexity. J. Soviet Math. 10 (1978), 395–435.Google Scholar
[357] Burago, Yu. D., Zalgaller, V. A., Geometric Inequalities. Springer, Berlin, 1988 (Russian original: 1980).
[358] Burckhardt, J. J., Über konvexe Körper mit Mittelpunkt. Vierteljahresschr. Naturf. Ges. Zürich 85 (1940), 149–154.Google Scholar
[359] Burton, G. R., On the sum of a zonotope and an ellipsoid. Comment. Math. Helvet. 51 (1976), 369–387.Google Scholar
[360] Burton, G. R., On the nearest-point map of a convex body. J. London Math. Soc. 19 (1979), 147–152.Google Scholar
[361] Burton, G. R., The measure of the s-skeleton of a convex body. Mathematika 26 (1979), 290–301.Google Scholar
[362] Burton, G. R., Skeleta and sections of convex bodies. Mathematika 27 (1980), 97–103.Google Scholar
[363] Burton, G. R., Larman, D. G., An inequality for skeleta of convex bodies. Arch. Math. 36 (1981), 378–384.Google Scholar
[364] Busemann, H., The isoperimetric problem in the Minkowski plane. Amer. J. Math. 69 (1947), 863–871.Google Scholar
[365] Busemann, H., A theorem on convex bodies of the Brunn–Minkowski type. Proc. Nat. Acad. Sci. USA 35 (1949), 27–31.Google Scholar
[366] Busemann, H., The isoperimetric problem for Minkowski area. Amer. J. Math. 71 (1949), 743–762.Google Scholar
[367] Busemann, H., The foundations of Minkowskian geometry. Comment. Math. Helvet. 24 (1950), 156–186.Google Scholar
[368] Busemann, H., Volume in terms of concurrent cross-sections. Pacific J. Math. 3 (1953), 1–12.Google Scholar
[369] Busemann, H., The Geometry of Geodesics. Academic Press, New York, 1955.
[370] Busemann, H., Convex Surfaces. Interscience, New York, 1958.
[371] Busemann, H., Minkowski's and related problems for convex surfaces with boundaries. Michigan Math. J. 6 (1959), 259–266.Google Scholar
[372] Busemann, H., Feller, W., Bemerkungen zur Differentialgeometrie der konvexen Flächen, I: Kürzeste Linien auf differenzierbaren Flächen. Mat. Tidsskr. B (1935), 25–36.Google Scholar
[373] Busemann, H., Feller, W., Bemerkungen zur Differentialgeometrie der konvexen Flächen, II: Über die Krümmungsindikatrizen. Mat. Tidsskr. B (1935), 87–115.Google Scholar
[374] Busemann, H., Feller, W., Krümmungseigenschaften konvexer Flächen. Acta Math. 66 (1936), 1–47.Google Scholar
[375] Busemann, H., Feller, W., Bemerkungen zur Differentialgeometrie der konvexen Flächen, III: Über die Gaussche Krümmung. Mat. Tidsskr. B (1936), 41–70.Google Scholar
[376] Busemann, H., Petty, C. M., Problems on convex bodies. Math. Scand. 4 (1956), 88–94.Google Scholar
[377] Busemann, H., Straus, E. G., Area and normality. Pacific J. Math. 10 (1960), 35–72.Google Scholar
[378] Caffarelli, L. A., Jerison, D., Lieb., E. H., On the case of equality in the Brunn–Minkowski inequality for capacity. Adv. Math. 117 (1996), 193–207.Google Scholar
[379] Campi, S., On the reconstruction of a function on a sphere by its integrals over great circles. Boll. Un. Mat. Ital., Ser. V 18 (1981), 195–215.Google Scholar
[380] Campi, S., On the reconstruction of a star-shaped body from its ‘half-volumes’. J. Austral. Math. Soc., Ser. A 37 (1984), 243–257.Google Scholar
[381] Campi, S., Reconstructing a convex surface from certain measurements of its projections. Boll. Un. Mat. Ital. B 5 (6) (1986), 945–959.Google Scholar
[382] Campi, S., Recovering a centred convex body from the areas of its shadows: a stability estimate. Ann. Mat. Pura Appl. 151 (1988), 289–302.Google Scholar
[383] Campi, S., Colesanti, A., Gronchi, P., Blaschke-decomposable convex bodies. Israel J. Math. 105 (1998), 185–195.Google Scholar
[384] Campi, S., Colesanti, A., Gronchi, P., A note on Sylvester's problem for random polytopes in a convex body. Rend. Istit. Mat. Univ. Trieste 31 (1999), 79–94.Google Scholar
[385] Campi, S., Colesanti, A., Gronchi, P., Shaking compact sets. Beitr. Algebra Geom. 42 (2001), 123–136.Google Scholar
[386] Campi, S., Gardner, R., Gronchi, P., Intersections of dilatates of convex bodies. Trans. Amer. Math. Soc. 364 (2012), 1193–1210.Google Scholar
[387] Campi, S., Gronchi, P., The Lp-Busemann–Petty centroid inequality. Adv. Math. 167 (2002), 128–141.Google Scholar
[388] Campi, S., Gronchi, P., On the reverse Lp-Busemann–Petty centroid inequality. Mathematika 49 (2002), 1–11.Google Scholar
[389] Campi, S., Gronchi, P., On volume product inequalities for convex sets. Proc. Amer. Math. Soc. 134 (2006), 2398–2402.Google Scholar
[390] Campi, S., Gronchi, P., Volume inequalities for Lp-zonotopes. Mathematika 53 (2006), 71–80.Google Scholar
[391] Campi, S., Gronchi, P., Extremal convex sets for Sylvester–Busemann type functional. Appl. Anal. 85 (2006), 129–141.Google Scholar
[392] Campi, S., Gronchi, P., On projection bodies of order one. Canad. Math. Bull. 52 (2009), 349–360.Google Scholar
[393] Carathéodory, C., Study, E., Zwei Beweise des Satzes daß der Kreis unter allen Figuren gleichen Umfanges den größten Inhalt hat. Math. Ann. 68 (1910), 133–140.Google Scholar
[394] Carlen, E. A., Cordero-Erausquin, D., Subbadditivity of the entropy and its relation to Brascamp–Lieb type ineqalities. Geom. Funct. Anal. 19 (2009), 373–405.Google Scholar
[395] Cassels, J. W. S., Measures of the non-convexity of sets and the Shapley–Folkman–Starr theorem. Math. Proc. Camb. Philos. Soc. 78 (1975), 433–436.Google Scholar
[396] Chai, Y. D., Lee, Y. S., Harmonic radial combinations and dual mixed volumes. Asian J. Math. 5 (2001), 493–498.Google Scholar
[397] Chakerian, G. D., Sets of constant width. Pacific J. Math. 19 (1966), 13–21.Google Scholar
[398] Chakerian, G. D., Inequalities for the difference body of a convex body. Proc. Amer. Math. Soc. 18 (1967), 879–884.Google Scholar
[399] Chakerian, G. D., Sets of constant relative width and constant relative brightness. Trans. Amer. Math. Soc. 129 (1967), 26–37.Google Scholar
[400] Chakerian, G. D., Higher dimensional analogues of an isoperimetric inequality of Benson. Math. Nachr. 48 (1971), 33–41.Google Scholar
[401] Chakerian, G. D., The mean volume of boxes and cylinders circumscribed about a convex body. Israel J. Math. 12 (1972), 249–256.Google Scholar
[402] Chakerian, G. D., Isoperimetric inequalities for the mean width of a convex body. Geom. Dedicata 1 (1973), 356–362.Google Scholar
[403] Chakerian, G. D., Groemer, H., Convex bodies of constant width. In Convexity and its Applications (P. M., Gruber, J. M., Wills, eds), pp. 49–96, Birkhäuser, Basel, 1983.
[404] Chakerian, G. D., Lutwak, E., On the Petty–Schneider theorem. Contemporary Math. 140 (1992), 31–37.Google Scholar
[405] Chakerian, G. D., Lutwak, E., Bodies with similar projections. Trans. Amer. Math. Soc. 349 (1997), 1811–1820.Google Scholar
[406] Chakerian, G. D., Sangwine-Yager, J. R., A generalization of Minkowski's inequality for plane convex sets. Geom. Dedicata 8 (1979), 437–444.Google Scholar
[407] Chang, S.-Y. A., Wang, Y., On Aleksandrov–Fenchel inequalities for k-convex domains. Milan J. Math. 79 (2011), 13–38.Google Scholar
[408] Chavel, I., Isoperimetric Inequalities. Cambridge Tracts in Math. 145, Cambridge Univ. Press, Cambridge, 2001.
[409] Cheeger, J., Müller, W., Schrader, R., On the curvature of piecewise flat spaces. Commun. Math. Phys. 92 (1984), 405–454.Google Scholar
[410] Cheeger, J., Müller, W., Schrader, R., Kinematic and tube formulas for piecewise linear spaces. Indiana Univ. Math. J. 35 (1986), 737–754.Google Scholar
[411] Chen, B., On the Euler characteristic of finite unions of convex sets. Discrete Comput. Geom. 10 (1993), 79–93.Google Scholar
[412] Chen, B., The mixed volumes and Geissinger multiplications of convex sets. Stud. Appl. Math. 91 (1994), 39–50.Google Scholar
[413] Chen, B., Minkowski algebra. I: A convolution theory of closed convex sets and relatively open sets. Asian J. Math. 3 (1999), 609–634.Google Scholar
[414] Chen, B., A simplified elementary proof of Hadwiger's volume theorem. Geom. Dedicata 105 (2004), 107–120.Google Scholar
[415] Chen, F., Zhou, J., Yang, C., On the reverse Orlicz Busemann–Petty centroid inequality. Adv. Appl. Math. 47 (2911), 820–828.Google Scholar
[416] Chen, W., Lp Minkowski problem with not necessarily positive data. Adv. Math. 201 (2006), 77–89.Google Scholar
[417] Chen, W., Howard, R., Lutwak, E., Yang, D., Zhang, G., A generalized affine isoperimetric inequality. J. Geom. Anal. 14 (2004), 597–612.Google Scholar
[418] Cheng, S.-Y., Yau, S.-T., On the regularity of the solution of the n-dimensional Minkowski problem. Commun. Pure Appl. Math. 29 (1976), 495–516.Google Scholar
[419] Chern, S. S., Integral formulas for hypersurfaces in euclidean space and their applications to uniqueness theorems. J. Math. Mech. 8 (1959), 947–955.Google Scholar
[420] Chern, S. S., Lashof, R. K., On the total curvature of immersed manifolds, II. Michigan Math. J. 5 (1958), 5–12.Google Scholar
[421] Chernoff, P. R., An area-width inequality for convex curves. Amer. Math. Monthly 76 (1969), 34–35.Google Scholar
[422] Cheung, W.-S., Zhao, C.-J., Width-integrals and affine surface area of convex bodies. Banach J. Math. Anal. 2 (2008), 70–77.Google Scholar
[423] Choquet, G., Lectures on Analysis, vol. II, W. A. Benjamin, Reading, MA, 1969.
[424] Choquet, G., Lectures on Analysis, vol. III, W. A. Benjamin, Reading, MA, 1969.
[425] Choquet, G., Mesures coniques, affines et cylindriques. In Proc. Symposia Math., INDAM, Rome 1968, vol. II, pp. 145–182, Academic Press, London, 1969.
[426] Choquet, G., Corson, H., Klee, V., Exposed points of convex sets. Pacific J. Math. 17 (1966), 33–43.Google Scholar
[427] Chou, K.-S., Wang, X.-J., A logarithmic curvature flow and the Minkowski problem. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 17 (2000), 733–751.Google Scholar
[428] Chou, K.-S., Wang, X.-J., The Lp-Minkowski problem and the Minkowski problem in centroaffine geometry. Adv. Math. 205 (2006), 33–83.Google Scholar
[429] Christoffel, E. B., Über die Bestimmung der Gestalt einer krummen Oberfläche durch lokale Messungen auf derselben. J. Reine Angew. Math. 64 (1865), 193–209. Ges. Math. Abh., vol. I, pp. 162–177, Teubner, Leipzig, 1910.Google Scholar
[430] Cianchi, A., Lutwak, E., Yang, D., Zhang, G., Affine Moser–Trudinger and Morrey–Sobolev inequalities. Calc. Var. Partial Differential Equations 36 (2009), 419–436.Google Scholar
[431] Cieślak, W., Góźdź, S., On curves which bound special convex sets. Serdica 13 (1987), 281–286.Google Scholar
[432] Clack, R., Minkowski surface area under affine transformations. Mathematika 37 (1990), 232–238.Google Scholar
[433] Coifman, R. R., Weiss, G., Representations of compact groups and spherical harmonics. L'Enseignement Math. 14 (1968), 121–173.Google Scholar
[434] Colesanti, A., A Steiner type formula for convex functions. Mathematika 44 (1997), 195–214.Google Scholar
[435] Colesanti, A., Brunn–Minkowski inequalities for variational functionals and related problems. Adv. Math. 194 (2005), 105–140.Google Scholar
[436] Colesanti, A., Functional inequalities related to the Rogers–Shephard inequality. Mathematika 53 (2006), 81–101.Google Scholar
[437] Colesanti, A., From the Brunn–Minkowski inequality to a class of Poincaré-type inequalities. Commun. Contemp. Math. 10 (2008), 765–772.Google Scholar
[438] Colesanti, A., Cuoghi, P., The Brunn–Minkowski inequality for the n-dimensional logarithmic capacity of convex bodies. Potential Anal. 22 (2005), 289–304.Google Scholar
[439] Colesanti, A., Cuoghi, P., Salani, P., Brunn–Minkowski inequalities for two functionals involving the p-Laplace operator. Appl. Anal. 85 (2006), 45–66.Google Scholar
[440] Colesanti, A., Fimiani, M., The Minkowski problem for the torsional rigidity. Indiana Univ. Math. J. 59 (2010), 1013–1039.Google Scholar
[441] Colesanti, A., Fragalà, I., The area measure of log-concave functions and related inequalities. arXiv:1112.2555v2.
[442] Colesanti, A., Hug, D., Steiner type formulae and weighted measures of singularities for semi-convex functions. Trans. Amer. Math. Soc. 352 (2000), 3239–3263.Google Scholar
[443] Colesanti, A., Hug, D., Hessian measures of semi-convex functions and applications to support measures of convex bodies. Manuscripta Math. 101 (2000), 221–235.Google Scholar
[444] Colesanti, A., Hug, D., Hessian measures of convex functions and applications to area measures. J. London Math. Soc. 71 (2) (2005), 209–239.Google Scholar
[445] Colesanti, A., Hug, D., Saorín Gómez, E., A characterization of some mixed volumes via the Brunn–Minkowski inequality. J. Geom. Anal., publ. online Oct. 2012, DOI:10.1007/s12220-012-9364-7, arXiv:1202:2241v2.
[446] Colesanti, A., Pucci, C., Qualitative and quantitative results for sets of singular points of convex bodies. Forum Math. 9 (1997), 103–125.Google Scholar
[447] Colesanti, A., Salani, P., The Brunn–Minkowski inequality for p-capacity of convex bodies. Math. Ann. 327 (2003), 459–479.Google Scholar
[448] Colesanti, A., Saorín Gómez, E., Functional inequalities derived from the Brunn–Minkowski inequalities for quermassintegrals. J. Convex Analysis 17 (2010), 35–49.Google Scholar
[449] Collier, J. B., On the set of extreme points of a convex body. Proc. Amer. Math. Soc. 47 (1975), 184–186.Google Scholar
[450] Collier, J. B., On the facial structure of a convex body. Proc. Amer. Math. Soc. 61 (1976), 367–370.Google Scholar
[451] Corson, H. H., A compact convex set in E3 whose exposed points are of the first category. Proc. Amer. Math. Soc. 16 (1965), 1015–1021.Google Scholar
[452] Coupier, D., Davydov, Yu., Random symmetrizations of convex bodies. arXiv: 1211.1785v1.
[453] Coxeter, H. S. M., The classification of zonohedra by means of projective diagrams. J. Math. Pures Appl. 41 (1962), 137–156.Google Scholar
[454] Coxeter, H. S. M., Regular Polytopes, 2nd edn. Macmillan, New York, 1963.
[455] Cressie, N., A strong limit theorem for random sets. Suppl. Adv. Appl. Prob. 10 (1978), 36–46.Google Scholar
[456] Curtis, D. W., Quinn, J., Schori, R. M., The hyperspace of compact convex subsets of a polyhedral 2-cell. Houston J. Math. 3 (1977), 7–15.Google Scholar
[457] Czipszer, J., Über die Parallelbereiche nach innen von Eibereichen. Publ. Math. Inst. Hungar. Acad. Sci. 7A (1962), 197–202.Google Scholar
[458] D'Agata, A., Continuity and affine invariance of measures of symmetry. Internat. Math. Forum 6 (2011), 1053–1057.Google Scholar
[459] Dalla, L., The n-dimensional Hausdorff measure of the n-skeleton of a convex w-compact set (body). Math. Nachr. 123 (1985), 131–135.Google Scholar
[460] Dalla, L., Increasing paths on the one-skeleton of a convex compact set in a normed space. Pacific J. Math. 124 (1986), 289–294.Google Scholar
[461] Dalla, L., On the measure of the one-skeleton of the sum of convex compact sets. J. Austral. Math. Soc. Ser. A 42 (1987), 385–389.Google Scholar
[462] Dalla, L., Larman, D. G., Convex bodies with almost all k-dimensional sections polytopes. Math. Proc. Camb. Phil. Soc. 88 (1980), 395–401.Google Scholar
[463] Dalla, L., Larman, D. G., Volumes of a random polytope in a convex set. In Applied Geometry and Discrete Mathematics: The Victor Klee Festschrift (P., Gritzmann, B., Sturmfels, eds.), DIMACS Ser. Discrete Math. Theoret. Comput. Sci. 4, pp. 175–180, Amer. Math. Soc.Providence, RI, 1991.
[464] Danzer, L., Grünbaum, B., Klee, V., Helly's theorem and its relatives. In Convexity, Proc. Symposia Pure Math. vol. VII, pp. 101–180, Amer. Math. Soc., Providence, RI, 1963.
[465] Danzer, L., Laugwitz, D., Lenz, H., Über das Löwnersche Ellipsoid und sein Analogon unter den einem EiKörper einbeschriebenen Ellipsoiden. Arch. Math. 8 (1957), 214–219.Google Scholar
[466] Dar, S., A Brunn–Minkowski-type inequality. Geom. Dedicata 77 (1999), 1–9.Google Scholar
[467] Das Gupta, S., Brunn–Minkowski inequality and its after-math. J. Multivariate Anal. 10 (1980), 296–318.Google Scholar
[468] Davis, C., Theory of positive linear dependence. Amer. J. Math. 76 (1954), 733–776.Google Scholar
[469] Davy, P. J., The estimation of centroids in stereology. Mikroskopie (Wien) 37 (Suppl.) (1980), 94–100.Google Scholar
[470] Davy, P. J., The stereology of location. J. Appl. Prob. 17 (1980), 860–864.Google Scholar
[471] Davy, P. J., Interspersion of phases in a material. J. Microscopy 121 (1981), 3–12.Google Scholar
[472] Debrunner, H., Zu einem maßgeometrischen Satz Über Körper konstanter Breite. Math. Nachr. 13 (1955), 165–167.Google Scholar
[473] Debs, G., Applications affines ouvertes et convexes compacts stables. Bull. Sci. Math. 102 (2) (1987), 401–414.Google Scholar
[474] Deicke, A., Über die Finsler-Räume mit Ai = 0. Arch. Math. 4 (1954), 45–51.Google Scholar
[475] Delgado, J. A., Blaschke's theorem for convex hypersurfaces. J. Differential Geom. 14 (1979), 489–496.Google Scholar
[476] de Rham, G., Sur quelques courbes définies par des équations fonctionnelles. Rend. Sem. Mat. Univ. Politecn. Torino 16 (1956/1957), 101–113.Google Scholar
[477] Dierolf, P., Über den Auswahlsatz von Blaschke und ein Problem von Valentine. Manuscripta Math. 3 (1970), 289–304.Google Scholar
[478] Dinghas, A., Zur Theorie der konvexen Körper im n-dimensionalen Raum. Abh. Preuß. Akad. Wiss., Phys.-Math. Kl. 4 (1939), 30 pp.Google Scholar
[479] Dinghas, A., Geometrische Anwendungen der Kugelfunktionen. Nachr. Ges. Wiss. Gött., Math.-Phys. Kl. 1 (1940), 213–235.Google Scholar
[480] Dinghas, A., Verallgemeinerung eines Blaschkeschen Satzes Über konvexe Körper konstanter Breite. Rev. Math. Union Interbalkan. 3 (1940), 17–20.Google Scholar
[481] Dinghas, A., Verschärfung der isoperimetrischen Üngleichung für konvexe Körper mit Ecken. Math. Z. 47 (1940), 669–675.Google Scholar
[482] Dinghas, A., Isoperimetrische Ungleichung für konvexe Bereiche mit Ecken. Math. Z. 48 (1942), 428–440.Google Scholar
[483] Dinghas, A., Über die lineare isoperimetrische Üngleichung für konvexe Polygone und Kurven mit Ecken. Monatsh. Math. Phys. 51 (1943), 35–45.Google Scholar
[484] Dinghas, A., Verschärfung der Minkowskischen Üngleichungen für konvexe Körper. Monatsh. Math. Phys. 51 (1943), 46–56.Google Scholar
[485] Dinghas, A., Über einen geometrischen Satz von Wulff für die Gleichgewichtsform von Kristallen. Zeitschr. Kristallographie 105 (1944), 304–314.Google Scholar
[486] Dinghas, A., Bemerkung zu einer Verschärfung der isoperimetrischen Ungleichung durch H. Hadwiger. Math. Nachr. 1 (1948), 284–286.Google Scholar
[487] Dinghas, A., Zur Theorie der konvexen Rotationskörper im n-dimensionalen Raum. Math. Nachr. 2 (1949), 124–140.Google Scholar
[488] Dinghas, A., Neuer Beweis einer verschärften Minkowskischen Üngleichung für konvexe Körper. Math. Z. 51 (1949), 306–316.Google Scholar
[489] Dinghas, A., Neuer Beweis einer isoperimetrischen Üngleichung von Bol. Math. Z. 51 (1949), 469–473.Google Scholar
[490] Dinghas, A., Über eine neue isoperimetrische Üngleichung für konvexe Polyeder. Math. Ann. 120 (1949), 533–538.Google Scholar
[491] Dinghas, A., Zum Minkowskischen Integralbegriff abgeschlossener Mengen. Math. Z. 66 (1956), 173–188.Google Scholar
[492] Dinghas, A., Über das Verhalten der Entfernung zweier Punktmengen bei gleichzeitiger Symmetrisierung derselben. Arch. Math. 8 (1957), 46–57.Google Scholar
[493] Dinghas, A., Über eine Klasse superadditiver Mengenfunktionale von Brunn–Minkowski–Lusternikschem Typus. Math. Z. 68 (1957), 111–125.Google Scholar
[494] Dinghas, A., Minkowskische Summen und Integrale, Superadditive Mengenfunktionale, Isoperimetrische Ungleichungen. Gauthier–Villars, Paris, 1961.
[495] Diskant, V. I., Stability in Liebmann's theorem (in Russian). Dokl. Akad. Nauk SSSR 158 (1964), 1257–1259. English translation: Soviet Math. 5 (1964), 1387–1390.Google Scholar
[496] Diskant, V. I., Theorems of stability for surfaces close to the sphere (in Russian). Sibirskii Mat. Zh. 6 (1965), 1254–1266.Google Scholar
[497] Diskant, V. I., Stability of a sphere in the class of convex surfaces of bounded specific curvature (in Russian). Sibirskii Mat. Zh. 9, 816–824. English translation: Siberian Math. J. 9 (1968), 610–615.
[498] Diskant, V. I., Bounds for convex surfaces with bounded curvature functions (in Russian). Sibirskii Mat. Zh. 12 (1971), 109–125. English translation: Siberian Math. J. 12 (1971), 78–89.Google Scholar
[499] Diskant, V. I., Convex surfaces with bounded mean curvature (in Russian). Sibirskii Mat. Zh. 12 (1971), 659–663. English translation: Siberian Math. J. 12 (1971), 469–472.Google Scholar
[500] Diskant, V. I., Bounds for the discrepancy between convex bodies in terms of the isoperimetric difference (in Russian). Sibirskii Mat. Zh. 13 (1972), 767–772. English translation: Siberian Math. J. 13 (1973), 529–532.Google Scholar
[501] Diskant, V. I., Stability of the solution of the Minkowski equation (in Russian). Sibirskii Mat. Zh. 14 (1973), 669–673. English translation: Siberian Math. J. 14 (1973), 466–469.Google Scholar
[502] Diskant, V. I., Strengthening of an isoperimetric inequality (in Russian). Sibirskii Mat. Zh. 14 (1973), 873–877. English translation: Siberian Math. J. 14 (1973), 608–611.Google Scholar
[503] Diskant, V. I., A generalization of Bonnesen's inequalities (in Russian). Dokl. Akad. Nauk SSSR 213 (1973), 519–521. English translation: Soviet Math. Dokl. 14 (1973), 1728–1731.Google Scholar
[504] Diskant, V. I., The stability of the solutions of the generalized Minkowski equations for a ball (in Russian). Ukrain. Geom. Sb. 18 (1975), 53–59.Google Scholar
[505] Diskant, V. I., Stability of a convex body under a change in the (n − 2)nd curvature function (in Russian). Ukrain. Geom. Sb. 19 (1976), 22–23.Google Scholar
[506] Diskant, V. I., On the question of the order of the stability function in Minkowski's problem (in Russian). Ukrain. Geom. Sb. 22 (1979), 45–47.Google Scholar
[507] Diskant, V. I., Stability of the solution of the Minkowski equation for the surface area of convex bodies (in Russian). Ukrain. Geom. Sb. 25 (1982), 43–51.Google Scholar
[508] Diskant, V. I., A counterexample to an assertion of Bonnesen and Fenchel (in Russian). Ukrain. Geom. Sb. 27 (1984), 31–33.Google Scholar
[509] Diskant, V. I., Stability in Aleksandrov's problem for a convex body, one of whose projections is a ball (in Russian). Ukrain. Geom. Sb. 28 (1985), 50–62. English translation: J. Sov. Math. 48 (1990), 41–49.Google Scholar
[510] Dolzmann, G., Hug, D., Equality of two representations of extended affine surface area. Arch. Math. 65 (1995), 352–356.Google Scholar
[511] Dor, L. E., Potentials and isometric embeddings in L1. Israel. J. Math. 24 (1976), 260–268.Google Scholar
[512] Dou, J., Zhu, M., The two dimensional Lp Minkowski problem and nonlinear equations with negative exponents. Adv. Math. 230 (2012), 1209–1221.Google Scholar
[513] Drešević, M., A certain generalization of Blaschke's theorem to the class of m-convex sets (in Serbo-Croatian). Mat. Vesnik 7 (1970), 223–226.Google Scholar
[514] Dubins, L. E., On extreme points of convex sets. J. Math. Anal. Appl. 5 (1962), 237–244.Google Scholar
[515] Dubois, C., Jongmans, F., Invitation à la gestion des stocks de cônes. Bull. Soc. Roy. Sci. Liège 51 (1982), 107–120.Google Scholar
[516] Dubuc, S., Critères de convexité etinegalites intégrales. Ann. Inst. Fourier Grenoble 27 (1977), 135–165.Google Scholar
[517] Dudley, R., Metric entropy of some classes of sets with differentiable boundaries. J. Approximation Th. 10 (1974), 227–236. Corrigendum: J. Approximation Th. 26 (1974), 192–193.Google Scholar
[518] Dudley, R., On second derivatives of convex functions. Math. Scand. 41 (1977), 159–174.Google Scholar
[519] Dudley, R. M, Real Analysis and Probability, 2nd edn. Cambridge Univ. Press, Cambridge, 2003.
[520] Dunkl, C. F., Operators and harmonic analysis on the sphere. Trans. Amer. Math. Soc. 125 (1966), 250–263.Google Scholar
[521] Duporcq, E., Sur les centres de gravité des courbes parallèles. Bull. Soc. Math. France 24 (1896), 192–194.Google Scholar
[522] Duporcq, E., Sur les centres de gravité des surfaces parallèles à une surface fermée. C. R. Acad. Sci. Paris 124 (1897), 492–493.Google Scholar
[523] Dvoretzky, A., Rogers, C. A., Absolute and unconditional convergence in normed linear spaces. Proc. Nat. Acad. Sci. USA 36 (1950), 192–197.Google Scholar
[524] Dyer, M., Gritzmann, P., Hufnagel, A., On the complexity of computing mixed volumes. SIAM J. Comput. 27 (1998), 356–400.Google Scholar
[525] Dziechcińiska-Halamoda, Z., Szwiec, W., On critical sets of convex polyhedra. Arch. Math. 44 (1985), 461–466.Google Scholar
[526] Eckhoff, J., Radon's theorem revisited. In Contributions to Geometry, Proc. Geometry Symp. Siegen 1978 (J., Tölke, J. M., Wills, eds), pp. 164–185, Birkhäuser, Basel, 1979.
[527] Eckhoff, J., Die Euler-Charakteristik von Vereinigungen konvexer Mengen im Rd. Abh. Math. Sem. Univ. Hamburg 50 (1980), 133–144.Google Scholar
[528] Eckhoff, J., Helly, Radon, and Carathéodory type theorems. In Handbook of Convex Geometry (P. M., Gruber, J. M., Wills, eds), vol. A, pp. 389–448, North-Holland, Amsterdam, 1993.
[529] Edelstein, M., An example concerning exposed points. Canad. Math. Bull. 8 (1965), 323–327.Google Scholar
[530] Edelstein, M., Fesmire, S., On the extremal structure and closure of sums of convex sets. Bull. Soc. Roy. Sci. Liège 44 (1975), 590–599.Google Scholar
[531] Efimow, N. W., Flächenverbiegung im Großen. Akademie-Verlag, Berlin, 1957.
[532] Eggleston, H. G., Convexity. Cambridge Univ. Press, Cambridge, 1958.
[533] Eggleston, H. G., Note on a conjecture of L. A. Santaló. Mathematika 8 (1961), 63–65.Google Scholar
[534] Eggleston, H. G., Grünbaum, B., Klee, V., Some semicontinuity theorems for convex polytopes and cell complexes. Comment. Math. Helvet. 39 (1964), 165–188.Google Scholar
[535] Egorychev, G. P., The solution of van der Waerden's problem for permanents. Adv. Math. 42 (1981), 299–305.Google Scholar
[536] Eifler, L. Q., Semi-continuity of the face-function for a convex set. Comment. Math. Helvet. 52 (1977), 325–328.Google Scholar
[537] Ekeland, I., Temam, R., Convex Analysis and Variational Problems. North-Holland, Amsterdam, 1976.
[538] Evans, L. C., Gariepy, R. F., Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton, FL, 1992.
[539] Ewald, G., Über die Schattengrenzen konvexer Körper. Abh. Math. Sem. Univ. Hamburg 27 (1964), 167–170.Google Scholar
[540] Ewald, G., Von Klassen konvexer Körper erzeugte Hilberträume. Math. Ann. 162 (1965), 140–146.Google Scholar
[541] Ewald, G., On the equality case in Aleksandrov–Fenchel's inequality for convex bodies. Geom. Dedicata 28 (1988), 213–220.Google Scholar
[542] Ewald, G., Larman, D. G., Rogers, C. A., The directions of the line segments and of the r-dimensional balls on the boundary of a convex body in Euclidean space. Mathematika 17 (1970), 1–20.Google Scholar
[543] Ewald, G., Shephard, G. C., Normed vector spaces consisting of classes of convex sets. Math. Z. 91 (1966), 1–19.Google Scholar
[544] Falconer, K. J., A result on the Steiner symmetrization of a compact set. J. London Math. Soc. 14 (2) (1976), 385–386.Google Scholar
[545] Falconer, K. J., Applications of a result on spherical integration to the theory of convex sets. Amer. Math. Monthly 90 (1983), 690–693.Google Scholar
[546] Fáry, I., Functionals related to mixed volumes. Illinois J. Math. 5 (1961), 425–430.Google Scholar
[547] Fáry, I., Expectation of the isoperimetric deficit: Rényi's integral. Z. Wahrscheinlichkeitsth. verw. Geb. 63 (1983), 289–295.Google Scholar
[548] Fáry, I., The isoperimetric deficit as the integral of a positive function. Bull. Sci. Math. 110 (2) (1986), 315–334. (This work is erroneous.)Google Scholar
[549] Fáry, I., Makai, E. Jr, Isoperimetry in variable metric. Studia Sci. Math. Hungar. 17 (1982), 143–158.Google Scholar
[550] Fáry, I., Rédei, L., Der zentralsymmetrische Kern und die zentralsymmetrische Hülle von konvexen Körpern. Math. Ann. 122 (1950), 205–220.Google Scholar
[551] Favard, J., Problèmes d'extremums relatifs aux courbes convexes, I. Ann. Sci. Ec. Norm. Sup. 46 (1929), 345–369.Google Scholar
[552] Favard, J., Sur les inegalités de Minkowski. Mat. Tidsskr. B (1930), 33–40.Google Scholar
[553] Favard, J., Sur les corps convexes. J. Math. Pures Appl. 12 (9) (1933), 219–282.Google Scholar
[554] Favard, J., Sur la détermination des surfaces convexes. Bull. Acad. Roy. Belgique (Cl. Sci.) 19 (1933), 65–75.Google Scholar
[555] Favard, J., Sur la détermination des surfaces convexes. C. R. Acad. Sci. Paris 208 (1939), 871–873.Google Scholar
[556] Federer, H., Curvature measures. Trans. Amer. Math. Soc. 93 (1959), 418–491.Google Scholar
[557] Federer, H., Geometric Measure Theory. Springer, Berlin, 1969.
[558] Fedotov, V. P., Geometric means of convex sets (in Russian). Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. 45 (1974), 113–116.Google Scholar
[559] Fedotov, V. P., On the notions of faces of a convex compactum (in Russian). Ukrain. Geom. Sb. 21 (1978), 131–141.Google Scholar
[560] Fedotov, V. P., On the sum of pth surface functions (in Russian). Ukrain. Geom. Sb. 21 (1978), 125–131.Google Scholar
[561] Fedotov, V. P., Isolated faces of a convex compactum (in Russian). Mat. Zametki 25 (1979), 139–147. English translation: Math. Notes 25 (1979), 73–77.Google Scholar
[562] Fedotov, V. P., A counterexample to a hypothesis of Firey (in Russian). Math. Zametki 26 (1979), 269–275. English translation: Math. Notes 26 1980), 625–629.Google Scholar
[563] Fedotov, V. P., Polar representation of a convex compactum (in Russian). Ukrain. Geom. Sb. 25 (1982), 137–138.Google Scholar
[564] Fejes Tóth, L., The isepiphan problem for n-hedra. Amer. J. Math. 70 (1948), 174–180.Google Scholar
[565] Fejes Tóth, L., Elementarer Beweis einer isoperimetrischen Ungleichung. Acta Math. Acad. Sci. Hungar. 1 (1950), 273–276.Google Scholar
[566] Fejes Tóth, L., Lagerungen in der Ebene, auf der Kugel und im Raum. Springer, Berlin, 1953.
[567] Fenchel, W., Inégalités quadratiques entre les volumes mixtes des corps convexes. C. R. Acad. Sci. Paris 203 (1936), 647–650.Google Scholar
[568] Fenchel, W., Généralisation du théorème de Brunn et Minkowski concernant les corps convexes. C. R. Acad. Sci. Paris 203 (1936), 764–766.Google Scholar
[569] Fenchel, W., Über die neuere Entwicklung der Brunn–Minkowskischen Theorie der konvexen Körper. In Proc. 9th Congr. Math. Scand., Helsingfors (Helsinki) 1938, pp. 249–272, Mercator, 1939.
[570] Fenchel, W., Convex Cones, Sets and Functions. Mimeographed lecture notes, Princeton Univ., Princeton, 1951.
[571] Fenchel, W. (ed.), Proceedings of the Colloquium on Convexity, Copenhagen 1965, Københavns Univ. Mat. Inst., 1967.
[572] Fenchel, W., Jessen, B., Mengenfunktionen und konvexe Körper. Danske Vid. Selskab. Mat.-fys. Medd. 16, 3 (1938), 31 pp.Google Scholar
[573] Ferrari, F., Franchi, B., Lu, G., On a relative Alexandrov–Fenchel inequality for convex bodies in Euclidean spaces. Forum Math. 18 (2006), 907–921.Google Scholar
[574] Ferrers, N. M., Note on a geometrical theorem of Mr. Steiner. Quarterly J. Math. 4 (1861), 92–94.Google Scholar
[575] Fet, A. I., Stability theorems for convex, almost spherical surfaces (in Russian). Dokl. Akad Nauk SSSR 153 (1963), 537–539. English translation: Soviet Math. 4 (1963), 1723–1725.Google Scholar
[576] Figalli, A., Maggi, F., Pratelli, A., A refined Brunn–Minkowski inequality for convex sets. Ann. Inst. H. Poincaré Anal. Non Lineaire 26 (2009), 2511–2519.Google Scholar
[577] Figalli, A., Maggi, F., Pratelli, A., A mass transportation approach to quantitative isoperimetric inequalities. Invent. Math. 182 (2010), 167–211.Google Scholar
[578] Figiel, T., Lindenstrauss, J., Milman, V., The dimension of almost spherical sections of convex bodies. Acta Math. 129 (1977), 53–94.Google Scholar
[579] Fillastre, F., Fuchsian convex bodies: basics of Brunn–Minkowski theory. Geom. Funct. Anal. 23 (2013), 295–333.Google Scholar
[580] Filliman, P., Extremum problems for zonotopes. Geom. Dedicata 27 (1988), 251–262.Google Scholar
[581] Filliman, P., Rigidity and the Alexandrov–Fenchel inequality. Monatsh. Math. 113 (1992), 1–22.Google Scholar
[582] Fillmore, J. R., Symmetries of surfaces of constant width. J. Differential Geom. 3 (1969), 103–110.Google Scholar
[583] Firey, W. J., Polar means of convex bodies and a dual to the Brunn–Minkowski theorem. Canad. J. Math. 13 (1961), 444–453.Google Scholar
[584] Firey, W. J., Mean cross-section measures of harmonic means of convex bodies. Pacific J. Math. 11 (1961), 1263–1266.Google Scholar
[585] Firey, W. J., p-means of convex bodies. Math. Scand. 10 (1962), 17–24.Google Scholar
[586] Firey, W. J., The mixed area of a convex body and its polar reciprocal. Israel J. Math. 1 (1963), 201–202.Google Scholar
[587] Firey, W. J., A generalization of an inequality of H. Groemer. Monatsh. Math. 68 (1964), 393–395.Google Scholar
[588] Firey, W. J., Some applications of means of convex bodies. Pacific J. Math. 14 (1964), 53–60.Google Scholar
[589] Firey, W. J., The brightness of convex bodies. Technical Report No. 19, Oregon State Univ., 1965.
[590] Firey, W. J., Lower bounds for volumes of convex bodies. Arch. Math. 16 (1965), 69–74.Google Scholar
[591] Firey, W. J., Lower bounds for quermassintegrals of a convex body. Portugaliae Math. 25 (1966), 141–146.Google Scholar
[592] Firey, W. J., Blaschke sums of convex bodies and mixed bodies. In Proc. Colloquium Convexity (W., Fenchel, ed.), Copenhagen 1965, pp. 94–101, Københavns Univ. Mat. Inst., 1967.
[593] Firey, W. J., The determination of convex bodies from their mean radius of curvature functions. Mathematika 14 (1967), 1–13.Google Scholar
[594] Firey, W. J., Generalized convex bodies of revolution. Canad. J. Math. 14 (1967), 972–996.Google Scholar
[595] Firey, W. J., Some means of convex bodies. Trans. Amer. Math. Soc. 129 (1967), 181–217.Google Scholar
[596] Firey, W. J., Christoffel's problem for general convex bodies. Mathematika 15 (1968), 7–21.Google Scholar
[597] Firey, W. J., An upper bound for volumes of convex bodies. J. Austral. Math. Soc. 9 (1969), 503–510.Google Scholar
[598] Firey, W. J., Local behaviour of area functions of convex bodies. Pacific J. Math. 35 (1970), 345–357.Google Scholar
[599] Firey, W. J., The determination of convex bodies by elementary symmetric functions of principal radii of curvature. Mimeographed manuscript, 1970.
[600] Firey, W. J., Intermediate Christoffel–Minkowski problems for figures of revolution. Israel J. Math. 8 (1970), 384–390.Google Scholar
[601] Firey, W. J., Convex bodies of constant outer p-measure. Mathematika 17 (1970), 21–27.Google Scholar
[602] Firey, W. J., An integral-geometric meaning for lower order area functions of convex bodies. Mathematika 19 (1972), 205–212.Google Scholar
[603] Firey, W. J., Support flats to convex bodies. Geom. Dedicata 2 (1973), 225–228.Google Scholar
[604] Firey, W. J., Approximating convex bodies by algebraic ones. Arch. Math. 25 (1974), 424–425.Google Scholar
[605] Firey, W. J., Shapes of worn stones. Mathematika 21 (1974), 1–11.Google Scholar
[606] Firey, W. J., Some open questions on convex surfaces. In Proc. Int. Congr. Math., Vancouver 1974 (R. D., James, ed.), pp. 479–484, Canadian Mathematical Congress, Montreal, 1975.
[607] Firey, W. J., A functional characterization of certain mixed volumes. Israel J. Math. 24 (1976), 274–281.Google Scholar
[608] Firey, W. J., Inner contact measures. Mathematika 26 (1979), 106–112.Google Scholar
[609] Firey, W. J., Subsequent work on Christoffel's problem about determining a surface from local measurements. In E. B. Christoffel, Aachen/Monschau 1979 (P., Butzer, F., Feher, eds), pp. 721–723, Birkhäuser, Basel, 1981.
[610] Firey, W. J., Grünbaum, B., Addition and decomposition of convex polytopes. Israel J. Math. 2 (1964), 91–100.Google Scholar
[611] Firey, W. J., Schneider, R., The size of skeletons of convex bodies. Geom. Dedicata 8 (1979), 99–103.Google Scholar
[612] Fish, A., Nazarov, F., Ryabogin, D., Zvavitch, A., The unit ball is an attractor of the intersection body operator. Adv. Math. 226 (2011), 2629–2642.Google Scholar
[613] Fisher, J. C., Curves of constant width from a linear viewpoint. Math. Mag. 60 (1987), 131–140.Google Scholar
[614] Flaherty, F. J., Curvature measures for piecewise linear manifolds. Bull. Amer. Math. Soc. 79 (1973), 100–102.Google Scholar
[615] Flanders, H., The Steiner point of a closed hypersurface. Mathematika 13 (1966), 181–188.Google Scholar
[616] Flanders, H., A proof of Minkowski's inequality for convex curves. Amer. Math. Monthly 75 (1968), 581–593.Google Scholar
[617] Flatto, L., Newman, D. J., Random coverings. Acta Math. 138 (1977), 241–264.Google Scholar
[618] Fleury, B., Guedon, O., Paouris, G. A., A stability result for mean width of Lp-centroid bodies. Adv. Math. 214 (2007), 865–877.Google Scholar
[619] Florentin, D., Segal, A., Stability of order preserving transforms. In Geometric Aspects of Functional Analysis (B., Klartag, S., Mendelson, V. D., Milman, eds), Lecture Notes in Math. 2050, pp. 205–225, Springer, Berlin, 2012.
[620] Florian, A., On a metric for the class of compact convex sets. Geom. Dedicata 30 (1989), 69–80.Google Scholar
[621] Florian, A., Extremum problems for convex discs and polyhedra. In Handbook of Convex Geometry (P. M., Gruber, J. M., Wills, eds), vol. A, pp. 177–221, North-Holland, Amsterdam, 1993.
[622] Focke, J., Symmetrische n-Orbiformen kleinsten Inhalts. Acta Math. Acad. Sci. Hung. 20 (1969), 39–68.Google Scholar
[623] Focke, J., Gensel, B., n-Orbiformen maximaler Randknickung. Beitr. Anal. 2 (1971), 7–16.Google Scholar
[624] Fogel, E., Halperin, D., Weibel, Ch., On the exact maximum complexity of Minkowski sums of polytopes. Discrete Comput. Geom. 42 (2009), 654–669.Google Scholar
[625] Fourneau, R., Espaces métriques constitués de classes de polytopes convexes liés aux problèmes de décomposition. Geom. Dedicata 8 (1979), 463–476.Google Scholar
[626] Fourneau, R., Choquet simplices in finite dimensions. In Discrete Geometry and Convexity (J. E., Goodman, E., Lutwak, J., Malkevitch, R., Pollack, eds), Ann. New York Acad. Sci. 440 (1985), 147–162.
[627] Fradelizi, M., Giannopoulos, A., Meyer, M., Some inequalities about mixed volumes. Israel J. Math. 135 (2003), 157–179.Google Scholar
[628] Fradelizi, M., Gordon, Y., Meyer, M., Reisner, S., The case of equality for an inverse Santaló inequality. Adv. Geom. 10 (2010), 621–630.Google Scholar
[629] Fradelizi, M., Meyer, M., Some functional forms of Blaschke–Santaló inequality. Math. Z. 256 (2007), 379–395.Google Scholar
[630] Fradelizi, M., Meyer, M., Some functional inverse Santaló inequalities. Adv. Math. 218 (2008), 1430–1452.Google Scholar
[631] Fradelizi, M., Meyer, M., Increasing functions and inverse Santaló inequality for unconditional functions. Positivity 12 (2008), 407–120.Google Scholar
[632] Fradelizi, M., Meyer, M., Functional inequalities related to Mahler's conjecture. Monatsh. Math. 159 (2010), 13–25.Google Scholar
[633] Fradelizi, M., Meyer, M., Zvavitch, A., An application of shadow systems to Mahler's conjecture. Discrete Comput. Geom. 48 (2012), 721–734.Google Scholar
[634] Freiman, G. A., Grynkiewicz, D.Serra, O., Stanchescu, Y. V., Inverse additive problems for Minkowski sumsets II. J. Geom. Anal. 23 (2013), 395–414.Google Scholar
[635] Fresen, D., The floating body and the hyperplane conjecture. Arch. Math. 98 (2012), 389–397.Google Scholar
[636] Fu, J. H. G., Curvature measures and generalized Morse theory. J. Differential Geom. 30 (1989), 619–642.Google Scholar
[637] Fu, J. H. G., Kinematic formulas in integral geometry. Indiana Univ. Math. J. 39 (1990), 1115–1154.Google Scholar
[638] Fu, J. H. G., Curvature of singular spaces via the normal cycle. In Differential Geometry: Geometry in Mathematical Physics and Related Topics (Los Angeles, CA, 1990), Proc. Sympos. Pure Math. 54, Part 2, pp. 211–221, Amer. Math. Soc., Providence, RI, 1993.
[639] Fu, J. H. G., Curvature measures of subanalytic sets. Amer. J. Math. 116 (1994), 819–880.Google Scholar
[640] Fu, J. H. G., Structure of the unitary valuation algebra. J. Differential Geom. 72 (2006), 509–533.Google Scholar
[641] Fu, J. H. G., Integral geometry and Alesker's theory of valuations. In Integral Geometry and Convexity: Proceedings of the International Conference, Wuhan, China, 2004 (E. L., Grinberg, S., Li, G., Zhang, J., Zhou, eds), pp. 17–28, World Scientific, Hackensack, NJ, 2006.
[642] Fu, J. H. G., Algebraic integral geometry. Advanced Course on Integral Geometry and Valuation Theory, Notes of the Course, pp. 35–82, Centre de Recerca Matematica, Bellaterra, 2010. Available at www.crm.es/Publications/quaderns/Quadern60.pdf, also from arXiv:1103.6256v1.
[643] Fu, J. H. G., An extension of Alexandrov's theorem on second derivatives of convex functions. Adv. Math. 228 (2011), 2258–2267.Google Scholar
[644] Fuglede, B., Continuous selection in a convexity theorem of Minkowski. Expo. Math. 4 (1986), 163–178.Google Scholar
[645] Fuglede, B., Stability in the isoperimetric problem. Bull. London Math. Soc. 18 (1986), 599–605.Google Scholar
[646] Fuglede, B., Stability in the isoperimetric problem for convex or nearly spherical domains in Rn. Trans. Amer. Math. Soc. 314 (1989), 619–638.Google Scholar
[647] Fuglede, B., Bonnesen's inequality for the isoperimetric deficiency of closed curves in the plane. Geom. Dedicata 38 (1991), 283–300.Google Scholar
[648] Fujiwara, M., Über die einem Vielecke eingeschriebenen und umdrehbaren konvexen geschlossenen Kurven. Sci. Rep. Tôhoku Univ. 4 (1915), 43–55.Google Scholar
[649] Fujiwara, M., Über die Anzahl der Kantenlinien einer geschlossenen konvexen Fäche. Tohoku Math. J. 10 (1916), 164–166.Google Scholar
[650] Fujiwara, M., Über die innen-umdrehbare Kurve eines Vielecks. Sci. Rep. Tôhoku Univ. 8 (1919), 221–226.Google Scholar
[651] Fujiwara, M., Kakeya, S., On some problems of maxima and minima for the curve of constant breadth and the in-revolvable curve of the equilateral triangle. Tôhoku Math. J. 11 (1917), 92–110.Google Scholar
[652] Fukuda, K., Weibel, Ch., f-vectors of Minkowski additions of convex polytopes. Discrete Comput. Geom. 37 (2007), 503–516.Google Scholar
[653] Fukuda, K., Weibel, Ch., A linear equation for Minkowski sums of polytopes relatively in general position. European J. Combin. 31 (2010), 565–573.Google Scholar
[654] Fusco, N., The classical isoperimetric theorem. Rend. Accad. Sci. Fis. Mat. Napoli 71 (4) (2004), 63–107.Google Scholar
[655] Fusco, N., Maggi, F., Pratelli, A., The sharp quantitative isoperimetric inequality. Ann. of Math. 168 (2) (2008), 341–380.Google Scholar
[656] Fusco, N., Pratelli, A., On a conjecture by Auerbach. J. Eur. Math. Soc. 13 (2011), 1633–1676.Google Scholar
[657] Gage, M. E., Positive centers and Bonnesen's inequality. Proc. Amer. Math. Soc. 110 (1990), 1041–1048.Google Scholar
[658] Gage, M. E., Evolving plane curves by curvature in relative geometries. Duke Math. J. 72 (1993), 441–466.Google Scholar
[659] Gage, M. E., Li, Y., Evolving plane curves by curvature in relative geometries II. Duke Math. J. 75 (1994), 79–98.Google Scholar
[660] Gale, D., Irreducible convex sets. In Proc. Int. Congr. Math., Amsterdam 1954, vol. II, pp. 217–218, Noordhoff, Groningen; North-Holland, Amsterdam, 1954.
[661] Gale, D., Klee, V., Continuous convex sets. Math. Scand. 7 (1959), 379–391.Google Scholar
[662] Gale, D., Klee, V., Unique reducibility of subsets of commutative topological groups and semigroups. Math. Scand. 36 (1975), 174–198.Google Scholar
[663] Gallego, E., Solanes, G., Integral geometry and geometric inequalities in hyperbolic space. Differential Geom. Appl. 22 (2005), 315–325.Google Scholar
[664] Gallego, E., Solanes, G., Teufel, E., Linear combinations of hypersurfaces in hyperbolic space. Monatsh. Math. 169 (2013), 329–354.Google Scholar
[665] Gallivan, S., On the number of disjoint increasing paths in the one-skeleton of a convex body leading to a given exposed face. Israel J. Math. 32 (1979), 282–288.Google Scholar
[666] Gallivan, S., Gardner, R. J., A counterexample to a ‘simplex algorithm’ for convex bodies. Geom. Dedicata 11 (1981), 475–488.Google Scholar
[667] Gallivan, S., Larman, D. G., Further results on increasing paths in the one-skeleton of a convex body. Geom. Dedicata 11 (1981), 19–29.Google Scholar
[668] Gao, F., Hug, D., Schneider, R., Intrinsic volumes and polar sets in spherical space. Math. Notae 41 (2001/2002), 159–176 (2003).Google Scholar
[669] Gao, F., Vitale, R. A., Intrinsic volumes of the Brownian motion body. Discrete Comput. Geom. 26 (2001), 41–50.Google Scholar
[670] Gårding, L., An inequality for hyperbolic polynomials. J. Math. Mech. 8 (1959), 957–965.Google Scholar
[671] Gardner, R. J., A positive answer to the Busemann–Petty problem in three dimensions. Ann. of Math. 140 (1994), 435–447.Google Scholar
[672] Gardner, R. J., Geometric Tomography. Cambridge Univ. Press, New York, 1995.
[673] Gardner, R. J., The Brunn–Minkowski inequality: a survey with proofs. Available at http://myweb.facstaff.wwu.edu/gardner/gorizia12.pdf.
[674] Gardner, R. J., The Brunn–Minkowski inequality. Bull. Amer. Math. Soc. 39 (2002), 355–405.Google Scholar
[675] Gardner, R. J., Geometric Tomography, 2nd edn. Cambridge Univ. Press, New York, 2006.
[676] Gardner, R. J., The dual Brunn–Minkowski theory for bounded Borel sets: dual affine quermassintegrals and inequalities. Adv. Math. 216 (2007), 358–386.Google Scholar
[677] Gardner, R. J., Giannopoulos, A. A., p-Cross section bodies. Indiana Univ. Math. J. 48 (1999), 593–613.Google Scholar
[678] Gardner, R. J., Hartenstine, D., Capacities, surface area, and radial sums. Adv. Math. 221 (2009), 601–626.Google Scholar
[679] Gardner, R. J., Hug, D., Weil, W., Operations between sets in geometry. J. Eur. Math. Soc. arXiv:1205.4327v2.
[680] Gardner, R. J., Hug, D., Weil, W., The Orlicz–Brunn–Minkowski theory: a general framework, additions, and inequalities. arXiv:1301.5267v1.
[681] Gardner, R., Parapatits, L., Schuster, F. E., A characterization of Blaschke addition. Preprint.
[682] Gardner, R. J., Vassallo, S., Inequalities for dual isoperimetric deficits. Mathematika 45 (1998), 269–285.Google Scholar
[683] Gardner, R. J., Vassallo, S., Stability of inequalities in the dual Brunn–Minkowski theory. J. Math. Anal. Appl. 231 (1999), 568–587.Google Scholar
[684] Gardner, R. J., Vassallo, S., The Brunn–Minkowski inequality, Minkowski's first inequality, and their duals. J. Math. Anal. Appl. 245 (2000), 502–512.Google Scholar
[685] Gardner, R. J., Vedel Jensen, E. B., Volčič, A., Geometric tomography and local stereology. Adv. Appl. Math. 30 (2003), 397–423.Google Scholar
[686] Gardner, R. J., Volčič, A., Tomography of convex and star bodies. Adv. Math. 108 (1994), 367–399.Google Scholar
[687] Gardner, R. J., Zhang, G., Affine inequalities and radial mean bodies. Amer. J. Math. 120 (1998), 505–528.Google Scholar
[688] Gardner, R. J., Zvavitch, A., Gaussian Brunn–Minkowski inequalities. Trans. Amer. Math. Soc. 362 (2010), 5333–5353.Google Scholar
[689] Gates, J., Hug, D., Schneider, R., Valuations on convex sets of oriented hyperplanes. Discrete Comput. Geom. 33 (2005), 57–65.Google Scholar
[690] Geivaerts, M., Some properties of the relation ‘homothetically adaptable’ in the space of convex bodies (in Dutch). Med. Konink. Acad. Wetensch. Lett. en Schone Kunst. België Kl. Wetensch. 34, 6 (1972), 19 pp.Google Scholar
[691] Geivaerts, M., Classes of homothetically adaptable convex bodies. Acad. Roy. Belgique, Bull. Classe Sci. 60 (5) (1974), 409–429.Google Scholar
[692] Geivaerts, M., Vector spaces consisting of classes of convex bodies. In Journée de Convexité, pp. 69–72, Univ. de Liège, Inst. de Math., Liège, 1974.
[693] Geivaerts, M., Vector spaces consisting of classes of convex bodies. Geom. Dedicata 5 (1976), 175–187.Google Scholar
[694] Geppert, H., Über den Brunn–Minkowskischen Satz. Math. Z. 42 (1937), 238–254.Google Scholar
[695] Gericke, H., Über eine Ungleichung für gemischte Volumina. Integralgeometrie 23. Deutsche Math. 2 (1937), 61–67.Google Scholar
[696] Gericke, H., Über stützbare Flächen und ihre Entwicklung nach Kugelfunktionen. Math. Z. 46 (1940), 55–61.Google Scholar
[697] Gericke, H., Stützbare Bereiche in komplexer Fourierdarstellung. Deutsche Math. 5 (1940), 279–299.Google Scholar
[698] Gericke, H., Zur Relativgeometrie ebener Kurven. Math. Z. 47 (1941), 215–228.Google Scholar
[699] Ghandehari, M., Polar duals of convex bodies. Proc. Amer. Math. Soc. 113 (1991), 799–808.Google Scholar
[700] Giannopoulos, A., A note on a problem of H. Busemann and C. M. Petty concerning sections of symmetric convex bodies. Mathematika 37 (1990), 239–242.Google Scholar
[701] Giannopoulos, A., On the mean value of the area of a random polygon in a plane convex body. Mathematika 39 (1992), 279–290.Google Scholar
[702] Giannopoulos, A., Notes on isotropic convex bodies. Available at http://users.uoa.gr/apgiannop/.
[703] Giannopoulos, A., Hartzoulaki, M., Paouris, G., On a local version of the Aleksandrov–Fenchel inequality for the quermassintegrals of a convex body. Proc. Amer. Math. Soc. 130 (2002), 2403–2412.Google Scholar
[704] Giannopoulos, A., Milman, V., Extremal problems and isotropic position of convex bodies. Israel J. Math. 117 (2000), 29–60.Google Scholar
[705] Giannopoulos, A., Milman, V., Euclidean structure in finite dimensional normed spaces. In Handbook of the Geometry of Banach Spaces (W. B., Johnson, J., Lindenstrauss, eds), vol. 1, pp. 707–779, Elsevier, Amsterdam, 2001.
[706] Giannopoulos, A., Milman, V., Asymptotic convex geometry: short overview. In Different Faces of Geometry (S., Donaldsonet al., eds), International Mathematical Series (N.Y.) 3, pp. 87–162, Kluwer/Plenum, New York, 2004.
[707] Giannopoulos, A., Milman, V., Rudelson, M., Convex bodies with minimal mean width. In Geometric Aspects of Functional Analysis (Israel Seminar 1996–2000), Lecture Notes in Math. 1745, pp. 81–93, Springer, Berlin, 2000.
[708] Giannopoulos, A., Paouris, G., Vritsiou, B.-H., A remark on the slicing problem. J. Funct. Anal. 262 (2012), 1062–1086.Google Scholar
[709] Giannopoulos, A., Paouris, G., Vritsiou, B.-H., The isotropic position and the reverse Santaló inequality. Israel J. Math. (in press), DOI:10.1007/s11856–012-0173–2, arXiv:1112.3073v1.
[710] Giannopoulos, A., Papadimitrakis, M., Isotropic surface area measures. Mathematika 46 (1999), 1–13.Google Scholar
[711] Giannopoulos, A., Perissinaki, L., Tsolomitis, A., John's theorem for an arbitrary pair of convex bodies. Geom. Dedicata 84 (2001), 63–79.Google Scholar
[712] Giertz, M., A note on a problem of Busemann, Math. Scand. 25 (1969), 145–148.Google Scholar
[713] Gine, E., Hahn, M. G., The Lévy-Hincin representation for random compact convex subsets which are infinitely divisible under Minkowski addition. Z. Wahrscheinlichkeitsth. verw. Geb. 70 (1985), 271–287.Google Scholar
[714] Giné, E., Hahn, M. G., M-infinitely divisible random compact convex sets. In Probability in Banach Spaces V, Proc. 5th Int. Conf., Medford, MA, 1984, Lecture Notes in Math. 1153, pp. 226–248, Springer, Berlin, 1985.
[715] Giné, E., Hahn, M. G., Characterization and domains of attraction of p-stable random compact sets. Ann. Probab. 13 (1985), 447–468.Google Scholar
[716] Giné, E., Hahn, M. G., Zinn, J., Limit theorems for random sets: an application of probability in Banach space results. In Probability in Banach Spaces IV, Oberwolfach 1982, Lecture Notes in Math. 990, pp. 112–135, Springer, Berlin, 1983.
[717] Glasauer, S., Integralgeometrie konvexer Körper im sphärischen Raum. Dissertation, Univ. Freiburg, 1995.
[718] Glasauer, S., A generalization of intersection formulae of integral geometry. Geom. Dedicata 68 (1997), 101–121.Google Scholar
[719] Glasauer, S., Translative and kinematic integral formulae concerning the convex hull operation. Math. Z. 229 (1998), 493–513.Google Scholar
[720] Glasauer, S., An Euler-type version of the local Steiner formula. Bull. London Math. Soc. 30 (1998), 618–622.Google Scholar
[721] Glasauer, S., Kinematic formulae for support measures of convex bodies. Beitr. Algebra Geom. 40 (1999), 113–124.Google Scholar
[722] Gluck, H., The generalized Minkowski problem in differential geometry in the large. Ann. of Math. 96 (1972), 245–276.Google Scholar
[723] Gluck, H., Manifolds with preassigned curvature: a survey. Bull. Amer. Math. Soc. 81 (1975), 313–329.Google Scholar
[724] Godbersen, C., Der Satz vom Vektorbereich in Räumen beliebiger Dimensionen. Dissertation, Göttingen, 1938.
[725] Godet-Thobie, Ch., The Laï, Ph., Sur le plongement de l'ensemble des convexes, fermés, bornés d'un espace vectoriel topologique localement convexe. C. R. Acad. Sci. Paris, Sér. A–B 271 (1970), 84–87.Google Scholar
[726] Goikhman, D. M., The differentiability of volume in Blaschke lattices (in Russian). Sibirskii Mat. Zh. 15 (1974), 1406–1408. English translation: Siberian Math. J. 15 (1974), 997–999.Google Scholar
[727] Goldberg, M., Circular-arc rotors in regular polygons. Amer. Math. Monthly 55 (1948), 393–402.Google Scholar
[728] Goldberg, M., Trammel rotors in regular polygons. Amer. Math. Monthly 64 (1957), 71–78.Google Scholar
[729] Goldberg, M., Rotors in polygons and polyhedra. Math. Computation 14 (1960), 229–239.Google Scholar
[730] Goldberg, M., Rotors of variable regular polygons. Elem. Math. 21 (1966), 25–27.Google Scholar
[731] Goodey, P. R., Centrally symmetric convex sets and mixed volumes. Mathematika 24 (1977), 193–198.Google Scholar
[732] Goodey, P. R., Limits of intermediate surface area measures of convex bodies. Proc. London Math. Soc. 43 (3) (1981), 151–168.Google Scholar
[733] Goodey, P. R., Connectivity and freely rolling convex bodies. Mathematika 29 (1982), 249–259.Google Scholar
[734] Goodey, P. R., Centrally symmetric convex bodies. Mathematika 31 (1984), 305–322.Google Scholar
[735] Goodey, P. R., Degrees of symmetry of convex bodies. Mitt. Math. Ges. Gießen 166 (1984), 39–48.Google Scholar
[736] Goodey, P. R., Instability of projection bodies. Geom. Dedicata 20 (1986), 295–305.Google Scholar
[737] Goodey, P. R., Groemer, H., Stability results for first order projection bodies. Proc. Amer. Math. Soc. 109 (1990), 1103–1114.Google Scholar
[738] Goodey, P. R., Hinderer, W., Hug, D., Rataj, J., Weil, W., A flag representation of projection functions (in preparation).
[739] Goodey, P. R., Howard, R., Processes of flats induced by higher dimensional processes. Adv. Math. 80 (1990), 92–109.Google Scholar
[740] Goodey, P. R., Kiderlen, M., Weil, W., Section and projection means of convex bodies. Monatsh. Math. 126 (1998), 37–54.Google Scholar
[741] Goodey, P., Lutwak, E., Weil, W., Functional analytic characterizations of classes of convex bodies. Math. Z. 222 (1996), 363–381.Google Scholar
[742] Goodey, P. R., Schneider, R., On the intermediate area functions of convex bodies. Math. Z. 173 (1980), 185–194.Google Scholar
[743] Goodey, P. R., Schneider, R., Weil, W., On the determination of convex bodies by projection functions. Bull. London Math. Soc. 29 (1997), 82–88.Google Scholar
[744] Goodey, P. R., Weil, W., Distributions and valuations. Proc. London Math. Soc. 49 (3) (1984), 504–516.Google Scholar
[745] Goodey, P. R., Weil, W., Translative integral formulae for convex bodies. Aequationes Math. 34 (1987), 64–77.Google Scholar
[746] Goodey, P. R., Weil, W., Centrally symmetric convex bodies and Radon transforms on higher order Grassmannians. Mathematika 38 (1991), 117–133.Google Scholar
[747] Goodey, P. R., Weil, W., Centrally symmetric convex bodies and the spherical Radon transform. J. Differential Geom. 35 (1992), 675–688.Google Scholar
[748] Goodey, P. R., Weil, W., The determination of convex bodies from the mean of random sections. Math. Proc. Cambridge Philos. Soc. 112 (1992), 419–430.Google Scholar
[749] Goodey, P. R., Weil, W., Zonoids and generalisations. In Handbook of Convex Geometry (P. M., Gruber, J. M., Wills, eds), vol. B, pp. 1297–1326, North-Holland, Amsterdam, 1993.
[750] Goodey, P. R., Weil, W., Intersection bodies and ellipsoids. Mathematika 42 (1995), 295–304.Google Scholar
[751] Goodey, P. R., Weil, W., Translative and kinematic integral formulae for support functions II. Geom. Dedicata 99 (2003), 103–125.Google Scholar
[752] Goodey, P., Weil, W., Local properties of intertwining operators on the sphere. Adv. Math. 227 (2011), 1144–1164.Google Scholar
[753] Goodey, P., Weil, W., A uniqueness result for mean section bodies. Adv. Math. 229 (2012), 596–601.Google Scholar
[754] Goodey, P., Weil, W., Sums of sections, surface area measures and the general Minkowski problem. J. Differential Geom. (in press).
[755] Goodey, P., Yaskin, V., Yaskina, M., A Fourier transform approach to Christoffel's problem. Trans. Amer. Math. Soc. 363 (2011), 6351–6384.Google Scholar
[756] Goodey, P., Zhang, G., Characterizations and inequalities for zonoids. J. London Math. Soc. 53 (1996), 184–196.Google Scholar
[757] Goodey, P., Zhang, G., Inequalities between projection functions of convex bodies. Amer. J. Math. 120 (1998), 345–367.Google Scholar
[758] Goodman, E., Lutwak, E., Malkevitch, J., Pollack, R. (eds), Discrete Geometry and Convexity. Ann. New York Acad. Sci. 440 (1985).
[759] Goodman, A. W., Convex curves of bounded type. Int. J. Math. Math. Sci. 8 (1985), 625–633.Google Scholar
[760] Gordon, Y., Some inequalities for Gaussian processes and applications. Israel J. Math. 50 (1985), 265–289.Google Scholar
[761] Gordon, Y., Litvak, A. E., Meyer, M., Pajor, A., John's decomposition in the general case and applications. J. Differential Geom. 68 (2004), 99–119.Google Scholar
[762] Gordon, Y., Meyer, M., On the minima of the functional Mahler products. Houston J. Math. (in press).
[763] Gordon, Y., Meyer, M., Reisner, S., Zonoids with minimal volume product: a new proof. Proc. Amer. Math. Soc. 104 (1988), 273–276.Google Scholar
[764] Gordon, Y., Reisner, S., Some aspects of volume estimates to various parameters in Banach spaces. In Proc. Res. Workshop on Banach Space Theory, Iowa City, IA, 1981 (Bor-Luh, Lin, ed.), pp. 23–53, Univ. Iowa, Iowa City, IA, 1982.
[765] Görtler, H., Zur Addition beweglicher ebener Eibereiche. Math. Z. 42 (1937), 313–321.Google Scholar
[766] Görtler, H., Erzeugung stützbarer Bereiche I. Deutsche Math. 2 (1937), 454–466.Google Scholar
[767] Görtler, H., Erzeugung stützbarer Bereiche II. Deutsche Math. 3 (1938), 189–200.Google Scholar
[768] Gray, A., Tubes. Addison-Wesley, Redwood City, CA, 1990.
[769] Gray, A., Vanhecke, L., The volume of tubes in a Riemannian manifold. Rend. Sem. Mat. Univ. Politecn. Torino 39 (3) (1981), 1–50.Google Scholar
[770] Green, J. W., Sets subtending a constant angle on a circle. Duke Math. J. 17 (1950), 263–267.Google Scholar
[771] Green, J. W., Length and area of a convex curve under affine transformation. Pacific J. Math. 3 (1953), 393–402.Google Scholar
[772] Green, M., Osher, S., Steiner polynomials, Wulff flows, and some new isoperimetric inequalities for convex plane curves. Asian J. Math. 3 (1999), 659–676.Google Scholar
[773] Grinberg, E. L., Isoperimetric inequalities and identities for k-dimensional cross-sections of convex bodies. Math. Ann. 291 (1991), 75–86.Google Scholar
[774] Grinberg, E. L., Rivin, I., Infinitesimal aspects of the Busemann–Petty problem. Bull. London Math. Soc. 22 (1990), 478–484.Google Scholar
[775] Grinberg, E., Zhang, G., Convolutions, transforms, and convex bodies. Proc. London Math. Soc. 78 (3) (1999), 73–115.Google Scholar
[776] Gritzmann, P., A characterization of all loglinear inequalities for three quermassintegrals of convex bodies. Proc. Amer. Math. Soc. 104 (1988), 563–570.Google Scholar
[777] Gritzmann, P., Hufnagel, A., On the algorithmic complexity of Minkowski's reconstruction theorem. J. London Math. Soc. 59 (2) (1999), 1081–1100.Google Scholar
[778] Gritzmann, P., Klee, V., On the complexity of some basic problems in computational geometry, II: Volume and mixed volumes. In Polytopes: Abstract, Convex and Computational (T., Bisztriczky, P., McMullen, R., Schneider, A. Ivić, Weiss, eds), NATO ASI Series C, Math. Phys. Sci. 440, pp. 373–466, Kluwer, Dordrecht, 1994.
[779] Gritzmann, P., Sturmfels, B., Minkowski addition of polytopes: Computational complexity and applications to Grobner bases. SIAM J. Discrete Math. 2 (1993), 246–269.Google Scholar
[780] Gritzmann, P., Wills, J. M., Wrase, D., A new isoperimetric inequality. J. Reine Angew. Math. 379 (1987), 22–30.Google Scholar
[781] Groemer, H., Eine neue Ungleichung für konvexe Körper. Math. Z. 86 (1965), 361–364.Google Scholar
[782] Groemer, H., Eulersche Charakteristik, Projektionen und Quermaßintegrale. Math. Ann. 198 (1972), 23–56.Google Scholar
[783] Groemer, H., Über einige Invarianzeigenschaften der Eulerschen Charakteristik. Comment. Math. Helvet. 48 (1973), 87–99.Google Scholar
[784] Groemer, H., On some mean values associated with a randomly selected simplex in a convex set. Pacific J. Math. 45 (1973), 525–533.Google Scholar
[785] Groemer, H., On the mean value of the volume of a random polytope in a convex set. Arch. Math. 25 (1974), 86–90.Google Scholar
[786] Groemer, H., On the Euler characteristic in spaces with a separability property. Math. Ann. 211 (1974), 315–321.Google Scholar
[787] Groemer, H., The Euler characteristic and related functionals on convex surfaces. Geom. Dedicata 4 (1975), 91–104.Google Scholar
[788] Groemer, H., Minkowski addition and mixed volumes. Geom. Dedicata 6 (1977), 141–163.Google Scholar
[789] Groemer, H., On the extension of additive functionals on classes of convex sets. Pacific J. Math. 75 (1978), 397–410.Google Scholar
[790] Groemer, H., The average distance between two convex sets. J. Appl. Prob. 17 (1980), 415–422.Google Scholar
[791] Groemer, H., Stability theorems for projections of convex sets. Israel. J. Math. 60 (1987), 177–190.Google Scholar
[792] Groemer, H., On rings of sets associated with characteristic functions. Arch. Math. 49 (1987), 91–93.Google Scholar
[793] Groemer, H., On the Brunn–Minkowski theorem. Geom. Dedicata 27 (1988), 357–371.Google Scholar
[794] Groemer, H., Stability theorems for convex domains of constant width. Canad. Math. Bull. 31 (1988), 328–337.Google Scholar
[795] Groemer, H., Stability properties of geometric inequalities. Amer. Math. Monthly 97 (1990), 382–394.Google Scholar
[796] Groemer, H., On an inequality of Minkowski for mixed volumes. Geom. Dedicata 33 (1990), 117–122.Google Scholar
[797] Groemer, H., Stability properties of Cauchy's surface area formula. Monatsh. Math. 112 (1991), 43–60.Google Scholar
[798] Groemer, H., Stability theorems for projections and central symmetrization. Arch. Math. 51 (1991), 394–399.Google Scholar
[799] Groemer, H., Fourier series and spherical harmonics in convexity. In Handbook of Convex Geometry (P. M., Gruber, J. M., Wills, eds), vol. B, pp. 1259–1295, North-Holland, Amsterdam, 1993.
[800] Groemer, H., Geometric Applications of Fourier Series and Spherical Harmonics. Cambridge Univ. Press, Cambridge, 1996.
[801] Groemer, H., 100 Years of Fourier series and spherical harmonics in convexity. In Fourier Analysis and Convexity (L., Brandolini, L., Colzani, A., Iosevich, G., Travaglini, eds), pp. 97–118, Birkhäuser, Boston, 2004.
[802] Groemer, H., Deviation measures and normals of convex bodies. Beitr. Algebra Geom. 45 (2004), 155–167.Google Scholar
[803] Groemer, H., Parallel bodies and normals of convex bodies. Mathematika 57 (2011), 109–119.Google Scholar
[804] Groemer, H., Schneider, R., Stability estimates for some geometric inequalities. Bull. London Math. Soc. 23 (1991), 67–74.Google Scholar
[805] Gromov, M., Convex sets and Kähler manifolds. In Advances in Differential Geometry and Topology, pp. 1–38, World Sci. Publ., Teaneck, NJ, 1990.
[806] Gross, W., Die Minimaleigenschaft der Kugel. Mh. Math. Phys. 28 (1917), 77–97.Google Scholar
[807] Gross, W., Über affine Geometrie, XIII: Eine Minimumeigenschaft der Ellipse und des Ellipsoids. Ber. Verh. Sächs. Akad. Wiss., Math.-Phys. Kl. 70 (1918), 38–54.Google Scholar
[808] Gruber, P. M., Zur Charakterisierung konvexer Körper. Über einen Satz von Rogers und Shephard I. Math. Ann. 181 (1969), 189–200.Google Scholar
[809] Gruber, P. M., Zur Charakterisierung konvexer Körper. Über einen Satz von Rogers und Shephard II. Math. Ann. 184 (1970), 79–105.Google Scholar
[810] Gruber, P. M., Über die Durchschnitte von translationsgleichen Polyedern. Monatsh. Math. 74 (1970), 223–238.Google Scholar
[811] Gruber, P. M., Über eine Kennzeichnung der Simplices des Rn. Arch. Math. 22 (1971), 94–102.Google Scholar
[812] Gruber, P. M., Die meisten konvexen Körper sind glatt, aber nicht zu glatt. Math. Ann. 229 (1977), 259–266.Google Scholar
[813] Gruber, P. M., Isometries of the space of convex bodies of Ed. Mathematika 25 (1978), 270–278.Google Scholar
[814] Gruber, P. M., The space of compact subsets of Ed. Geom. Dedicata 9 (1980), 87–90.Google Scholar
[815] Gruber, P. M., Isometrien des Konvexringes. Colloq. Math. 43 (1980), 99–109.Google Scholar
[816] Gruber, P. M., Isometries of the space of convex bodies contained in a Euclidean ball. Israel J. Math. 42 (1982), 277–283.Google Scholar
[817] Gruber, P. M., In most cases approximation is irregular. Rend. Sem. Mat. Univ. Politecn. Torino 41 (1983), 19–33.Google Scholar
[818] Gruber, P. M., Approximation of convex bodies. In Convexity and its Applications (P. M., Gruber, J. M., Wills, eds), pp. 131–162, Birkhäuser, Basel, 1983.
[819] Gruber, P. M., Aspects of convexity and its applications. Expo. Math. 2 (1984), 47–83.Google Scholar
[820] Gruber, P. M., Results of Baire category type in convexity. In Discrete Geometry and Convexity (J. E., Goodman, E., Lutwak, J., Malkevitch, R., Pollack, eds), Ann. New York Acad. Sci. 440 (1985), 163–169.
[821] Gruber, P. M., Volume approximation of convex bodies by inscribed polytopes. Math. Ann. 281 (1988), 229–245.Google Scholar
[822] Gruber, P. M., Minimal ellipsoids and their duals. Rend. Circ. Mat. Palermo 37 (2) (1988), 35–64.Google Scholar
[823] Gruber, P. M., Dimension and structure of typical compact sets, continua and curves. Monatsh. Math. 108 (1989), 149–164.Google Scholar
[824] Gruber, P. M., A typical convex surface contains no closed geodesic. J. Reine Angew. Math. 416 (1991), 195–205.Google Scholar
[825] Gruber, P. M., Volume approximation of convex bodies by circumscribed polytopes. In Applied Geometry and Discrete Mathematics, The Victor Klee Festschrift (P., Gritzmann, B., Sturmfels, eds), DIMACS Ser. Discrete Math. Theoret. Comput. Sci. 4, pp. 309–317, Amer. Math. Soc., Providence, RI, 1991.
[826] Gruber, P. M., The endomorphisms of the lattice of convex bodies. Abh. Math. Sem. Univ. Hamburg 61 (1991), 121–130.Google Scholar
[827] Gruber, P. M., The endomorphisms of the lattice of norms in finite dimensions. Abh. Math. Sem. Univ. Hamburg 62 (1992), 179–189.Google Scholar
[828] Gruber, P. M., Baire categories in convexity. In Handbook of Convex Geometry (P. M., Gruber, J. M., Wills, eds), vol. B, pp. 1327–1346, North-Holland, Amsterdam, 1993.
[829] Gruber, P. M., Aspects of approximation of convex bodies. In Handbook of Convex Geometry (P. M., Gruber, J. M., Wills, eds), vol. A, pp. 319–345, North-Holland, Amsterdam, 1993.
[830] Gruber, P. M., Asymptotic estimates for best and stepwise approximation of convex bodies I. Forum Math. 5 (1993), 281–297.Google Scholar
[831] Gruber, P. M., Asymptotic estimates for best and stepwise approximation of convex bodies II. Forum Math. 5 (1993), 521–538.Google Scholar
[832] Gruber, P. M., Approximation by convex polytopes. In Polytopes: Abstract, Convex and Computational (T., Bisztriczky, P., McMullen, R., Schneider, A. Ivić, Weiss,eds), NATO ASI Series C, Math. Phys. Sci. 440, pp. 173–203, Kluwer, Dordrecht, 1994.
[833] Gruber, P. M., Stability of Blaschke's characterization of ellipsoids and Radon norms. Discrete Comput. Geom. 17 (1997), 411–427.Google Scholar
[834] Gruber, P. M., Convex and Discrete Geometry. Springer, Berlin, 2007.
[835] Gruber, P. M., Application of an idea of Voronoi to John type problems. Adv. Math. 218 (2008), 309–351.Google Scholar
[836] Gruber, P. M., John and Löwner ellipsoids. Discrete Comput. Geom. 46 (2011), 776–788.Google Scholar
[837] Gruber, P., Höbinger, J., Kennzeichnungen von Ellipsoiden mit Anwendungen. In Jahrbuch Überblicke Mathematik, pp. 9–29, Bibliographisches Institut, Mannheim, 1976.
[838] Gruber, P. M., Kenderov, P., Approximation of convex bodies by polytopes. Rend. Circ. Mat. Palermo 31 (1982), 195–225.Google Scholar
[839] Gruber, P. M., Lettl, G., Isometries of the space of compact subsets of Ed. Studia Sci. Math. Hungar. 14 (1979), 169–181.Google Scholar
[840] Gruber, P. M., Lettl, G., Isometries of the space of convex bodies in Euclidean space. Bull. London Math. Soc. 12 (1980), 455–462.Google Scholar
[841] Gruber, P., Schneider, R., Problems in geometric convexity. In Contributions to Geometry, Proc. Geometry Symp., Siegen 1978 (J., Tolke, J. M., Wills, eds), pp. 255–278, Birkhäuser, Basel, 1979.
[842] Gruber, P. M., Schuster, F. E., An arithmetic proof of John's ellipsoid theorem. Arch. Math. 85 (2005), 82–88.Google Scholar
[843] Gruber, P. M., Sorger, H., Shadow boundaries of typical convex bodies. Measure properties. Mathematika 36 (1989), 142–152.Google Scholar
[844] Gruber, P. M., Tichy, R., Isometries of spaces of compact or compact convex subsets of metric manifolds. Monatsh. Math. 93 (1982), 116–126.Google Scholar
[845] Gruber, P. M., Wills, J. M. (eds), Convexity and Its Applications. Birkhäuser, Basel, 1983.
[846] Gruber, P. M., Wills, J. M. (eds), Handbook of Convex Geometry, vols. A, B. North-Holland, Amsterdam, 1993.
[847] Grünbaum, B., Measures of symmetry for convex sets. In Convexity, Proc. Symposia Pure Math., vol. VII, pp. 233–270, Amer. Math. Soc., Providence, RI, 1963.
[848] Grünbaum, B., Convex Polytopes. Interscience, London, 1967.
[849] Grünbaum, B., Convex Polytopes, 2nd edn. Springer, New York, 2003.
[850] Grzaslewicz, R., Extreme convex sets in R2. Arch. Math. 43 (1984), 377–380.Google Scholar
[851] Grzybowski, J., Minimal pairs of convex compact sets. Arch. Math. 63 (1994), 173–181.Google Scholar
[852] Grzybowski, J., A note on summands of compact convex sets. Mathematika 43 (1996), 286–294.Google Scholar
[853] Grzybowski, J., Minimal quasidifferentials of a piecewise linear function in ℝ3. Z. Anal. Anwendungen 24 (2005), 189–202.Google Scholar
[854] Grzybowski, J., Przybycién, H., Urbański, R., On summands of closed bounded convex sets. J. Analysis Appl. 21 (2002), 845–850.Google Scholar
[855] Grzybowski, J., Urbański, R., Wiernowolski, M., On common summands and anti-summands of compact convex sets. Bull. Polish. Acad. Sci. Math. 47 (1999), 69–76.Google Scholar
[856] Guan, B., Guan, P., Convex hypersurfaces of prescribed curvatures. Ann. of Math. 156 (2002), 655–673.Google Scholar
[857] Guan, P., Li, J., The quermassintegral inequalities for k-convex starshaped domains. Adv. Math. 221 (2009), 1725–1732.Google Scholar
[858] Guan, P., Li, J., Li, Y., Hypersurfaces of prescribed curvature measure. Duke Math. J. 161 (2012), 1927–1942.Google Scholar
[859] Guan, P., Lin, C., Ma, X.-N., The Christoffel–Minkowski problem, II: Weingarten curvature equations. Chin. Ann. Math. 27 B(6) (2006), 595–614.Google Scholar
[860] Guan, P., Lin, C., Ma, X.-N., The existence of convex body with prescribed curvature measures. Int. Math. Res. Not. IMRN 2009, No. 11, 1947–1975.
[861] Guan, P., Ma, X.-N., The Christoffel–Minkowski problem. I: Convexity of solutions of a Hessian equation. Invent. Math. 151 (2003), 553–577.Google Scholar
[862] Guan, P., Ma, X.-N., Convex solutions of fully nonlinear elliptic equations in classical differential geometry. Geometric Evolution Equations, Contemp. Math. 367 (2005), 115–127.Google Scholar
[863] Guan, P., Ma, X.-N., Trudinger, L., Zhu, X., A form of Aleksandrov–Fenchel inequality. Pure Appl. Math. Q. 6 (2010), 999–1012.Google Scholar
[864] Guan, P., Ma, X.-N., Zhou, F., The Christoffel–Minkowski problem. III: Existence and convexity of admissible solutions. Commun. Pure Appl. Math. 59 (2006), 1352–1376.Google Scholar
[865] Guggenheimer, H., Nearly spherical surfaces. Aequationes Math. 3 (1969), 186–193.Google Scholar
[866] Guggenheimer, H., Correction to ‘Polar reciprocal convex bodies’, Israel J. Math. 14 (1973), 309–316. Israel J. Math. 29 (1978), 312.Google Scholar
[867] Guggenheimer, H. W., Applicable Geometry: Global and Local Convexity. R. E. Krieger, Huntington, NY, 1977.
[868] Guilfoyle, B., Klingenberg., W., On C2-smooth surfaces of constant width. Tbil. Math. J. 2 (2009), 1–17.Google Scholar
[869] Guleryuz, O. G., Lutwak, E, Yang, D., Zhang, G., Information-theoretic inequalities for contoured probability distributions. IEEE Trans. Inf. Th. 48 (2002), 2377–2383.Google Scholar
[870] Guo, Q., On p-measures of asymmetry for convex bodies. Adv. Geom. 12 (2012), 287–301.Google Scholar
[871] Gurvits, L., The van der Waerden conjecture for mixed discriminants. Adv. Math. 200 (2006), 435–454.Google Scholar
[872] Gustin, W., An isoperimetric inequality. Pacific J. Math. 3 (1953), 403–405.Google Scholar
[873] Haberl, C., Lp intersection bodies. Adv. Math. 217 (2008), 2599–2624.Google Scholar
[874] Haberl, C., Star body valued valuations. Indiana Univ. J. 58 (2009), 2253–2276.Google Scholar
[875] Haberl, C., Blaschke valuations. Amer. J. Math. 133 (2011), 717–751.Google Scholar
[876] Haberl, C., Minkowski valuations intertwining the special linear group. J. Eur. Math. Soc. 14 (2012), 1565–1597.Google Scholar
[877] Haberl, C., Ludwig, M., A characterization of Lp-intersection bodies. Int. Math. Res. Not. 2006, No 17, Article ID 10548, 29 pp.
[878] Haberl, C., Lutwak, E., Yang, D., Zhang, G., The even Orlicz Minkowski problem. Adv. Math. 224 (2010), 2485–2510.Google Scholar
[879] Haberl, C., Parapatits, L., Valuations and surface area measures. J. Reine Angew. Math., DOI 10.1515/crelle-2012-0044.
[880] Haberl, C., Parapatits, L., The centro-affine Hadwiger theorem. J. Amer. Math. Soc. (in press).
[881] Haberl, C., Schuster, F. E., General Lp affine isoperimetric inequalities. J. Differential Geom. 83 (2009), 1–26.Google Scholar
[882] Haberl, C., Schuster, F. E., Asymmetric affine Lp Sobolev inequalities. J. Funct. Anal. 257 (2009), 541–658.Google Scholar
[883] Haberl, C., Schuster, F. E., Xiao, J., An asymmetric affine Pólya-Szegö principle. Math. Ann. 352 (2012), 517–542.Google Scholar
[884] Hadamard, J., Sur certaines propriétés des trajectoires en dynamique. J. Math. Pures Appl. 3 (1897), 331–387.Google Scholar
[885] Hadwiger, H., Gegenseitige Bedeckbarkeit zweier Eibereiche und Isoperimetrie. Vierteljahresschr. Naturf. Ges. Zürich 86 (1941), 152–156.Google Scholar
[886] Hadwiger, H., Eine elementare Ableitung der isoperimetrischen Ungleichung für Polygone. Comment. Math. Helvet. 16 (1943/1944), 305–309.Google Scholar
[887] Hadwiger, H., Die erweiterten Steinerschen Formeln für ebene und sphärische Bereiche. Comment. Math. Helvet. 18 (1945), 59–72.Google Scholar
[888] Hadwiger, H., Bemerkung über additive Mengenfunktionale. Experientia 1 (1945), 274–275.Google Scholar
[889] Hadwiger, H., Über die erweiterten Steinerschen Formeln für Parallelflächen. Rev. Hisp.-Amer. 6 (4) (1946), 1–4.Google Scholar
[890] Hadwiger, H., Über das Volumen der Parallelmengen. Mitt. Naturf. Ges. Bern. 3 (1946), 121–125.Google Scholar
[891] Hadwiger, H., Eine Erweiterung des Steiner–Minkowskischen Satzes für Polyeder. Experientia 2 (1946), 70.Google Scholar
[892] Hadwiger, H., Inhaltsungleichungen für innere und außere Parallelmengen. Experientia 2 (1946), 490.Google Scholar
[893] Hadwiger, H., Über eine symbolisch-topologische Formel. Elem. Math. 2 (1947), 35–41. (Portuguese translation: Gazeta Mat. 35 (1947), 6–9.)Google Scholar
[894] Hadwiger, H., Kurzer Beweis der isoperimetrischen Ungleichung für konvexe Bereiche. Elem. Math. 3 (1948), 111–112.Google Scholar
[895] Hadwiger, H., Ein Auswahlsatz für abgeschlossene Punktmengen. Portugaliae Math. 8 (1949), 13–15.Google Scholar
[896] Hadwiger, H., Über konvexe Körper mit Flachstellen. Math. Z. 52 (1949), 212–216.Google Scholar
[897] Hadwiger, H., Kurze Herleitung einer verschärften isoperimetrischen Ungleichung für konvexe Körper. Revue Fac. Sci. Univ. Istanbul, Sér. A 14 (1949), 1–6.Google Scholar
[898] Hadwiger, H., Einige Anwendungen eines Funktionalsatzes für konvexe Körper in der raumlichen Integralgeometrie. Monatsh. Math. 54 (1950), 345–353.Google Scholar
[899] Hadwiger, H., Minkowskische Addition und Subtraktion beliebiger Punktmengen und die Theoreme von Erhard Schmidt. Math. Z. 53 (1950), 210–218.Google Scholar
[900] Hadwiger, H., Translative Zerlegungsgleichheit k-dimensionaler Parallelotope. Collectanea Math. 3 (1950), 11–23.Google Scholar
[901] Hadwiger, H., Beweis eines Funktionalsatzes für konvexe Körper. Abh. Math. Sem. Univ. Hamburg 17 (1951), 69–76.Google Scholar
[902] Hadwiger, H., Mittelpunktspolyeder und translative Zerlegungsgleichheit. Math. Nachr. 8 (1952), 53–58.Google Scholar
[903] Hadwiger, H., Translationsinvariante, additive und schwachstetige Polyederfunktionale. Arch. Math. 3 (1952), 387–394.Google Scholar
[904] Hadwiger, H., Additive Funktionale k-dimensionaler EiKörper I. Arch. Math. 3 (1952), 470–478.Google Scholar
[905] Hadwiger, H., Einfache Herleitung der isoperimetrischen Ungleichung für abgeschlossene Punktmengen. Math. Ann. 124 (1952), 158–160.Google Scholar
[906] Hadwiger, H., Eulers Charakteristik und kombinatorische Geometrie. J. Reine Angew. Math. 194 (1955), 101–110.Google Scholar
[907] Hadwiger, H., Konkave Eikörperfunktionale. Monatsh. Math. 59 (1955), 230–237.Google Scholar
[908] Hadwiger, H., Altes undNeues über Konvexe Körper. Birkhäuser, Basel, 1955.
[909] Hadwiger, H., Integralsätze im Konvexring. Abh. Math. Sem. Univ. Hamburg 20 (1956), 136–154.Google Scholar
[910] Hadwiger, H., Konkave Eikörperfunktionale und höhere Trägheitsmomente. Comment. Math. Helvet. 30 (1956), 285–296.Google Scholar
[911] Hadwiger, H., Vorlesungen über Inhalt, Oberfläche und Isoperimetrie. Springer, Berlin, 1957.
[912] Hadwiger, H., Normale Körper im euklidischen Raum und ihre topologischen und metrischen Eigenschaften. Math. Z. 71 (1959), 124–140.Google Scholar
[913] Hadwiger, H., Zur Eulerschen Charakteristik euklidischer Polyeder. Monatsh. Math. 64 (1960), 49–60.Google Scholar
[914] Hadwiger, H., Eine Schnittrekursion für die Eulersche Charakteristik euklidischer Polyeder mit Anwendungen innerhalb der kombinatorischen Geometrie. Elem. Math. 23 (1968), 121–132.Google Scholar
[915] Hadwiger, H., Halbeikörper und Isoperimetrie. Arch. Math. 19 (1968), 659–663.Google Scholar
[916] Hadwiger, H., Radialpotenzintegrale zentralsymmetrischer Rotationskörper und Ungleichheitsaussagen Busemannscher Art. Math. Scand. 23 (1968), 193–200.Google Scholar
[917] Hadwiger, H., Zur axiomatischen Charakterisierung des Steinerpunktes konvexer Körper. Israel J. Math. 7 (1969), 168–176. (This work is erroneous.)Google Scholar
[918] Hadwiger, H., Notiz zur Eulerschen Charakteristik offener und abgeschlossener Polyeder. Studia Sci. Math. Hungar. 4 (1969), 385–387.Google Scholar
[919] Hadwiger, H., Eckenkrümmung beliebiger kompakter euklidischer Polyeder und Charakteristik von Euler-Poincaré. L'Enseignement Math. 15 (1969), 147–151.Google Scholar
[920] Hadwiger, H., Zur axiomatischen Charakterisierung des Steinerpunktes konvexer Körper: Berichtigung und Nachtrag. Israel. J. Math. 9 (1971), 466–472.Google Scholar
[921] Hadwiger, H., Polytopes and translative equidecomposability. Amer. Math. Monthly 79 (1972), 275–276.Google Scholar
[922] Hadwiger, H., Erweiterter Polyedersatz und Euler–Shephardsche Additionstheoreme. Abh. Math. Sem. Univ. Hamburg 39 (1973), 120–129.Google Scholar
[923] Hadwiger, H., Begründung der Eulerschen Charakteristik innerhalb der ebenen Elementargeometrie. L'Enseignement Math. 20 (1974), 33–43.Google Scholar
[924] Hadwiger, H., Eine Erweiterung der kinematischen Hauptformel der Integralgeometrie. Abh. Math. Sem. Univ. Hamburg 44 (1975), 84–90.Google Scholar
[925] Hadwiger, H., Eikörpemchtungsfunktionale und kinematische Integralformeln. Studienvorlesung (Manuscript), University of Bern, 1975.
[926] Hadwiger, H., Das Wills'sche Funktional. Monatsh. Math. 79 (1975), 213–221.Google Scholar
[927] Hadwiger, H., Gitterpunktanzahl im Simplex und Wills'sche Vermutung. Math. Ann. 239 (1979), 271–288.Google Scholar
[928] Hadwiger, H., Mani, P., On the Euler characteristic of spherical polyhedra and the Euler relation. Mathematika 19 (1972), 139–143.Google Scholar
[929] Hadwiger, H., Mani, P., On polyhedra with extremal Euler characteristic. J. Combinat. Theory. Ser. A 17 (1974), 345–349.Google Scholar
[930] Hadwiger, H., Meier, Ch., Studien zur vektoriellen Integralgeometrie. Math. Nachr. 56 (1973), 261–268.Google Scholar
[931] Hadwiger, H., Ohmann, D., Brunn–Minkowskischer Satz und Isoperimetrie. Math. Z. 66 (1956), 1–8.Google Scholar
[932] Hadwiger, H., Schneider, R., Vektorielle Integralgeometrie. Elem. Math. 26 (1971), 49–57.Google Scholar
[933] Halmos, P. R., The range of a vector measure. Bull. Amer. Math. Soc. 54 (1948), 416–421.Google Scholar
[934] Hammer, P. C., Convex bodies associated with a convex body. Proc. Amer. Math. Soc. 2 (1951), 781–793.Google Scholar
[935] Hammer, P. C., Approximation of convex surfaces by algebraic surfaces. Mathematika 10 (1963), 64–71.Google Scholar
[936] Hann, K., The average number of normals through a point in a convex body and a related Euler-type identity. Geom. Dedicata 48 (1993), 27–55.Google Scholar
[937] Haralick, R. M., Sternberg, S. R., Zhuang, X., Image analysis using mathematical morphology. IEEE Trans. Pattern Anal. Machine Intell. 9 (1987), 532–550.Google Scholar
[938] Hardy, G. H., Littlewood, J. E., Pólya, G., Inequalities. Cambridge Univ. Press, Cambridge, 1934.
[939] Hartman, P., Wintner, A., On pieces of convex surfaces. Amer. J. Math. 75 (1953), 477–487.Google Scholar
[940] Hartzoulaki, M., Paouris, G., Quermassintegrals of a random polytope in a convex body. Arch. Math. 80 (2003), 430–438.Google Scholar
[941] Hausdorff, F., Grundzuge der Mengenlehre. Verlag von Veit, Leipzig, 1914.
[942] Hausdorff, F., Mengenlehre. W. de Gruyter, Berlin, 1927.
[943] Hayashi, T., On Steiner's curvature centroid. Sci. Rep. Tôhoku Univ. 13 (1924), 109–132.Google Scholar
[944] Hayashi, T., Some geometrical applications of the Fourier series. Rend. Circ. Mat. Palermo 50 (1926), 96–102.Google Scholar
[945] Hayashi, T., On in-revolvable and circum-revolvable curves of a regular polygon, I. Sci. Rep. Tôhoku Univ. 15 (1926), 261–263.Google Scholar
[946] Hayashi, T., On in-revolvable and circum-revolvable curves of a regular polygon. II. Sci. Rep. Tôhoku Univ. 15 (1926), 499–502.Google Scholar
[947] He, B., Leng, G., Isotropic bodies and Bourgain's problem. Sci. China Ser. A 48 (2005), 666–679.Google Scholar
[948] He, B., Leng, G., Li, K., Projection problems for symmetric polytopes. Adv. Math. 207 (2006), 73–90.Google Scholar
[949] Heil, E., Über die Auswahlsätze von Blaschke und Arzelà–Ascoli. Math.-Phys. Semesterber. 14 (1967), 169–175.Google Scholar
[950] Heil, E., Abschätzungen für einige Affininvarianten konvexer Kurven. Monatsh. Math. 71 (1967), 405–423.Google Scholar
[951] Heil, E., Ungleichungen für die Quermaßintegrale polarer Körper. Manuscripta Math. 19 (1976), 143–149.Google Scholar
[952] Heil, E., Extensions of an inequality of Bonnesen to D-dimensional space and curvature conditions for convex bodies. Aequationes Math. 34 (1987), 35–60.Google Scholar
[953] Heil, E., Martini, H., Special convex bodies. In Handbook of Convex Geometry (P. M., Gruber, J. M., Wills, eds), vol. A, pp. 347–385, North-Holland, Amsterdam, 1993.
[954] Heine, R., Der Wertevorrat der gemischten Inhalte von zwei, drei und vier ebenen Eibereichen. Math. Ann. 115 (1937), 115–129.Google Scholar
[955] Henk, M., Löwner–John ellipsoids. Documenta Math., Extra volume ISMP (2012), 95–106.
[956] Henk, M., Hernández Cifre, M. A., Notes on the roots of Steiner polynomials. Rev. Mat Iberoamericana 24 (2008), 631–644.Google Scholar
[957] Henk, M., Hernández Cifre, M. A., On the location of roots of Steiner polynomials. Bull. Braz. Math. Soc. 42 (2011), 153–170.Google Scholar
[958] Henk, M., Schürman, A., Wills, J. M., Ehrhart polynomials and successive minima. Mathematika 52 (2005), 1–16.Google Scholar
[959] Hernández Cifre, M. A., Is there a planar convex set with given width, diameter, and inradius?Amer. Math. Monthly 107 (2000), 893–900.Google Scholar
[960] Hernández Cifre, M. A., Optimizing the perimeter and the area of convex sets with fixed diameter and circumradius. Arch. Math. 79 (2002), 147–157.Google Scholar
[961] Hernández Cifre, M. A., Pastor, J. A., Salinas Martínez, G., Segura Gomis, S., Complete systems of inequalities for centrally symmetric convex sets in the n-dimensional space. Arch. Inequal. Appl. 1 (2003), 1–7.Google Scholar
[962] Hernández Cifre, M. A., Salinas, G., Segura Gomis, S., Complete systems of inequalities. J. Inequal. Pure and Appl. Math. 2:1, Art. 10 (2001), 12 pp.Google Scholar
[963] Hernández Cifre, M. A., Salinas Martínez, G., Segura Gomis, S., Complete systems of inequalities for centrally symmetric planar convex sets. Intern. Math. J. 2 (2002), 39–49.Google Scholar
[964] Hernández Cifre, M. A., Salinas, G., Segura Gomis, S., Two optimization problems for convex bodies in the n-dimensional space. Beitr. Algebra Geom. 45 (2004), 549–555.Google Scholar
[965] Hernández Cifre, M. A., Saorín, E., On the roots of the Steiner polynomial of a 3-dimensional convex body. Adv. Geom. 7 (2007), 275–294.Google Scholar
[966] Hernández Cifre, M. A., Saorín, E., On differentiability of quermassintegrals. Forum Math. 22 (2010), 115–126.Google Scholar
[967] Hernández Cifre, M. A., Saorín, E., On the volume of inner parallel bodies. Adv. Geom. 10 (2010), 275–286.Google Scholar
[968] Hernández Cifre, M. A., Saorín, E., On inner parallel bodies and quermassintegrals. Israel J. Math. 17 (2010), 29–48.Google Scholar
[969] Hernández Cifre, M. A., Saorín, E., Differentiability of quermassintegrals: a classification of convex bodies. Trans. Amer. Math. Soc. (in press).
[970] Hernández Cifre, M. A., Segura Gomis, S., The missing boundaries of the Santaló diagrams for the cases (d, ω, R) and (ω, R, r). Discrete Comput. Geom. 23 (2000), 381–388.Google Scholar
[971] Heveling, M., Hug, D., Last, G., Does polynomial parallel volume imply convexity?Math. Ann. 328 (2004), 469–179.Google Scholar
[972] Herglotz, G., Über die Steinersche Formel für Parallelflächen. Abh. Math. Sem. Univ. Hamburg 15 (1943), 165–177.Google Scholar
[973] Hilbert, D., Minkowskis Theorie von Volumen und Oberfläche. Nachr. Ges. Wiss. Göttingen (1910), 388–406. Also in: GrundzÜge einer allgemeinen Theorie der linearen Integralgleichungen, Kap. 19, Teubner, Leipzig, 1912.
[974] Hildenbrand, W., Core and Equilibria of a Large Economy. Princeton Univ. Press., Princeton, NJ, 1974.
[975] Hildenbrand, W., Short-run production functions based on microdata. Econometrica 49 (1981), 1095–1125.Google Scholar
[976] Hildenbrand, W., Neyman, A., Integrals of production sets with restricted substitution. J. Math. Econom. 9 (1982), 71–82.Google Scholar
[977] Hille, E., Phillips, R. S., Functional Analysis and Semi-groups. AMS Colloquium Publications, vol. 31, Amer. Math. Soc., Providence, RI, 1957.
[978] Hinderer, W., Integral representations of projection functions. PhD Thesis, University of Karlsruhe, 2002.
[979] Hinderer, W., Hug, D., Weil, W., Extensions of translation invariant valuations on polytopes. arXiv:1303.4406.
[980] Hiriart-Urruty, J.-B., A new set-valued second order derivative for convex functions. In Mathematics for Optimization (J.-B., Hiriart-Urruty, ed.), Mathematical Studies Series 129, pp. 157–182, North-Holland, Amsterdam, 1986.
[981] Hiriart-Urruty, J.-B., Seeger, A., The second order subdifferential and the Dupin indicatrices of a nondifferentiable convex function. Proc. London Math. Soc., III. Ser., 58 (1989), 351–365.Google Scholar
[982] Hirose, T., On the convergence theorem for star-shaped sets in En. Proc. Japan. Acad. 41 (1965), 209–211.Google Scholar
[983] Hoffmann, L. M., Measures on the space of convex bodies. Adv. Geom. 10 (2010), 477–486.Google Scholar
[984] Holický, P., Laczkovich, M., Descriptive properties of the set of exposed points of compact convex sets in ℝ3. Proc. Amer. Math. Soc. 132 (2004), 3345–3347.Google Scholar
[985] Holmes, R. B., Geometric Functional Analysis and its Applications. Springer, New York, 1975.
[986] Holmes, R. D., Thompson, A. C., N-dimensional area and content in Minkowski spaces. Pacific J. Math. 85 (1979), 77–110.Google Scholar
[987] Hörmander, L., Sur la fonction d'appui des ensembles convexes dans un espace localement convexe. Arkiv Mat. 3 (1955), 181–186.Google Scholar
[988] Hormander, L., Notions of Convexity. Birkhäuser, Boston, 1994.
[989] Horn, B. K. P., Robot Vision. MIT Press, Cambridge, MA, and McGraw-Hill, New York, 1986.
[990] Howard, R., Convex bodies of constant width and constant brightness. Adv. Math. 204 (2006), 241–261.Google Scholar
[991] Howard, R., Hug, D., Smooth convex bodies with proportional projection functions. Israel J. Math. 159 (2007), 317–341.Google Scholar
[992] Howard, R., Hug, D., Nakajima's problem: convex bodies of constant width and constant brightness. Mathematika 54 (2007), 15–24.Google Scholar
[993] Howe, R., Most convex functions are smooth. J. Math. Econom. 9 (1982), 37–39.Google Scholar
[994] Hu, C., Ma, X.-N., Shen, C., On the Christoffel–Minkowski problem of Firey's p-sum. Calc. Var. Partial Differential Equations 21 (2004), 137–155.Google Scholar
[995] Hu, Y., Extremum of Mahler volume for generalized cylinders in ℝ3. J. Inequal. Appl. 2012, 2012:3, 9 pp.Google Scholar
[996] Hu, Y., Jiang, J., Inequalities of Aleksandrov body. J. Inequal. Appl. 2011, 2011:39, 13pp.Google Scholar
[997] Huang, Q., He, B., On the Orlicz Minkowski problem for polytopes. Discrete Comput. Geom. 48 (2012), 281–297.Google Scholar
[998] Huang, Q., He, B., Wang, G., The Busemann theorem for complex p-convex bodies. Arch. Math. 99 (2012), 289–299.Google Scholar
[999] Huang, Y., Lu, Q., On the regularity of the Lp Minkowski problem. Adv. Appl. Math. 50 (2013), 268–280.Google Scholar
[1000] Huck, H., Roitzsch, R., Simon, U., Vortisch, W., Walden, R., Wegner, B., Wendland, W., Beweismethoden der Differentialgeometrie im Großen. Lecture Notes in Math. 335, Springer, Berlin, 1973.
[1001] Hug, D., On the mean number of normals through a point in the interior of a convex body. Geom. Dedicata 55 (1995), 319–340.Google Scholar
[1002] Hug, D., Contributions to affine surface area. Manuscripta Math. 91 (1996), 283–301.Google Scholar
[1003] Hug, D., Curvature relations and affine surface area for a general convex body and its polar. Results Math. 29 (1996), 233–248.Google Scholar
[1004] Hug, D., Generalized curvature measures and singularities of sets with positive reach. Forum Math. 10 (1998), 699–728.Google Scholar
[1005] Hug, D., Absolute continuity for curvature measures of convex sets, I. Math. Nachr. 195 (1998), 139–158.Google Scholar
[1006] Hug, D., Absolute continuity for curvature measures of convex sets, II. Math. Z. 232 (1999), 437–485.Google Scholar
[1007] Hug, D., Absolute continuity for curvature measures of convex sets, III. Adv. Math. 169 (2002), 92–117.Google Scholar
[1008] Hug, D., Steiner type formulae and weighted measures of singularities for semi-convex functions. Trans. Amer. Math. Soc. 352 (2000), 3239–3263.Google Scholar
[1009] Hug, D., Nakajima's problem for general convex bodies. Proc. Amer. Math. Soc. 137 (2009), 255–263.Google Scholar
[1010] Hug, D., Last, G., Weil, W., A local Steiner-type formula for general closed sets and applications. Math. Z. 246 (2004), 237–272.Google Scholar
[1011] Hug, D., Last, G., Weil, W., Polynomial parallel volume, convexity and contact distributions of random sets. Probab. Theory. Relat. Fields 135 (2006), 169–200.Google Scholar
[1012] Hug, D., Lutwak, E., Yang, D., Zhang, G., On the Lp Minkowski problem for poly-topes. Discrete Comput. Geom. 33 (2005), 699–715.Google Scholar
[1013] Hug, D., Rataj, J., Weil, W., A product integral representation of mixed volumes of two convex bodies. Adv. Geom., publ. online Jan. 2013, DOI:10.1515/advgeom-2012-0044.
[1014] Hug, D., Schneider, R., Stability results involving surface area measures of convex bodies. Rend. Circ. Mat. Palermo (2) Suppl. 70 (2002), vol. II, 21–51.Google Scholar
[1015] Hug, D., Schneider, R., Kinematic and Crofton formulae of integral geometry: recent variants and extensions. In Homenatge al Professor Lluís Santaló i Sors (C. Barceló i, Vidal, ed.), pp. 51–80, Universitat de Girona, Girona, 2002.
[1016] Hug, D., Schneider, R., A stability result for a volume product. Israel J. Math. 161 (2007), 209–219.Google Scholar
[1017] Hug, D., Schneider, R., Large faces in anisotropic hyperplane mosaics. Ann. Prob. 38 (2010), 1320–1344.Google Scholar
[1018] Hug, D., Schneider, R., Faces with given directions in anisotropic Poisson hyperplane mosaics. Adv. Appl. Prob. (SGSA) 43 (2011), 308–321.Google Scholar
[1019] Hug, D., Schneider, R., Reverse inequalities for zonoids and their application. Adv. Math. 228 (2011), 2634–2646.Google Scholar
[1020] Hug, D., Schneider, R., Schuster, R., The space of isometry covariant tensor valuations. St. Petersburg Math. J. 19 (2008), 137–158.Google Scholar
[1021] Hug, D., Schneider, R., Schuster, R., Integral geometry of tensor valuations. Adv. in Appl. Math. 41 (2008), 482–509.Google Scholar
[1022] Hug, D., Türk, I., Weil, W., Flag measures for convex bodies. In Asymptotic Geometric Analysis, Proc. of the Fall 2010 Fields Institute Thematic Program (M., Ludwig, V. D., Milman, V., Pestov, N., Tomczak-Jaegermann, eds), Fields Institute Communications 68, pp. 145–187, Springer, New York, 2013.
[1023] Hurwitz, A., Sur le probleme des isopérimètres. C. R. Acad. Sci. Paris 132 (1901), 401–403. Math. Werke, vol. I, pp. 490–491, Birkhäuser, Basel, 1932.Google Scholar
[1024] Hurwitz, A., Sur quelques applications géométriques des séries de Fourier. Ann. Ecole Norm. (3) 13 (1902), 357–408. Math. Werke, vol. I, pp. 509-554, Birkhäuser, Basel, 1932.Google Scholar
[1025] Husain, T., Tweddle, I., On the extreme points of the sum of two compact convex sets. Math. Ann. 188 (1970), 113–122.Google Scholar
[1026] Inzinger, R., Stützbare Bereiche, trigonometrische Polynome und Defizite höherer Ordnung. Monatsh. Math. 53 (1949), 302–323.Google Scholar
[1027] Ivaki, M. N., A flow approach to the L-2 Minkowski problem. arXiv:1205.6455v2.
[1028] Ivanov, B. A., Über geradlinige Abschnitte auf der Berandung eines konvexen Körpers (in Russian). Ukrain. Geom. Sbornik. 13 (1973), 69–71.Google Scholar
[1029] Ivanov, B. A., Exceptional directions for a convex body (in Russian). Mat. Zametki 20 (1976), 365–371. English translation: Math. Notes 20 (1976), 763–766.Google Scholar
[1030] Ivanov, G. E., A criterion for smooth generating sets. Mat. Sb. 198 (2007), 51–76. English translation In Sb. Math. 198 (2007), 343–368.Google Scholar
[1031] Jacobs, K., Extremalpunkte konvexer Mengen. In Selecta Mathematica III, pp. 90–118, Springer, Berlin, 1971.
[1032] Jaglom, I. M., Boltjanski, W. G., Konvexe Figuren. Deutsch. Verl. d. Wiss., Berlin, 1956 (Russian original: 1951).
[1033] Jenkinson, J., Werner, E. M., Relative entropies for convex bodies. Trans. Amer. Math. Soc. (in press), arXiv:1105.2846v1.
[1034] Jensen, E. B. V., Local Stereology. World Scientific, Singapore, 1998.
[1035] Jensen, E. B. V., Rataj, J., A rotational integral formula for intrinsic volumes. Adv. in Appl. Math. 41 (2008), 530–560.Google Scholar
[1036] Jerison, D., A Minkowski problem for electrostatic capacity. Acta Math. 176 (1996), 1–47.Google Scholar
[1037] Jerison, D., The direct method in the calculus of variations for convex bodies. Adv. Math. 122 (1996), 262–279.Google Scholar
[1038] Jessen, B., Omkonvekse Kurvers Krumning. Mat. Tidsskr. B (1929), 50–62.Google Scholar
[1039] Jetter, M., Bounds on the roots of the Steiner polynomial. Adv. Geom. 11 (2011), 313–317.Google Scholar
[1040] Jiang, M. Y., Remarks on the 2-dimensional Lp-Minkowski problem. Adv. Nonlinear Stud. 10 (2010), 297–313.Google Scholar
[1041] Jimenez, C. H., Naszódi, M., On the extremal distance between two convex bodies. Israel. Math. 183 (2011), 103–115.Google Scholar
[1042] Jin, H. L., Guo, Q., Asymmetry of convex bodies of constant width. Discrete Comput. Geom. 47 (2012), 415–123.Google Scholar
[1043] John, F., Polar correspondence with respect to a convex region. Duke Math. J. 3 (1937), 355–369.Google Scholar
[1044] John, F., Extremum problems with inequalities as subsidiary conditions. In Studies and Essays Presented to R. Courant on His 60th Birthday, January 8, 1948, pp. 187–204, Interscience Publishers, New York, 1948.
[1045] Johnson, K., Thompson, A. C., On the isoperimetric mapping in Minkowski spaces. In Intuitive Geometry, Siofók 1985, Colloquia Math. Soc. Janos Bolyai 48, pp. 273–287, North-Holland, Amsterdam, 1987.
[1046] Jonasson, J., Optimization of shape in continuum percolation. Ann. Probab. 29 (2001), 624–635.Google Scholar
[1047] Jongmans, F., Théorème de Krein–Milman et programmation mathematique. Bull. Soc. Roy. Sci. Liège 37 (1968), 261–270.Google Scholar
[1048] Jongmans, F., Sur les complications d'une loi de simplification dans les espaces vectoriels. Bull. Soc. Roy. Sci. Liège 42 (1973), 529–534.Google Scholar
[1049] Jongmans, F., Reflections sur l'art de sauver la face. Bull. Soc. Roy. Sci. Liège 45 (1976), 294–306.Google Scholar
[1050] Jongmans, F., De l'art d'être a bonne distance des ensembles dont la decomposition atteint un stade avancé. Bull. Soc. Roy. Sci. Liège 48 (1979), 237–261.Google Scholar
[1051] Jongmans, F., Contribution aux fondements de la calvitié mathématique. Bull. Soc. Roy. Sci. Liège 50 (1981), 8–15.Google Scholar
[1052] Jongmans, F., Etude des cones associés à un ensemble. In Séminaires Diriges par F. Jongmans et J. Varlet, Univ. Liège, Liège, 19801981, 220 pp.
[1053] Jourlin, M., Laget, B., Measure of asymmetry of plane convex bodies. Acta Stereolog-ica 6 (1987), 115–120.Google Scholar
[1054] Jourlin, M., Laget, B., Convexity and symmetry, Part 1. In Image Analysis andMath-ematical Morphology, vol. 2 (J., Serra, ed.), pp. 343–357, Academic Press, London, 1988.
[1055] Juhnke, F., Volumenminimale Ellipsoidüberdeckungen. Beitr. Algebra Geom. 30 (1990), 143–153.Google Scholar
[1056] Kahn, J., Saks, M., Balancing poset extensions. Order 1 (1984), 113–126.Google Scholar
[1057] Kallay, M., Reconstruction of a plane convex body from the curvature of its boundary. Israel J. Math. 17 (1974), 149–161.Google Scholar
[1058] Kallay, M., The extreme bodies in the set of plane convex bodies with a given width function. Israel J. Math. 22 (1975), 203–207.Google Scholar
[1059] Kallay, M., Indecomposable polytopes. Israel. J. Math. 41 (1982), 235–243.Google Scholar
[1060] Kallay, M., Decomposability of polytopes is a projective invariant. In Convexity and Graph Theory, Jerusalem 1981, North-Holland Math. Stud. 87, pp. 191–196, North-Holland, Amsterdam, 1984.
[1061] Kalman, J. A., Continuity and convexity of projections and barycentric coordinates in convex polyhedra. Pacific J. Math. 11 (1961), 1017–1022.Google Scholar
[1062] Kameneckii, I. M., Die Lösung eines von Ljusternik gestellten geometrischen Problems (in Russian). Uspechi Mat. Nauk 2 (1947), 199–202.Google Scholar
[1063] Kampf, J., On weighted parallel volumes. Beitr. Algebra Geom. 50 (2009), 495–519.Google Scholar
[1064] Kampf, J., The parallel volume at large distances. Geom. Dedicata 160 (2012), 47–70.Google Scholar
[1065] Karasev, R. N., On the characterization of generating sets (in Russian). Modelir. Anal. Inf. Sist. 8, No. 2 (2001), 3–9.Google Scholar
[1066] Karavelas, M. I., Tzanaki, E., The maximum number of faces of the Minkowski sum of two convex polytopes. In Proc. 23rd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA '12), Kyoto, Japan, pp. 11–28, SIAM, 2012.
[1067] Karcher, H., Umkreise und Inkreise konvexer Kurven in der spharischen und der hyperbolischen Geometrie. Math. Ann. 177 (1968), 122–132.Google Scholar
[1068] Katsnelson, V., On H. Weyl and J. Steiner polynomials. Compl. Anal. Oper. Th. 3 (2009), 147–220.Google Scholar
[1069] Katsurada, Y., Generalized Minkowski formulas for closed hypersurfaces in Rieman-nian space. Ann. Mat. Pura Appl., IV. Ser., 57 (1962), 283–293.Google Scholar
[1070] Kelly, P.J., Weiss, M. L., Geometry and Convexity. John Wiley & Sons, New York, 1979.
[1071] Kendall, W. S., Molchanov, I. (eds), New Perspectives in Stochastic Geometry. Oxford Univ. Press, Oxford, 2010.
[1072] Khovanskiï, A. G., Analogues of Aleksandrov-Fenchel inequalities for hyperbolic forms (in Russian). Dokl. Akad. Nauk SSSR 276 (1984), 1332–1334. English translation: Soviet Math. Dokl. 29 (1984), 710–713.Google Scholar
[1073] Khovanskiï, A. G., Pukhlikov, A. V., Integral transforms based on Euler characteristic and their applications. Integral Transforms Spec. Funct. 1 (1993), 19–26.Google Scholar
[1074] Kiderlen, M., Schnittmittelungen und äquivariante Endomorphismen konvexer Körper. Doctoral Dissertation, University of Karlsruhe, 1999.
[1075] Kiderlen, M., Blaschke- and Minkowski-endomorphisms of convex bodies. Trans. Amer. Math. Soc. 358 (2006), 5539–5564.Google Scholar
[1076] Kim, J., Yaskin, V., Zvavitch, A., The geometry of p-convex intersection bodies. Adv. Math 226 (2011), 5320–5337.Google Scholar
[1077] Kim, J., Reisner, S., Local minimality of the volume-product at the simplex. Mathematika 57 (2011), 121–134.Google Scholar
[1078] Kincses, J., The classification of 3- and 4-Helly dimensional convex bodies. Geom. Dedicata 22 (1987), 283–301.Google Scholar
[1079] Kiselman, C. O., How smooth is the shadow of a smooth convex body?J. London Math. Soc. 33 (1986), 101–109; Serdica 12 (1986), 189–195.Google Scholar
[1080] Kiselman, C. O., Smoothness of vector sums of plane convex sets. Math. Scand. 60 (1987), 239–252.Google Scholar
[1081] Klain, D. A., A short proof of Hadwiger's characterization theorem. Mathematika 42 (1995), 329–339.Google Scholar
[1082] Klain, D. A., Star valuations and dual mixed volumes. Adv. Math. 121 (1996), 80–101.Google Scholar
[1083] Klain, D. A., Invariant valuations on star-shaped sets. Adv. Math. 125 (1997), 95–113.Google Scholar
[1084] Klain, D. A., Even valuations on convex bodies. Trans. Amer. Math. Soc. 352 (1999), 71–93.Google Scholar
[1085] Klain, D. A., An Euler relation for valuations on polytopes. Adv. Math. 147 (1999), 1–34.Google Scholar
[1086] Klain, D. A., The Minkowski problem for polytopes. Adv. Math. 185 (2004), 270–288.Google Scholar
[1087] Klain, D. A., An error estimate for the isoperimetric deficit. Illinois J. Math. 49 (2005), 981–992.Google Scholar
[1088] Klain, D. A., Isometry-invariant valuations on hyperbolic space. Discrete Comput. Geom. 36 (2006), 457–477.Google Scholar
[1089] Klain, D. A., Bonnesen-type inequalities for surfaces of constant curvature. Adv. Appl. Math. 39 (2007), 143–154.Google Scholar
[1090] Klain, D. A., Isometry-invariant valuations on hyperbolic space. Discrete Comput. Geom. 36 (2006), 457–477.Google Scholar
[1091] Klain, D. A., On the equality conditions of the Brunn–Minkowski theorem. Proc. Amer. Math. Soc. 139 (2011), 3719–3726.Google Scholar
[1092] Klain, D. A., Steiner symmetrization using a finite set of directions. Adv. Math. 48 (2012), 340–353.Google Scholar
[1093] Klain, D. A., Rota, G.-C., Introduction to Geometric Probability. Cambridge Univ. Press, Cambridge, 1997.
[1094] Klartag, B., Remarks on Minkowski symmetrizations. In Geometric Aspects of Functional Analysis (Israel Seminar 1996-2000), Lecture Notes in Math. 1745, pp. 109–117, Springer, Berlin, 2000.
[1095] Klartag, B., 5n Minkowski symmetrizations suffice to arrive at an approximate Euclidean ball. Ann. ofMath. 156 (2002), 947–960.Google Scholar
[1096] Klartag, B., On John-type ellipsoids. In Geometric Aspects ofFunctional Analysis (Israel Seminar 2002-2003), Lecture Notes in Math. 1850, pp. 149–158, Springer, Berlin, 2004.
[1097] Klartag, B., Rate of convergence of geometric symmetrizations. Geom. Funct. Anal. 14 (2004), 1322–1338.Google Scholar
[1098] Klartag, B., Marginals of geometric inequalities. In Geometric Aspects of Functional Analysis (V. D., Milman, G., Schechtman, eds), Lecture Notes in Math. 1910, pp. 133–166, Springer, Berlin 2007.
[1099] Klartag, B., On nearly radial marginals of high-dimensional probability measures. Eur. Math. J. 12 (2010), 723–754.Google Scholar
[1100] Klartag, B., Milman, E., Centroid bodies and the logarithmic Laplace transform. J. Funct. Anal. 262 (2012), 10–34.Google Scholar
[1101] Klartag, B., Milman, V. D., Isomorphic Steiner symmetrization. Invent. Math. 153 (2003), 463–485.Google Scholar
[1102] Klartag, B., Milman, V. D., Geometry of log-concave functions and measures. Geom. Dedicata 112 (2005), 169–182.Google Scholar
[1103] Klartag, B., Milman, V. D., Rapid Steiner symmetrization of most of a convex body and the slicing problem. Combin. Probab. Comput. 14 (2005), 829–843.Google Scholar
[1104] Klee, V., The critical set of a convex body. Amer. J. Math. 75 (1953), 178–188.Google Scholar
[1105] Klee, V., A note on extreme points. Amer. Math. Monthly 62 (1955), 30–32.Google Scholar
[1106] Klee, V., Research problem No. 5. Bull. Amer. Math. Soc. 63 (1967), 419.Google Scholar
[1107] Klee, V., Extremal structure of convex sets. Arch. Math. 8 (1957), 234–240.Google Scholar
[1108] Klee, V., Extremal structure of convex sets II. Math. Z. 69 (1958), 90–104.Google Scholar
[1109] Klee, V., Some characterizations of convex polyhedra. Acta Math. 102 (1959), 79–107.Google Scholar
[1110] Klee, V., Some new results on smoothness and rotundity in normed linear spaces. Math. Ann. 139 (1959), 51–63.Google Scholar
[1111] Klee, V., On a theorem of Dubins. J. Math. Anal. Appl. 7 (1963), 425–427.Google Scholar
[1112] Klee, V., The Euler characteristic in combinatorial geometry. Amer. Math. Monthly 70 (1963), 119–127.Google Scholar
[1113] Klee, V. (ed.), Convexity. Proc. Symp. Pure Math., vol. VII, Amer. Math. Soc., Providence, RI, 1963.
[1114] Klee, V., Maximal separation theorems for convex sets. Trans. Amer. Math. Soc. 134 (1968), 133–147.Google Scholar
[1115] Klee, V., Can the boundary of a d-dimensional convex body contain segments in all directions?Amer. Math. Monthly 76 (1969), 408–410.Google Scholar
[1116] Klee, V., Separation and support properties of convex sets: a survey. In Control Theory and the Calculus of Variations (A., Balakrishnan, ed.), pp. 235–304, Academic Press, New York, 1969.
[1117] Klee, V. L., Martin K., Semi-continuity of the face-function of a convex set. Comment. Math. Helvet. 46 (1971), 1–12.Google Scholar
[1118] Klein, E., Thompson, A. C., Theory of Correspondences. John Wiley & Sons, New York, 1984.
[1119] Klima, V., Netuka, I., Smoothness of a typical convex function. Czech. Math. J. 31, 569–572.
[1120] Klötzler, R., Beweis einer Vermutung über n-Orbiformen kleinsten Inhalts. Z. Angew. Math. Mech. 55 (1975), 557–570.Google Scholar
[1121] Kneser, H., Die Stützfunktion eines Durchschnitts konvexer Körper. Arch. Math. 21 (1970), 221–224.Google Scholar
[1122] Kneser, H., Süss, W., Die Volumina in linearen Scharen konvexer Körper. Mat. Tidsskr. B (1932), 19–25.Google Scholar
[1123] Kneser, M., Über den Rand von Parallelkörpern. Math. Nach. 5 (1951), 241–251.Google Scholar
[1124] Knothe, H., Über eine Vermutung H. Minkowskis. Math. Nachr. 2 (1949), 380–385.Google Scholar
[1125] Knothe, H., Contributions to the theory of convex bodies. Michigan Math. J. 4 (1957), 39–52.Google Scholar
[1126] Knothe, H., Inversion of two theorems of Archimedes. Michigan Math. J. 4 (1957), 53–56.Google Scholar
[1127] Knyazewa, M., Panina, G., An illustrated theory of hyperbolic virtual polytopes. Cent. Eur. J. Math. 6 (2008), 204–217.Google Scholar
[1128] Kohlmann, P., Krümmungsmaße, Minkowskigleichungen und Charakterisierungen metrischer Balle in Raumformen. Dissertation, University of Dortmund, 1988.
[1129] Kohlmann, P., Curvature measures and Steiner formulae in space forms. Geom. Dedicata 40 (1991), 191–211.Google Scholar
[1130] Kohlmann, P., Minkowski integral formulas for compact convex bodies in standard space forms. Math. Nachr. 166 (1994), 217–228.Google Scholar
[1131] Kohlmann, P., Compact convex bodies with one curvature measure near the surface measure. J. Reine Angew. Math. 458 (1995), 201–217.Google Scholar
[1132] Kohlmann, P., Splitting and pinching for convex sets. Geom. Dedicata 60 (1996), 125–143.Google Scholar
[1133] Kohlmann, P., Characterization of metric balls in standard space forms via curvature. Math. Z. 227 (1998), 729–746.Google Scholar
[1134] Kohlmann, P., Characterization via linear combinations of curvature measures. Arch. Math. 70 (1998), 250–256.Google Scholar
[1135] Kohlmann, P., Curvature measures and stability. J. Geom. 68 (2000), 142–154.Google Scholar
[1136] Koldobsky, A., Fourier Analysis in Convex Geometry. Amer. Math. Soc., Providence, RI, 2005.
[1137] Koldobsky, A., Stability in the Busemann-Petty and Shephard problems. Adv. Math. 228 (2011), 2145–2161.Google Scholar
[1138] Koldobsky, A., Stability of volume comparison for complex convex bodies. Arch. Math. 97 (2011), 91–98.Google Scholar
[1139] Koldobsky, A., König, H., Zymonopoulou, M., The complex Busemann-Petty problem on sections of convex bodies. Adv. Math. 218 (2008), 352–367.Google Scholar
[1140] Koldobsky, A., Paouris, G., Zymonopoulou, M., Isomorphic properties of intersection bodies. J. Funct. Anal. 261 (2011), 2697–2716.Google Scholar
[1141] Koldobsky, A., Paouris, G., Zymonopoulou, M., Complex intersection bodies. arXiv:1201.0437v1.
[1142] Koldobsky, A., Yaskin, V., The Interface Between Convex Geometry and Harmonic Analysis. Amer. Math. Soc., Providence, RI, 2008.
[1143] Kone, H., Valuations on Orlicz spaces. Adv. Appl. Math. (in press).
[1144] Koutroufiotis, D., Ovaloids which are almost spheres. Commun. Pure Appl. Math. 24 (1971), 289–300.Google Scholar
[1145] Koutroufiotis, D., On Blaschke's rolling theorems. Arch. Math. 23 (1972), 655–660.Google Scholar
[1146] Krantz, S. G., Parks, H. R., On the vector sum of two convex sets in space. Can. J. Math. 43 (1991), 347–355.Google Scholar
[1147] Krein, M., Milman, D., On extreme points of regularly convex sets. Studia Math. 9 (1940), 133–138.Google Scholar
[1148] Kropp, R., Erweiterte Oberflächenmaße konvexer Körper. Diploma Thesis, University of Karlsruhe, Karlsruhe, 1990.
[1149] Kruskal, J. B., Two convex counterexamples: a discontinuous envelope function and a nondifferentiable nearest-point mapping. Proc. Amer. Math. Soc. 23 (1969), 697–703.Google Scholar
[1150] Kubota, T., Über die Schwerpunkte der geschlossenen konvexen Kurven und Flachen. Tohoku Math. J. 14 (1918), 20–27.Google Scholar
[1151] Kubota, T., Einige Probleme über konvex-geschlossene Kurven und Flachen. Tohoku Math.J. 17 (1920), 351–362.Google Scholar
[1152] Kubota, T., Beweise einiger Satze über Eiflachen. Tohoku Math. J. 21 (1922), 261–264.Google Scholar
[1153] Kubota, T., Über die konvex-geschlossenen Mannigfaltigkeiten im n-dimensionalen Raume. Sci. Rep. Tohoku Univ. 14 (1925), 85–99.Google Scholar
[1154] Kubota, T., Über die Eibereiche im n-dimensionalen Raume. Sci. Rep. Tohoku Univ. 14 (1925), 399–402.Google Scholar
[1155] Kuiper, N. H., Morse relations for curvature and tightness. In Proc. Liverpool Singularities Symp. (C. T. C., Wall, ed.), Lecture Notes in Math. 209, pp. 77–89, Springer, Berlin, 1971.
[1156] Kuperberg, G., A low-technology estimate in convex geometry. Internat. Math. Res. Notices 1992, No. 9, 181–183.
[1157] Kuperberg, G., From the Mahler conjecture to Gauss linking integrals. Geom. Funct. Anal. 18 (2008), 870–892.Google Scholar
[1158] Kuratowski, C., Topologie I, 2nd edn. Polish Math. Soc., Warsaw, 1948.
[1159] Kuratowski, K., Topology, vol. II. Academic Press, New York, 1968 (French original: 1950).
[1160] Kutateladze, S. S., Die Blaschkesche Struktur in der Programmierung isoperimetrischer Probleme (in Russian). Mat. Zametki 14 (1973), 745–754. English translation: Math. Notes 14 (1973), 985–989.Google Scholar
[1161] Kutateladze, S. S., Symmetry measures (in Russian). Mat. Zametki 19 (1976), 615–622. English translation: Math. Notes 19 (1976), 372–375.Google Scholar
[1162] Kutateladze, S. S., Rubinov, A. M., Problems of isoperimetric type in a space of convex bodies (in Russian). Optimalnoe Planirovanie 14 (1969), 61–69.Google Scholar
[1163] Lachand-Robert, T., Oudet, E., Bodies of constant width in arbitrary dimension. Math. Nachr. 280 (2007), 740–750.Google Scholar
[1164] Lafontaine, J., Mesures de courbure des variétés lisses et des polyedres (Seminaire Bourbaki, vol. 1985/86), Astérisque 145–146 (1987), 241–256.Google Scholar
[1165] Lagarias, J. C., The van der Waerden conjecture: two Soviet solutions. Notices Amer. Math. Soc. 29 (1982), 130–133.Google Scholar
[1166] Laget, B., Sur l'ensemble critique d'un ensemble convexe. Arch. Math. 49 (1987), 333–334.Google Scholar
[1167] Lamberg, L., Kaasalainen, M., Numerical solution of the Minkowski problem. J. Comput. Appl. Math. 137 (2001), 213–227.Google Scholar
[1168] Langevin, R., Levitt, G., Rosenberg, H., Herissons et multihérissons (Enveloppes parametrées par leur application de Gauss). In Singularities, Warsaw 1985, pp. 245–253, Banach Center Publ. 20, PWN, Warsaw, 1988.
[1169] Larman, D. G., On a conjecture of Klee and Martin for convex bodies. Proc. London Math. Soc. 23 (1971), 668–682. Corrigendum: ibid. 36 (1978), 86.Google Scholar
[1170] Larman, D. G., On the inner aperture and intersections of convex sets. Pacific J. Math. 55 (1974), 219–232.Google Scholar
[1171] Larman, D. G., On the one-skeleton of a compact convex set in a Banach space. Proc. London Math. Soc. 34 (3) (1977), 117–144.Google Scholar
[1172] Larman, D. G., The d - 2 skeletons of polytopal approximations to a convex body in Ed. Mathematika 27 (1980), 122–133.Google Scholar
[1173] Larman, D. G., Mani, P., Gleichungen und Ungleichungen für die Gerüste von konvexen Polytopen und Zellenkomplexen. Comment. Math. Helvet. 45 (1970), 199–218.Google Scholar
[1174] Larman, D. G., Rogers, C. A., Paths in the one-skeleton of a convex body. Mathematika 17 (1970), 293–314.Google Scholar
[1175] Larman, D. G., Rogers, C. A., Increasing paths on the one-skeleton of a convex body and the directions of line segments on the boundary of a convex body. Proc. London Math. Soc. 23 (1971), 683–698.Google Scholar
[1176] Larman, D. G., Rogers, C. A., The finite dimensional skeletons of a compact convex set. Bull. London Math. Soc. 5 (1973), 145–153.Google Scholar
[1177] Laugwitz, D., Differentialgeometrie in Vektorraumen. Vieweg, Braunschweig, 1965.
[1178] Lay, S. R., Convex Sets and Their Applications. John Wiley & Sons, New York, 1982.
[1179] Lebesgue, H., Sur le probleme des isoperimetres et sur les domaines de largeur constante. Bull. Soc. Math. France C. R. (1914), 72–76.Google Scholar
[1180] Lehec, J., Partitions and functional Santaló inequalities. Arch. Math. 92 (2009), 89–94.Google Scholar
[1181] Lehec, J., A direct proof of the functional Santaló inequality. C. R. Math. Acad. Sci. Paris 347 (2009), No. 1-2, 55–58.Google Scholar
[1182] Leichtweiß, K., Über die affine Exzentrizitat konvexer Körper. Arch. Math. 10 (1959), 187–199.Google Scholar
[1183] Leichtweiß, K., Über eine analytische Darstellung des Randes konvexer Körper. Arch. Math. 16 (1965), 300–319.Google Scholar
[1184] Leichtweiß, K., Konvexe Mengen. Springer, Berlin, 1980, VEB Deutsch. Verl. d. Wiss., Berlin, 1980.
[1185] Leichtweiß, K., Zum Beweis eines Eindeutigkeitssatzes von A. D. Aleksandrov. In E. B. Christoffel, Aachen/Monschau 1979 (P., Butzer, F., Fehér, eds), pp. 636–652, Birkhäuser, Basel, 1981.
[1186] Leichtweiß, K., Über eine Formel Blaschkes zur Affinoberflache. Studia Sci. Math. Hungar. 21 (1986), 453–474.Google Scholar
[1187] Leichtweiß, K., Zur Affinoberfläche konvexer Körper. Manuscripta Math. 56 (1986), 429–464.Google Scholar
[1188] Leichtweiß, K., Über einige Eigenschaften der Affinoberfläche beliebiger konvexer Körper. Results Math. 13 (1986), 255–282.Google Scholar
[1189] Leichtweiß, K., Bemerkungen zur Definition einer erweiterten Affinoberfläche von E. Lutwak. Manuscripta Math. 65 (1989), 181–197.Google Scholar
[1190] Leichtweiß, K., On the history of the affine surface area for convex bodies. Results Math. 20 (1991), 650–656.Google Scholar
[1191] Leichtweiß, K., On inner parallel bodies in the equiaffine geometry. In Analysis and Geometry (B., Fuchssteiner, W. A. J., Luxemburg, eds), pp. 113–123, Bibliographisches Inst., Mannheim, 1992.
[1192] Leichtweiß, K., Convexity and differential geometry. In Handbook of Convex Geometry (P. M., Gruber, J. M., Wills, eds), vol. B, pp. 1045–1080, North-Holland, Amsterdam, 1993.
[1193] Leichtweiß, K., Affine Geometry of Convex Bodies. Johann Ambrosius Barth, Heidelberg, 1998.
[1194] Leichtweiß, K., Nearly umbilical ovaloids in the n-space are close to spheres. Results Math. 36 (1999), 102–109.Google Scholar
[1195] Leichtweiß, K., On the addition of convex sets in the hyperbolic plane. J. Geom. 78 (2003), 92–121.Google Scholar
[1196] Leichtweiß, K., Support function and hyperbolic plane. Manuscripta Math. 114 (2004), 177–196.Google Scholar
[1197] Leichtweiß, K., Linear combinations of convex hypersurfaces in non-Euclidean geometry. Beitr. Algebra Geom. 53 (2012), 77–88.Google Scholar
[1198] Leindler, L., On a certain converse of Hölder's inequality II. Acta. Sci. Math. Szeged 33 (1972), 217–223.Google Scholar
[1199] Leng, G., The Brunn–Minkowski inequality for volume differences. Adv. Appl. Math. 32 (2004), 615–624.Google Scholar
[1200] Leng, G., Zhao, C., He, B., Li, X., Inequalities for polars of mixed projection bodies. Sci. China, Ser. A 47 (2004), 175–186.Google Scholar
[1201] Lenz, H., Mengenalgebra und Eulersche Charakteristik. Abh. Math. Sem. Univ. Hamburg 34 (1970), 135–147.Google Scholar
[1202] Letac, G., Mesures sur le cercle et convexes du plan. Ann. Sci. Univ. Clermont-Ferrand II, Prob. Appl. 1 (1983), 35–65.Google Scholar
[1203] Lettl, G., Isometrien des Raumes der konvexen Teilmengen der Sphare. Arch. Math. 35 (1980), 471–475.Google Scholar
[1204] Levin, B. Ja., Distribution of Zeros of Entire Functions. Amer. Math. Soc. Transl. Math. Mon., vol. 5, Providence, RI, 1964.
[1205] Lévy, P., Théorie de l'Addition des Variables Aléatoires. Gauthier-Villars, Paris, 1937.
[1206] Lewis, D. R., Finite dimensional subspaces of Lp. Studia Math. 63 (1978), 207–212.Google Scholar
[1207] Lewis, D. R., Ellipsoids defined by Banach ideal norms. Mathematika 26 (1979), 18–29.Google Scholar
[1208] Lewis, J. E., A Banach space whose elements are classes of sets of constant width. Canad. Math. Bull. 18 (1975), 679–689.Google Scholar
[1209] Lewy, H., On differential geometry in the large, I (Minkowski's problem). Trans. Amer. Math. Soc. 43 (1938), 258–270.Google Scholar
[1210] Li, A.-J., Leng, G., Brascamp–Lieb inequality for positive double John basis and its reverse. Sci. China Math. 54 (2011), 399–410.Google Scholar
[1211] Li, A.-J., Leng, G., A new proof of the Orlicz Busemann–Petty centroid inequality. Proc. Amer. Math. Soc. 139 (2011), 1473–1481.Google Scholar
[1212] Li, A.-J., Leng, G., An extended Loomis-Whitney inequality for positive double John bases. Glasgow Math. J. 53 (2011), 451–462.Google Scholar
[1213] Li, A.-J., Leng, G., Mean width inequalities for isotropic measures. Math. Z. 270 (2012), 1089–1110.Google Scholar
[1214] Li, A.-M., Simon, U., Zhao, G., Global Affine Differential Geometry of Hypersurfaces.W. de Gruyter, Berlin, 1993.
[1215] Li, X., Leng, G., Some inequalities about dual mixed volumes of star bodies. Acta Math. Sci, Ser.B, Engl. Ed. 25 (2005), 505–510.Google Scholar
[1216] Liapounoff, A. A., On completely additive vector functions (in Russian). Izv. Akad. Nauk SSSR 4 (1940), 465–478.Google Scholar
[1217] Lin, Y., Leng, G., Convex bodies with minimal volume product in ℝ2: a new proof. Discrete Math. 310 (2010), 3018–3025.Google Scholar
[1218] Lindelöf, L., Proprietes generales des polyédres qui, sous une étendue superficielle donnée, renferment le plus grand volume. Bull. Acad. Sci. St. Petersbourg 14 (1869), 257–269. Extract: Math. Ann. 2 (1870), 150–159.Google Scholar
[1219] Lindenstrauss, J., A short proof of Liapounoff's convexity theorem. J. Math. Mech. 15 (1966), 971–972.Google Scholar
[1220] Lindenstrauss, J., Milman, V., The local theory of normed spaces and its applications to convexity. In Handbook ofConvex Geometry (P. M., Gruber, J. M., Wills, eds), vol. B, pp. 1149–1220, North-Holland, Amsterdam, 1993.
[1221] Lindquist, N. F., Approximation of convex bodies by sums of line segments. Portu-galiae Math. 34 (1975), 233–240.Google Scholar
[1222] Lindquist, N. F., Support functions of central convex bodies. Portugaliae Math. 34 (1975), 241–252.Google Scholar
[1223] Linhart, J., Extremaleigenschaften der regulären 3-Zonotope. Studia Sci. Math. Hun-gar. 21 (1986), 181–188.Google Scholar
[1224] Linhart, J., An upper bound for the intrinsic volumes of equilateral zonotopes. In Intuitive Geometry, Siofók 1985, Coll. Math. Soc. János Bolyai 48, pp. 339–345, North-Holland, Amsterdam, 1987.
[1225] Linhart, J., Approximation of a ball by zonotopes using uniform distribution on the sphere. Arch. Math. 53 (1989), 82–86.Google Scholar
[1226] Linke, Ju. E., Application of Steiner's point for investigation of a class of sublinear operators (in Russian). Dokl. Akad. Nauk SSSR 254 (1980), 1069–1079. English translation: Soviet Math. Dokl. 22 (1980), 522–525.Google Scholar
[1227] Little, J. J., An iterative method for reconstructing convex polyhedra from extended Gaussian images. In Proc. AAAI-83, Washington, DC, pp. 247–250, AAAI Press, Menlo Park, CA, 1983.
[1228] Liu, L., Wang, W. (Wei), Fourier transform and Lp-mixed centroid bodies. J. Math. Inequalities 6 (2012), 149–159.Google Scholar
[1229] Liu, L., Wang, W. (Wei), He, B., Fourier transform and Lp-mixed projection bodies. Bull. Korean Math. Soc. 47 (2010), 1011–1023.Google Scholar
[1230] Ljašenko, N. N., Limit theorems for sums of independent compact random subsets of Euclidean space (in Russian). Zap. Naucn. Sem. Leningrad. Otdel. Mat. Inst. Steklov 85 (1979), 113–128.Google Scholar
[1231] Lonke, Y., On zonoids whose polars are zonoids. Israel J. Math. 102 (1997), 1–12.Google Scholar
[1232] Lopez, M. A., Reisner, S., A special case of Mahler's conjecture. Discrete Comput. Geom. 20 (1998), 163–177.Google Scholar
[1233] Lu, F., Mixed chord-integrals of star bodies. J. KoreanMath. Soc. 47 (2010), 277–288.Google Scholar
[1234] Lu, F., Leng, G., On Lp-Brunn–Minkowski type inequalities of convex bodies. Bol. Soc. Mat. Mexicana 13 (2007), 167–176.Google Scholar
[1235] Lu, F., Leng, G., Volume inequalities for Lp-John ellipsoids and their duals. Glasgow Math. J. 49 (2007), 469–477.Google Scholar
[1236] Lu, F., Leng, G., On dual quermassintegrals of mixed intersection bodies. J. Math. Anal. Appl. 339 (2008), 399–404.Google Scholar
[1237] Lu, F., Mao, W., Affine isoperimetric inequalities for Lp-intersection bodies. Rocky Mountain J. Math. 40 (2010), 489–500.Google Scholar
[1238] Lu, F., Mao, W., Leng, G., On star duality of mixed intersection bodies. J. Inequalities Appl. 2007, Article ID 39345, 12 pp., DOI:10.1155/2007/39345.Google Scholar
[1239] Lu, F., Wang, W. (Weidong), Inequalities for Lp-mixed curvature images. Acta Math. Scientia 30B (2010), 1044–1052.Google Scholar
[1240] Lu, F., Wang, W. (Weidong), Leng, G., On inequalities for mixed affine surface area. Indian J. Pure Appl. Math. 38 (2007), 153–161.Google Scholar
[1241] Lu, J., Wang, X.-J., Rotationally symmetric solutions to the Lp-Minkowski problem. J. Diff. Equ. 254 (2013), 983–1005.Google Scholar
[1242] , S., Leng, G., On the generalized Busemann–Petty problem. Sci. China Ser. A 50 (2007), 1103–1116.Google Scholar
[1243] Ludwig, M., A characterization of affine length and asymptotic approximation of convex curves. Abh. Math. Sem. Univ. Hamburg 69 (1999), 75–88.Google Scholar
[1244] Ludwig, M., Upper semicontinuous valuations on the space of convex discs. Geom. Dedicata 80 (2000), 263–279.Google Scholar
[1245] Ludwig, M., Projection bodies and valuations. Adv. Math. 172 (2002), 158–168.Google Scholar
[1246] Ludwig, M., Valuations on polytopes containing the origin in their interiors. Adv. Math. 170 (2002), 239–256.Google Scholar
[1247] Ludwig, M., Moment vectors of polytopes. Rend. Circ. Mat. Palermo (2) Suppl. 70, part II (2002), 123–138.
[1248] Ludwig, M., Ellipsoids and matrix-valued valuations. Duke Math. J. 119 (2003), 159–188.Google Scholar
[1249] Ludwig, M., Minkowski valuations. Trans. Amer. Math. Soc. 357 (2005), 4191–4213.Google Scholar
[1250] Ludwig, M., Intersection bodies and valuations. Amer. J.Math. 128 (2006), 1409–1428.Google Scholar
[1251] Ludwig, M., Valuations in the affine geometry of convex bodies. In Integral Geometry and Convexity: Proceedings of the International Conference, Wuhan, China, 2004 (E. L., Grinberg, S., Li, G., Zhang, J., Zhou, eds), pp. 49–65, World Scientific, Hackensack, NJ, 2006.
[1252] Ludwig, M., Minkowski areas and valuations. J. Differential Geom. 86 (2010), 133–161.Google Scholar
[1253] Ludwig, M., General affine surface areas. Adv. Math. 224 (2010), 2346–2360.Google Scholar
[1254] Ludwig, M., Fisher information and matrix-valued valuations. Adv. Math. 226 (2011), 2700–2711.Google Scholar
[1255] Ludwig, M., Valuations on function spaces. Adv. Geom. 11 (2011), 745–756.Google Scholar
[1256] Ludwig, M., Valuations on Sobolev spaces. Amer. J. Math. 134 (2012), 824–842.Google Scholar
[1257] Ludwig, M., Reitzner, M., A characterization of affine surface area. Adv. Math. 147 (1999), 138–172.Google Scholar
[1258] Ludwig, M., Reitzner, M., A classification of S L(n) invariant valuations. Ann. of Math. 172 (2010), 1223–1271.Google Scholar
[1259] Ludwig, M., Xiao, J., Zhang, G., Sharp convex Lorentz-Sobolev inequalities. Math. Ann. 350 (2011), 169–197.Google Scholar
[1260] Lusternik, L., Die Brunn–Minkowskische Ungleichung für beliebige messbare Mengen. Comptes Rendus (Doklady) Acad. Sci. URSS 3 (1932), 55–58.Google Scholar
[1261] Lutwak, E., Dual mixed volumes. Pacific J. Math. 58 (1975), 531–538.Google Scholar
[1262] Lutwak, E., Dual cross-sectional measures. AttiAccad. Naz. Lincei 58 (1975), 1–5.Google Scholar
[1263] Lutwak, E., Width-integrals of convex bodies. Proc. Amer. Math. Soc. 53 (1975), 435–439.Google Scholar
[1264] Lutwak, E., A general Bieberbach inequality. Math. Proc. Camb. Philos. Soc. 78 (1975), 493–496.Google Scholar
[1265] Lutwak, E., On cross-sectional measures of polar reciprocal convex bodies. Geom. Dedicata 5 (1976), 79–80.Google Scholar
[1266] Lutwak, E., Mixed width-integrals of convex bodies. Israel J. Math. 28 (1977), 249–253.Google Scholar
[1267] Lutwak, E., Mean dual and harmonic cross-sectional measures. Ann. Mat. Pura Appl. 119 (1979), 139–148.Google Scholar
[1268] Lutwak, E., A width-diameter inequality for convex bodies. J. Math. Anal. Appl. 93 (1983), 290–295.Google Scholar
[1269] Lutwak, E., A general isepiphanic inequality. Proc. Amer. Math. Soc. 90 (1984), 451–421.Google Scholar
[1270] Lutwak, E., On the Blaschke–Santaló inequality. In Discrete Geometry and Convexity (J. E., Goodman, E., Lutwak, J., Malkevitch, R., Pollack, eds), Ann. New York Acad. Sci. 440 (1985), pp. 106–112.
[1271] Lutwak, E., Mixed projection inequalities. Trans. Amer. Math. Soc. 287 (1985), 91–106.Google Scholar
[1272] Lutwak, E., Volume of mixed bodies. Trans. Amer. Math. Soc. 294 (1986), 487–500.Google Scholar
[1273] Lutwak, E., On some affine isoperimetric inequalities. J. Differential Geom. 23 (1986), 1–13.Google Scholar
[1274] Lutwak, E., Mixed affine surface area. J. Math. Anal. Appl. 125 (1987), 351–360.Google Scholar
[1275] Lutwak, E., Rotation means of projections. Israel J. Math. 58 (1987), 161–169.Google Scholar
[1276] Lutwak, E., Inequalities for Hadwiger's harmonic quermassintegrals. Math. Ann. 280 (1988), 165–175.Google Scholar
[1277] Lutwak, E., Intersection bodies and dual mixed volumes. Adv. Math. 71 (1988), 232–261.Google Scholar
[1278] Lutwak, E., On quermassintegrals of mixed projection bodies. Geom. Dedicata 33 (1990), 51–58.Google Scholar
[1279] Lutwak, E., Centroid bodies and dual mixed volumes. Proc. London Math. Soc. 60 (3) (1990), 365–391.Google Scholar
[1280] Lutwak, E., On a conjectured projection inequality of Petty. Contemp. Math. 113 (1990), 171–182.Google Scholar
[1281] Lutwak, E., Extended affine surface area. Adv. Math. 85 (1991), 39–68.Google Scholar
[1282] Lutwak, E., On some ellipsoid formulas of Busemann, Furstenberg-Tzkoni, Guggenheimer, and Petty. J. Math. Anal. Appl. 159 (1991), 18–26.Google Scholar
[1283] Lutwak, E., The Brunn–Minkowski-Firey theory, I: Mixed volumes and the Minkowski problem. J. Differential Geom. 38 (1993), 131–150.Google Scholar
[1284] Lutwak, E., Inequalities for mixed projection bodies. Trans. Amer. Math. Soc. 339 (1993), 901–916.Google Scholar
[1285] Lutwak, E., A minimax inequality for inscribed cones. J. Math. Anal. Appl. 176 (1993), 148–155.Google Scholar
[1286] Lutwak, E., Selected affine isoperimetric inequalities. In Handbook of Convex Geometry (P. M., Gruber, J. M., Wills, eds), vol. A, pp. 161–176, North-Holland, Amsterdam, 1993.
[1287] Lutwak, E., The Brunn–Minkowski-Firey theory, II: Affine and geominimal surface areas. Adv. Math. 118 (1996), 244–294.Google Scholar
[1288] Lutwak, E., Containment and circumscribing simplices. Discrete Comput. Geom. 19 (1998), 229–235.Google Scholar
[1289] Lutwak, E., Lv, S., Yang, D., Zhang, G., Extensions of Fisher information and Stam's inequality. IEEE Trans. Inf. Th. 58 (2012), 1319–1327.Google Scholar
[1290] Lutwak, E., Oliker, V., On the regularity of solutions to a generalization of the Minkowski problem. J. Differential Geom. 41 (1995), 227–246.Google Scholar
[1291] Lutwak, E., Yang, D., Zhang, G., A new ellipsoid associated with convex bodies. Duke Math. J. 104 (2000), 375–390.Google Scholar
[1292] Lutwak, E., Yang, D., Zhang, G., Lp affine isoperimetric inequalities. J. Differential Geom. 56 (2000), 111–132.Google Scholar
[1293] Lutwak, E., Yang, D., Zhang, G., A new affine invariant for polytopes and Schneider's projection problem. Trans. Amer. Math. Soc. 353 (2001), 1767–1779.Google Scholar
[1294] Lutwak, E., Yang, D., Zhang, G., The Cramer-Rao inequality for star bodies. Duke Math.J. 112 (2002), 59–81.Google Scholar
[1295] Lutwak, E., Yang, D., Zhang, G., Sharp affine Lp Sobolev inequalities. J. Differential Geom. 62 (2002), 17–38.Google Scholar
[1296] Lutwak, E., Yang, D., Zhang, G., On the Lp-Minkowski problem. Trans. Amer. Math. Soc. 356 (2004), 4359–4370.Google Scholar
[1297] Lutwak, E., Yang, D., Zhang, G., Volume inequalities for subspaces of Lp. J. Differential Geom. 68 (2004), 159–184.Google Scholar
[1298] Lutwak, E., Yang, D., Zhang, G., Moment-entropy inequalities. Ann. Prob. 32 (2004), 757–774.Google Scholar
[1299] Lutwak, E., Yang, D., Zhang, G., Lp John ellipsoids. Proc. London Math. Soc. 90 (3) (2005), 497–520.
[1300] Lutwak, E., Yang, D., Zhang, G., Optimal Sobolev norms and the Lp Minkowski problem. Int. Math. Res. Not. 2006, Art. ID 62978, 21 pp.Google Scholar
[1301] Lutwak, E., Yang, D., Zhang, G., Volume inequalities for isotropic measures. Amer. J. Math. 129 (2007), 1711–1723.Google Scholar
[1302] Lutwak, E., Yang, D., Zhang, G., A volume inequality for polar bodies. J. Differential Geom. 84 (2010), 163–178.Google Scholar
[1303] Lutwak, E., Yang, D., Zhang, G., Orlicz projection bodies. Adv. Math. 223 (2010), 220–242.Google Scholar
[1304] Lutwak, E., Yang, D., Zhang, G., Orlicz centroid bodies. J. Differential Geom. 84 (2010), 365–387.Google Scholar
[1305] Lutwak, E., Yang, D., Zhang, G., The Brunn–Minkowski-Firey inequality for non-convex sets. Adv. Appl. Math. 48 (2012), 407–413.Google Scholar
[1306] Lutwak, E., Zhang, G., Blaschke–Santaló inequalities. J. Differential Geom. 47 (1997), 1–16.Google Scholar
[1307] Lv, S., Dual Brunn–Minkowski inequality for volume differences. Geom. Dedicata 145 (2010), 169–180.Google Scholar
[1308] Lv, S., Leng, G., Cross i-sections of star bodies and dual mixed volumes. Proc. Amer. Math. Soc. 135 (2007), 3367–3373.Google Scholar
[1309] Lv, S., Leng, G., The Lp-curvature images of convex bodies and Lp-projection bodies. Proc. Indian Acad. Sci. (Math. Sci.) 118 (2008), 413–424.Google Scholar
[1310] Lyusternik, L. A., Convex Figures and Polyhedra. Dover, New York, 1963 (Russian original: 1956).
[1311] Ma, T.-Y., Extremum properties of dual Lp-centroid body and Lp-John ellipsoid. Bull. Korean Math. Soc. 49 (2012), 465–479.Google Scholar
[1312] Ma, T.-Y., Wang, W. (Weidong), On the analog of Shephard problem for the Lp-projection body. Math. Inequal. Appl. 14 (2011), 181–192.Google Scholar
[1313] Macbeath, A. M., A compactness theorem for affine equivalence-classes of convex regions. Canad. J. Math. 3 (1951), 54–61.Google Scholar
[1314] Macbeath, A. M., An extremal property of the hypersphere. Proc. Cambridge Philos. Soc. 47 (1951), 245–247.Google Scholar
[1315] Maggi, F., Some methods for studying stability in isoperimetric type problems. Bull. Amer. Math. Soc. 45 (2008), 367–408.Google Scholar
[1316] Maggi, F., Ponsiglione, M., Pratelli, A., Quantitative stability in the isodiametric inequality viatheisoperimetric inequality. arXiv:1104.4074.
[1317] Maehara, H., Convex bodies forming pairs of constant width. J. Geom. 22 (1984), 101–107.Google Scholar
[1318] Mahler, K., Ein Übertragungsprinzip für konvexe Körper. Casopis Pӗst. Mat. Fys. 68 (1939), 93–102.Google Scholar
[1319] Mahler, K., Ein MinimaLproblem für konvexe Polygone. Mathematica (Zutphen) B7 (1939), 118–127.Google Scholar
[1320] Makai, E., Steiner type inequalities in plane geometry. Period. Polytech. Elec. Engrg. 3 (1959), 345–355.Google Scholar
[1321] Makai, E., Jr, Research Problem. Periodica Math. Hungar. 5 (1974), 353–354.Google Scholar
[1322] Makai, E. Jr, Martini, H., The cross-section body, plane sections of convex bodies and approximation of convex bodies, II. Geom. Dedicata 70 (1998), 283–303.Google Scholar
[1323] Mani, P. (Mani-Levitska, P.), On angle sums and Steiner points of polyhedra. Israel J. Math. 9 (1971), 380–388.Google Scholar
[1324] Mani-Levitska, P., Random Steiner symmetrizations. Studia Sci. Math. Hungar. 21 (1986), 373–378.Google Scholar
[1325] Mani-Levitska, P., A simple proof of the kinematic formula. Monatsh. Math. 105 (1988), 279–285.Google Scholar
[1326] Mani-Levitska, P., Characterizations of convex sets. In Handbook of Convex Geometry (P. M., Gruber, J. M., Wills, eds), vol. A, pp. 19–41, North-Holland, Amsterdam, 1993.
[1327] Marchaud, A., Un théorème sur les corps convexes. Ann. Sci. École Norm. Sup. 76 (3) (1959), 283–304.Google Scholar
[1328] Markessinis, E., Paouris, G., Saroglou, Ch., Comparing the M-position with some classical positions of convex bodies. Math. Proc. Cambridge Phil. Soc. 152 (2012), 131–152.Google Scholar
[1329] Markessinis, E., Valettas, P., Distances between classical positions of centrally symmetric convex bodies. Houston J. Math. (in press).
[1330] Maresch, G., Schuster, F. E., The sine transform of isotropic measures. Int. Math. Res. Not. IMRN2012, No. 4, 717–739.
[1331] Marti, J. T., KonvexeAnalysis.Birkhäuser, Basel, 1977.
[1332] Martinez-Maure, Y., Herissons projectifs et corps convexes de largeur constante. C. R. Acad. Sci. Paris Sér. 1, 321 (1995), No. 4, 439–442.Google Scholar
[1333] Martinez-Maure, Y., Hedgehogs and area of order 2. Arch. Math. 67 (1996), 156–163.Google Scholar
[1334] Martinez-Maure, Y., Hedgehogs of constant width and equichordal points. Ann. Polon. Math. 67 (1997), 285–288.Google Scholar
[1335] Martinez-Maure, Y., Sur les hérissons projectifs (Enveloppes paramétrées par leur application de Gauss). Bull. Sci. Math. 121 (1997), 585–601.Google Scholar
[1336] Martinez-Maure, Y., De nouvelles inegalites géométriques pour les hérissons. Arch. Math. 72 (1999), 444–453.Google Scholar
[1337] Martinez-Maure, Y., Geometric inequalities for plane hedgehogs. Demonstratio Math. 32 (1999), 177–183.Google Scholar
[1338] Martinez-Maure, Y., Étude des différences de corps convexes plans. Ann. Polon. Math. 72 (1999), 71–78.Google Scholar
[1339] Martinez-Maure, Y., Indice d'un hérisson: étude et applications. Publ. Math. 44 (2000), 237–255.Google Scholar
[1340] Martinez-Maure, Y., Hedgehogs and zonoids. Adv. Math. 158 (2001), 1–17. Erratum: Adv. Math. 163 (2001), 135.Google Scholar
[1341] Martinez-Maure, Y., Contre-exemple à une caractérization conjecturée de la sphere. C. R. Acad. Sci. Paris Sér. I, 332 (2001), No. 1, 41–44.Google Scholar
[1342] Martinez-Maure, Y., A fractal projective hedgehog. Demonstratio Math. 34 (2001), 59–63.Google Scholar
[1343] Martinez-Maure, Y., Sommets et normales concourantes des courbes convexes de largeur constante et singularités des hérissons. Arch. Math. 79 (2002), 489–498.Google Scholar
[1344] Martinez-Maure, Y., Théorie des hérissons et polytopes. Hedgehog theory and polytopes. C. R. Math. Acad. Sci. Paris,Sér. 1, 336 (2003), No. 3, 241–244.Google Scholar
[1345] Martinez-Maure, Y., Voyage dans l'universe des hérissons. In Ateliers Mathematica (R., Erra, ed.), Vuibert, Paris, 2003, 35 pp.
[1346] Martinez-Maure, Y., A Brunn–Minkowski theory for minimal surfaces. Illinois J. Math 48 (2004), 589–607.Google Scholar
[1347] Martinez-Maure, Y., Geometric study of Minkowski différences of plane convex bodies. Canad. J. Math. 58 (2006), 600–624.Google Scholar
[1348] Martinez-Maure, Y., New notion of index for hedgehogs of ℝ3 and applications. European J. Combin. 31 (2010), 1037–1049.Google Scholar
[1349] Martinez-Maure, Y., Uniqueness results for the Minkowski problem extended to hedgehogs. Cent. Eur. J. Math. 10 (2012), 440–450.Google Scholar
[1350] Martini, H., Some results and problems around zonotopes. In Intuitive Geometry, Siofók 1985 (K., Böröczky, G. Fejes, Toth, eds), Coll. Math. Soc. János Bolyai 48 (1987), pp. 383–418, North-Holland, Amsterdam.
[1351] Martini, H., On inner quermasses of convex bodies. Arch. Math. 52 (1989), 402–406.Google Scholar
[1352] Martini, H., A new view on some characterizations of simplices. Arch. Math. 55 (1990), 389–393.Google Scholar
[1353] Martini, H., Convex polytopes whose projection bodies and difference sets are polars. Discrete Comput. Geom. 6 (1991), 83–91.Google Scholar
[1354] Martini, H., Wenzel, W., A Lipschitz condition for the width function of convex bodies in arbitrary Minkowski spaces. Appl. Math. Letters 22 (2009), 142–145.Google Scholar
[1355] Mase, S., Random compact convex sets which are infinitely divisible with respect to Minkowski addition. Adv. Appl. Prob. 11 (1979), 834–850.Google Scholar
[1356] Matheron, G., Un théorème d'unicité pour les hyperplans poissoniens. J. Appl. Prob. 11 (1974), 184–189.Google Scholar
[1357] Matheron, G., Hyperplans poissoniens et compacts de Steiner. Adv. Appl. Prob. 6 (1974), 563–579.Google Scholar
[1358] Matheron, G., Random Sets and Integral Geometry. John Wiley & Sons, New York 1975.
[1359] Matheron, G., Le covariogramme géométrique des compacts convexes de ℝ2. Technical Report n-2/86/G, Centre de Geostatistique, École Nationale Superieure des Mines de Paris, 1986.
[1360] Matheron, G., The infinitesimal erosions. In Geometrical Probability and Biological Structures: Buffon's 200th Anniversary (R. E., Miles, J., Serra, eds), Lecture Notes in Biomath. 23 (1978), pp. 251–269, Springer, Berlin.
[1361] Matheron, G., La formule de Steiner pour les érosions. J. Appl. Prob. 15 (1978), 126–135.Google Scholar
[1362] Matousek, J., Lectures on Discrete Geometry. Springer, New York, 2002.
[1363] Matsumura, S., Eiflachenpaare gleicher Breiten und gleicher Umfange. Japan. J. Math. 7 (1930), 225–226.Google Scholar
[1364] Matsumura, S., Über Minkowskis gemischten Flächeninhalt. Japan. J. Math. 9 (1932), 161–163.Google Scholar
[1365] Matveev, V. S., Troyanov, M., The Binet-Legendre metric in Finsler geometry. Geom. & Topol. 16 (2012), 2135–2170.Google Scholar
[1366] Maurey, B., Inégalité de Brunn–Minkowski-Lusternik, et autres Inégalités géométriques et fonctionnelles. Séminaire Bourbaki, vol. 2003/2004. Astérisque No. 299 (2005), Exp. No. 928, vvi, 95–113.Google Scholar
[1367] Mazur, S., Über konvexe Mengen in linearen normierten Raumen. Studia Math. 4 (1933), 70–84.Google Scholar
[1368] McAllister, B. L., Hyperspaces and multifunctions, the first half century. Nieuw Arch. Wish. 26 (3) (1978), 309–329.Google Scholar
[1369] McCann, R. J., Existence and uniqueness of monotone measure-preserving maps. Duke Math. J. 80 (1995), 309–323.Google Scholar
[1370] McCann, R. J., A convexity principle for interacting gases. Adv. Math. 128 (1997), 153–179.Google Scholar
[1371] McClure, D. E., Vitale, R. A., Polygonal approximation of plane convex bodies. J. Math. Anal. Appl. 51 (1975), 326–358.Google Scholar
[1372] McKinney, R. L., Positive bases for linear spaces. Trans. Amer. Math. Soc. 103 (1962), 131–148.Google Scholar
[1373] McMinn, T. J., On the line segments of a convex surface in E3. Pacific J. Math 10 (1960), 943–946.Google Scholar
[1374] McMullen, P., Polytopes with centrally symmetric faces. Israel J. Math. 8 (1975), 194–196.Google Scholar
[1375] McMullen, P., On zonotopes. Trans. Amer. Math. Soc. 159 (1971), 91–109.Google Scholar
[1376] McMullen, P., Representations of polytopes and polyhedral sets. Geom. Dedicata 2 (1973), 83–99.Google Scholar
[1377] McMullen, P., On the inner parallel body of a convex body. Israel J. Math. 19 (1974), 217–219.Google Scholar
[1378] McMullen, P., Non-linear angle-sum relations for polyhedral cones and polytopes. Math. Proc. Camb. Philos. Soc. 78 (1975), 247–261.Google Scholar
[1379] McMullen, P., Space tiling zonotopes. Mathematika 22 (1975), 202–211.Google Scholar
[1380] McMullen, P., Metrical and combinatorial properties of convex polytopes. In Proc. Int. Congr. Math., Vancouver 1974 (ed. R. D., James), pp. 491–495, Canadian Mathematical Congress, Montreal, 1975.
[1381] McMullen, P., On support functions of compact convex sets. Elem. Math. 31 (1976), 117–119.Google Scholar
[1382] McMullen, P., Polytopes with centrally symmetric facets. Israel J. Math. 23 (1976), 337–338.Google Scholar
[1383] McMullen, P., Valuations and Euler type relations on certain classes of convex poly-topes. Proc. London Math. Soc. 35 (1977), 113–135.Google Scholar
[1384] McMullen, P., Transforms, diagrams and representations. In Contributions to Geometry, Proc. Geometry Symp., Siegen, 1978 (J., Tolke, J. M., Wills, eds), pp. 92–130, Birkhäuser, Basel, 1979.
[1385] McMullen, P., Continuous translation invariant valuations on the space of compact convex sets. Arch. Math. 34 (1980), 377–384.Google Scholar
[1386] McMullen, P., Weakly continuous valuations on convex polytopes. Arch. Math. 41 (1983), 555–564.Google Scholar
[1387] McMullen, P., Notes on Asplund's theorem. Private communication, 1983.
[1388] McMullen, P., The Hausdorff distance between compact convex sets. Mathematika 31 (1984), 76–82.Google Scholar
[1389] McMullen, P., Indecomposable convex polytopes. Israel J. Math. 58 (1987), 321–323.Google Scholar
[1390] McMullen, P., The polytope algebra. Adv. Math. 78 (1989), 76–130.Google Scholar
[1391] McMullen, P., Monotone translation invariant valuations on convex bodies. Arch. Math. 55 (1990), 595–598.Google Scholar
[1392] McMullen, P., Valuations and dissections. In Handbook of Convex Geometry (P. M., Gruber, J. M., Wills, eds), vol. B, pp. 933–988, North-Holland, Amsterdam, 1993.
[1393] McMullen, P., Isometry covariant valuations on convex bodies. Rend. Circ. Mat. Palermo (2), Suppl. 50 (1997), 259–271.Google Scholar
[1394] McMullen, P., New combinations of convex sets. Geom. Dedicata 78 (1999), 1–19.Google Scholar
[1395] McMullen, P., The Brunn–Minkowski theorem for polytopes. Rend. Circ. Mat. Palermo (2) Suppl. 70, part II (2002), 139–150.Google Scholar
[1396] McMullen, P., Schneider, R., Valuations on convex bodies. In Convexity and its Applications (P. M., Gruber, J. M., Wills, eds), pp. 170–247, Birkhäuser, Basel, 1983.
[1397] McMullen, P., Schneider, R., Shephard, G. C., Monotypic polytopes and their intersection properties. Geom. Dedicata 3 (1974), 99–129.Google Scholar
[1398] McMullen, P., Shephard, G. C., Convex Polytopes and the Upper Bound Conjecture. Cambridge Univ. Press, Cambridge, 1971.
[1399] Meier, Ch., Multilinearität bei Polyederaddition. Arch. Math. 29 (1977), 210–217.Google Scholar
[1400] Meissner, E., Über die Anwendung von Fourier-Reihen auf einige Aufgaben der Geometrie und Kinematik. Vierteljahresschr. Naturf. Ges. Zurich. 54 (1909), 309329.Google Scholar
[1401] Meissner, E., Über die durch regulare Polyeder nicht stützbaren Körper. Vierteljahresschr. Naturf. Ges. Zürich 63 (1918), 544–551.Google Scholar
[1402] Melzak, Z. A., Limit sections and universal points of convex surfaces. Proc. Amer. Math. Soc. 9 (1958), 729–734.Google Scholar
[1403] Menger, K., Untersuchungen über allgemeine Metrik. Math. Ann. 100 (1928), 75–163.Google Scholar
[1404] Meschkowski, H., Ahrens, I., Théorie der Punktmengen. Bibliographisches Institut, Mannheim, 1974.
[1405] Meyer, M., Une charactérisation volumique de certains espaces normes de dimension finie. Israel J. Math. 55 (1986), 317–326.Google Scholar
[1406] Meyer, M., Convex bodies with minimal volume product in ℝ2. Monatsh. Math. 112 (1991), 297–301.Google Scholar
[1407] Meyer, M., Pajor, A., On Santaló's inequality. In Geometric Aspects of Functional Analysis (J., Lindenstrauss, V. D., Milman, eds), Lecture Notes in Math. 1376, pp. 261–263, Springer, Berlin, 1989.
[1408] Meyer, M., Pajor, A., On the Blaschke–Santaló inequality. Arch. Math. 55 (1990), 82–93.Google Scholar
[1409] Meyer, M., Reisner, S., Characterization of ellipsoids by section-centroid location. Geom. Dedicata 31 (1989), 345–355.Google Scholar
[1410] Meyer, M., Reisner, S., A geometric property of the boundary of symmetric convex bodies and convexity of flotation surfaces. Geom. Dedicata 37 (1991), 327–337.Google Scholar
[1411] Meyer, M., Reisner, S., A geometric proof of some inequalities involving mixed volumes. Beitr. Algebra Geom. 41 (2000), 335–344.Google Scholar
[1412] Meyer, M., Reisner, S., Shadow systems and volumes of polar convex bodies. Mathematika 53 (2006), 129–148.Google Scholar
[1413] Meyer, M., Reisner, S., On the volume product of polygons. Abh. Math. Sem. Univ. Hamburg 81 (2011), 93–100.Google Scholar
[1414] Meyer, M., Reisner, S., The convex intersection body of a convex body. Glasgow Math. J. 53 (2011), 523–534.Google Scholar
[1415] Meyer, M., Reisner, S., Schmuckenschlager, M., The volume of the intersection of a convex body with its translates. Mathematika 40 (1993), 278–289.Google Scholar
[1416] Meyer, M., Werner, E., The Santaló-regions of a convex body. Trans. Amer. Math. Soc. 350 (1998), 4569–4591.Google Scholar
[1417] Meyer, M., Werner, E., On the p-affine surface area. Adv. Math. 152 (2000), 288–313.Google Scholar
[1418] Meyer, P., Eine Verallgemeinerung der Steinerschen Formeln. Abh. Braunschweig. Wiss. Ges. 28 (1977), 119–123.Google Scholar
[1419] Meyer, W., Minkowski addition of convex sets. Thesis, University of Wisconsin, 1969.
[1420] Meyer, W., Characterization of the Steiner point. Pacific J. Math. 35 (1970), 717–725.Google Scholar
[1421] Meyer, W., Indecomposable polytopes. In Combinatorial Structures and Their Applications, Calgary 1969 (R., Guy et al., eds), pp. 271–272, Gordon and Breach, New York, 1970.
[1422] Meyer, W., Decomposing plane convex bodies. Arch. Math. 23 (1972), 534–536.Google Scholar
[1423] Meyer, W., Indecomposable polytopes. Trans. Amer. Math. Soc. 190 (1974), 77–86.Google Scholar
[1424] Michael, E., Topologies on spaces of subsets. Trans. Amer. Math. Soc. 71 (1951), 152–182.Google Scholar
[1425] Milka, A. D., Indecomposability of a convex surface (in Russian). Ukrain. Geom. Sb. 13 (1973), 112–129. English translation: Selected Transl. in Math., Statist. and Prob. 15 (1973), 129–143.Google Scholar
[1426] Milman, D., Isometry and extremal points. Dokl. Akad. Nauk SSSR 59 (1948), 1241–1244.Google Scholar
[1427] Milman, V. D., Inégalité de Brunn–Minkowski inverse et applications a laThéorie locale des espaces normes. C. R. Acad. Sci. Paris Sér. I Math., 302 (1986), No. 1, 25–28.Google Scholar
[1428] Milman, V. D., Geometrization of probability. In Geometry and Dynamics of Groups and Spaces (M., Kapranov, ed.), Progress in Mathematics 265, pp. 647–667, Birkhäuser, Basel, 2008.
[1429] Milman, V. D., Pajor A., Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed n-dimensional space. In Geometric Aspects of Functional Analysis (1987–88), Lecture Notes in Math. 1376, pp. 64–104, Springer, Berlin, 1989.
[1430] Milman, V. D., Rotem, L., Mixed integrals and related inequalities. J. Funct. Anal. 264 (2013), 570–604.Google Scholar
[1431] Milman, V. D., Rotem, L., α-concave functions and a functional extension of mixed volumes. Electron. Res. Announc. Math. Sci. 20 (2013), 1–11.Google Scholar
[1432] Milman, V. D., Schechtman, G., Asymptotic Theory of Finite Dimensional Normed Spaces. Lecture Notes in Math. 1200, Springer, Berlin, 1986. With an appendix by M. Gromov.
[1433] Milman, V. D., Schneider, R., Characterizing the mixed volume. Adv. Geom. 11 (2011), 669–689.Google Scholar
[1434] Milman, V. D., Segal, A., Slomka, B. A., A characterization of duality through section/projection correspondence in the finite dimensional setting. J. Funct. Anal. 261 (2011), 3366–3389.Google Scholar
[1435] Minkowski, H., Allgemeine Lehrsätze über die convexen Polyeder. Nachr. Ges. Wiss. Gottingen, 198-219. Gesammelte Abhandlungen, vol. II, pp. 103–121, Teubner, Leipzig, 1911.
[1436] Minkowski, H., Über die BegriffeLange, Oberflache und Volumen. Jahres-ber. Deutsche Math.-Ver. 9 (1901), 115–121. Gesammelte Abhandlungen, vol. II, pp. 122-127, Teubner, Leipzig, 1911.Google Scholar
[1437] Minkowski, H., Sur les surfaces convexes fermees. C. R. Acad. Sci. Paris 132 (1901), 21–24. Gesammelte Abhandlungen, vol. II, pp. 128-130, Teubner, Leipzig, 1911.Google Scholar
[1438] Minkowski, H., Volumen und Oberflache. Math. Ann. 57 (1903), 447–495. Gesammelte Abhandlungen, vol. II, pp. 230-276, Teubner, Leipzig, 1911.Google Scholar
[1439] Minkowski, H., Über die Körper konstanter Breite (in Russian). Mat Sbornik 25 (1904), 505–508. German translation: Gesammelte Abhandlungen,vol.II, pp. 277-279, Teubner, Leipzig, 1911.Google Scholar
[1440] Minkowski, H., Geometrie der Zahlen. Teubner, Leipzig, 1910.
[1441] Minkowski, H., Théorie der konvexen Körper, insbesondere Begründung ihres Oberflachenbegriffs. Gesammelte Abhandlungen, vol. II, pp. 131–229, Teubner, Leipzig, 1911.
[1442] Minoda, T., On certain ovals. Tôhoku Math. J. 48 (1941), 312–320.Google Scholar
[1443] Miranda, C., Su un problema di Minkowski. Rend. Sem. Mat. Roma 3 (1939), 96–108.Google Scholar
[1444] Molchanov, I., Theory of Random Sets. Springer, London, 2005.
[1445] Montejano, L., The hyperspace of compact convex subsets of an open subset of Rn. Bull. Polish Acad. Sci. Math. 35 (1987), 793–799.Google Scholar
[1446] Montejano, L., Some results about Minkowski addition and difference. Mathematika 43 (1996), 265–273.Google Scholar
[1447] Montejano, L., Oliveros, D., Tolerance in Helly type theorems. Discrete Comput. Geom. 45 (2011), 348–357.Google Scholar
[1448] Moreno, J. P., Schneider, R., Diametrically complete sets in Minkowski spaces. Israel J. Math. 191 (2012), 701–720.Google Scholar
[1449] Moore, J. D., Almost spherical convex hypersurfaces. Trans. Amer. Math. Soc. 180 (1973), 347–358.Google Scholar
[1450] Mosler, K., Multivariate Dispersion, Central Regions and Depth. The Lift Zonoid Approach. Lecture Notes in Statist. 165, Springer, New York, 2002.
[1451] Moszyriska, M., Quotient star bodies, intersection bodies, and star duality. J. Math. Anal. Appl. 232 (1999), 45–60.Google Scholar
[1452] Moszyniska, M., Selected Topics in Convex Geometry. Birkhäuser, Basel, 2006.
[1453] Motzkin, T. S., Sur quelques proprietes caracteristiques des ensembles convexes. Atti Real. Accad. Naz. Lincei. Rend. Cl. Sci. Fis., Mat., Natur., Serie VI, 21 (1935), 562–567.Google Scholar
[1454] Müller, C., Spherical Harmonics. Lecture Notes in Math. 17, Springer, Berlin, 1966.
[1455] Müller, H. R., Über Momente ersten und zweiten Grades in der Integralgeometrie. Rend. Circ. Mat. Palermo, II. Ser., 2 (1953), 119–140.Google Scholar
[1456] Murner, P., Translative Parkettierungspolyeder und Zerlegungsgleichheit. Elem. Math. 30 (1975), 25–27.Google Scholar
[1457] Murner, P., Translative Zerlegungsgleichheit von Polytopen. Arch. Math. 29 (1977), 218–224.Google Scholar
[1458] Nádenîk, Z., Die Verschärfung einer Ungleichung von Frobenius für den gemischten Flacheninhalt der konvexen ebenen Bereiche. Casopis Pӗst. Mat. 90 (1966), 220–225.Google Scholar
[1459] Nádenîk, Z., Die Ungleichungen für die Oberflache, das Integral der mittleren Krümmung und die Breite der konvexen Körper. Casopis Pӗst. Mat. 92 (1967), 133–145.Google Scholar
[1460] Nádenîk, Z., Erste Krümmungsfunktion der Rotationseiflachen. Casopis Pӗst. Mat. 93 (1968), 127–133.Google Scholar
[1461] Nadler, S. B., Hyperspaces of Sets. Marcel Dekker, New York, 1978.
[1462] Nadler, S., Quinn, J., Stavrakas, N. M., Hyperspaces of compact convex sets I. Bull. Acad. Polon. Sci. 23 (1975), 555–559.Google Scholar
[1463] Nadler, S., Quinn, J., Stavrakas, N. M., Hyperspaces of compact convex sets II. Bull. Acad. Polon. Sci. 25 (1977), 381–385.Google Scholar
[1464] Nadler, S., Quinn, J., Stavrakas, N. M., Hyperspaces of compact convex sets. Pacific J. Math. 83 (1979), 441–162.Google Scholar
[1465] Nakajima, S., On some characteristic properties of curves and surfaces. Tohoku Math. J. 18 (1920), 272–287.Google Scholar
[1466] Nakajima, S., The circle and the straight line nearest to n given points, n given straight lines or a given curve. Tôhoku Math. J. 19 (1921), 11–20.Google Scholar
[1467] Nakajima, S., Über die Isoperimetrie der Ellipsoide und Eiflachen mit konstanter mittlerer Affinkrümmung im (n + 1)-dimensionalen Raume. Japanese J. Math. 2 (1926), 193–196.Google Scholar
[1468] Nazarov, F., The Hormander proof of the Bourgain-Milman theorem. In Geometrie Aspects of Functional Analysis (B., Klartag, S., Mendelson, V. D., Milman, eds), Lecture Notes in Math. 2050, pp. 335–343, Springer, Berlin, 2012.
[1469] Nazarov, F., Petrov, F., Ryabogin, D., Zvavitch, A., A remark on the Mahler conjecture: local minimality of the unit cube. Duke Math. J. 154 (2010), 419–430.Google Scholar
[1470] Nazarov, F., Ryabogin, D., Zvavitch, A., On the local equatorial characterization of zonoids and intersection bodies. Adv. Math. 217 (2008), 1368–1380.Google Scholar
[1471] Neveu, J., Mathematische Grundlagen der Warscheinlichkeits Théorie. Oldenbourg, Munchen, 1969.
[1472] Ni, Y., Zhu, M., Steady states for one-dimensional curvature flows. Commun. Con-temp. Math. 10 (2008), 155–179.Google Scholar
[1473] Nikliborc, W., Über die Lage des Schwerpunktes eines ebenen konvexen Bereiches und die Extrema des logarithmischen Flächenpotentials eines konvexen Bereiches. Math. Z. 36 (1932), 161–165.Google Scholar
[1474] Nirenberg, L., The Weyl and Minkowski problems in differential geometry in the large. Commun. Pure Appl. Math. 6 (1953), 337–394.Google Scholar
[1475] Noll, D., Generalized second fundamental form for Lipschitzian hypersurfaces by way of second epi derivatives. Canad. Math. Bull. 35 (1992), 523–536.Google Scholar
[1476] Oda, T., Convex Bodies and Algebraic Geometry: An Introduction to the Theory of Toric Varieties. Springer, Berlin, 1988
[1477] Ohmann, D., Eine Minkowskische Üngleichung für beliebige Mengen und ihre Anwendung aufExtremaLprobleme. Math. Z. 55 (1952), 299–307.Google Scholar
[1478] Ohmann, D., Üngleichungen zwischen den Quermaßintegralen beschrankter Punktmengen, I. Math. Ann. 124 (1952), 265–276.Google Scholar
[1479] Ohmann, D., Üngleichungen zwischen den Quermaßintegralen beschrankter Punktmengen, II. Math. Ann. 127 (1954), 1–7.Google Scholar
[1480] Ohmann, D., Eine lineare Verschärfung des Brunn–Minkowskischen Satzes für abgeschlossene Mengen. Arch. Math. 6 (1955), 33–35.Google Scholar
[1481] Ohmann, D., Eine Verallgemeinerung der Steinerschen Formel. Math. Ann. 129 (1955), 209–212.Google Scholar
[1482] Ohmann, D., Üngleichungen zwischen den Quermaßintegralen beschrankter Punktmengen, III. Math. Ann. 130 (1956), 386–393.Google Scholar
[1483] Ohmann, D., Ein allgemeines ExtremaLproblem für konvexe Körper. Monatsh. Math. 62 (1958), 97–107.Google Scholar
[1484] Ohshio, S., Volume, surface area and total mean curvature. Sci. Rep. Kanazawa Univ. 4 (1955), 21–28.Google Scholar
[1485] Ohshio, S., Parallel series to a closed convex curve and surface and the differentiability of their quantities. Sci. Rep. Kanazawa Univ. 6 (1958), 15–24.Google Scholar
[1486] Ohshio, S., On an isoperimetric sequence. Sci. Rep. Kanazawa Univ. 8 (1962), 13–23.Google Scholar
[1487] Oishi, K., A note on the closed convex surface. Tôhoku Math. J. 18 (1920), 288–290.Google Scholar
[1488] Oliker, V. I., The uniqueness of the solution in Christoffel and Minkowski problems for open surfaces (in Russian). Mat. Zametki 13 (1973), 41–49. English translation: Math. Notes 13 (1973), 26–30.Google Scholar
[1489] Oliker, V. I., Eigenvalues of the Laplacian and uniqueness in the Minkowski problem. J. Differential Geom. 14 (1979), 93–98.Google Scholar
[1490] Oliker, V. I., On certain elliptic differential equations on a hypersphere and their geometric applications. Indiana Univ. Math. J. 28 (1979), 25–51.Google Scholar
[1491] Oliker, V. I., On the linearized Monge–Ampére equations related to the boundary value Minkowski problem and its generalizations. In Monge–Ampére Equations and Related Topics, Florence, 1980, Ist. Naz. Alta Mat. Francesco Severi, pp, 79–112, Roma, 1983.
[1492] Oliker, V. I., The problem of embedding Sn into Rn+1 with prescribed Gauss curvature and its solution by variational methods. Trans. Amer. Math. Soc. 295 (1986), 291–303.Google Scholar
[1493] Osserman, R., The isoperimetric inequality. Bull. Amer. Math. Soc. 84 (1978), 1182–1238.Google Scholar
[1494] Osserman, R., Bonnesen-style isoperimetric inequalities. Amer. Math. Monthly 86 (1979), 1–29.Google Scholar
[1495] Osserman, R., A strong form of the isoperimetric inequality in Rn. Complex Variables 9 (1987), 241–249.Google Scholar
[1496] Overhagen, T., Zur Gitterpunktanzahl konvexer Körper im 3-dimensionalen euklidischen Raum. Math. Ann. 216 (1975), 217–224.Google Scholar
[1497] Pallaschke, D., Scholtes, S., Urbanski, R., On minimal pairs of convex compact sets. Bull. Polish Acad. Sci. 39 (1991), 105–109.Google Scholar
[1498] Pallaschke, D., Urbanski, R., Pairs of Compact Convex Sets: Fractional Arithmetic with Convex Sets. Kluwer, Dordrecht, 2002.
[1499] Palmon, O., The only convex body with extremal distance from the ball is the simplex. Israel J. Math. 80 (1992), 337–349.Google Scholar
[1500] Panina, G. Yu., Representation of an n-dimensional body in the form of a sum of (n – 1)-dimensional bodies (in Russian). Izv. Akad. Nauk Armyan. SSR,Ser.Mat. 23 (1988), 385–395. English translation: Soviet J. Contemp. Math. Anal. 23 (1988), 91–103.Google Scholar
[1501] Panina, G. Yu., Convex bodies integral representations. In Geobild '89 (A., Hübler, W., Nagel, B. D., Ripley, G., Werner, eds), Akademie-Verlag, Berlin, pp. 201–204, 1989.
[1502] Panina, G. Yu., Integral representations of convex bodies (in Russian). Dokl. Akad. Nauk SSSR 307 (1989). English translation: Soviet Math. Dokl. 40 (1990), 116–118.Google Scholar
[1503] Panina, G. Yu., Mixed volumes of polyhedral functions (in Russian). Algebra i Analiz 6 (1994), 103–114. English translation: St. Petersburg Math. J. 6 (1995), 1209–1217.Google Scholar
[1504] Panina, G. Yu., Virtual polytopes and classical problems in geometry (in Russian). Algebra i Analiz 14 (2002), 152–170. English translation: St. Petersburg Math. J. 14 (2003), 823–834.Google Scholar
[1505] Panina, G. Yu., Rigidity and flexibility of virtual polytopes. Cent. Eur. J. Math. 1 (2003), 157–168.Google Scholar
[1506] Panina, G. Yu., New counterexamples to A. D. Alexandrov's hypothesis. Adv. Geom. 5 (2005), 301–317.Google Scholar
[1507] Panina, G. Yu., On hyperbolic virtual polytopes and hyperbolic fans. Cent. Eur. J. Math. 4 (2006), 270–293.Google Scholar
[1508] Panov, A. A., On mixed discriminants connected with positive semidefinite quadratic forms (in Russian). Doklady Akad. Nauk SSSR 282 (1985), 273–276. English translation: Soviet Math. Dokl. 31 (1985), 465–467.Google Scholar
[1509] Panov, A. A., On some properties of mixed discriminants (in Russian). Mat. Sbornik 218 (1985), 291–305. English translation: Math. USSR (Sbornik) 56 (1985), 279–293.Google Scholar
[1510] Paouris, G., Concentration of mass on convex bodies. Geom. Funct. Anal. 16 (2006), 1021–1049.Google Scholar
[1511] Paouris, G., Pivovarov, P., Intrinsic volumes and linear contractions. Proc. Amer. Math. Soc. 141 (2013), 1805–1808.Google Scholar
[1512] Paouris, G., Werner, E. M., Relative entropy of cone measures and Lp centroid bodies. Proc. London Math. Soc. 104 (2012), 253–286.Google Scholar
[1513] Paouris, G., Werner, E. M., On the approximation of a polytope by its dual Lp-centroid bodies. Indiana Univ. Math. J. (in press), arXiv:1107.3683v1.
[1514] Papaderou-Vogiatzaki, I., Schneider, R., A collision probability problem. J. Appl. Prob. 25 (1988), 617–623.Google Scholar
[1515] Papadopoulou, S., On the geometry of stable compact convex sets. Math. Ann. 229 (1977), 193–200.Google Scholar
[1516] Papadopoulou, S., Stabile konvexe Mengen. Jahresber. Deutsche Math.-Ver. 84 (1982), 92–106.Google Scholar
[1517] Parapatits, L., SL(n)-contravariant Lp-Minkowski valuations. Trans. Amer. Math. Soc. (in press).
[1518] Parapatits, L., Schuster, F. E., The Steiner formula for Minkowski valuations. Adv. Math 230 (2012), 978–994.Google Scholar
[1519] Parapatits, L., Wannerer, T., On the inverse Klain map. Duke Math. J. (in press), arXiv:1206.5370v1.
[1520] Pavlica, D., Zajíček, L., On the directions of segments and r-dimensional balls on a convex surface. J. Convex Anal. 14 (2007), 149–167.Google Scholar
[1521] Paya, R., Yost, D., The two-ball property: transitivity and examples. Mathematika 35 (1988), 190–197.Google Scholar
[1522] Pelczyński, A., Remarks on John's theorem on the ellipsoid of maximal volume inscribed into a convex symmetric body in Rn. Note Mat. 10 (1990), suppl. 2, 395–410.Google Scholar
[1523] Perles, M. A., Sallee, G. T., Cell complexes, valuations, and the Euler relation. Canad. J. Math. 22 (1970), 235–241.Google Scholar
[1524] Petermann, E., Some relations between breadths and mixed volumes of convex bodies In Rn. In Proc. Colloq. Convexity (W., Fenchel, ed.), Copenhagen, 1965, pp. 229–233, Københavns Univ. Mat. Inst., 1967.
[1525] Petty, C. M., Centroid surfaces. Pacific J. Math. 11 (1961), 1535–1547.Google Scholar
[1526] Petty, C. M., Surface area of a convex body under affine transformations. Proc. Amer. Math. Soc. 12 (1961), 824–828.Google Scholar
[1527] Petty, C. M., Projection bodies. In Proc. Colloq. Convexity (W., Fenchel, ed.), Copenhagen, 1965, pp. 234–241, Københavns Univ. Mat. Inst., 1967.
[1528] Petty, C. M., Isoperimetric problems. In Proc. Conf. Convexity Combinat. Geom., 1971, pp. 26–41, Univ. Oklahoma, Norman, OK, 1971.
[1529] Petty, C. M., Geominimal surface area. Geom. Dedicata 3 (1974), 77–97.Google Scholar
[1530] Petty, C. M., Ellipsoids. In Convexity and its Applications (P. M., Gruber, J. M., Wills, eds), pp. 264–276, Birkhäuser, Basel, 1983.
[1531] Petty, C. M., Affine isoperimetric problems. In Discrete Geometry and Convexity (J. E., Goodman, E., Lutwak, J., Malkevitch, R., Pollack, eds), Ann. New York Acad. Sci. 440 (1985), 113–127.
[1532] Pfiefer, R. E., Maximum and minimum sets for some geometric mean values. J. Theoret. Probab. 3 (1990), 169–179.Google Scholar
[1533] Phelps, R. R., Lectures on Choquet's Theorem. Van Nostrand, Princeton, 1966.
[1534] Phelps, R. R., Integral representations for elements of convex sets. Studies in Functional Analysis (R. G., Bartle, ed.), MAA Studies in Math. 21, pp. 115–157, Math. Assoc. Amer., Washington, DC, 1980.
[1535] Pisier, G., The Volume of Convex Bodies and Banach Space Geometry. Cambridge Üniv. Press., Cambridge, 1989.
[1536] Pogorelov, A. V., On the question of the existence of a convex surface with a given sum of the principal radii of curvature (in Russian). Uspehi Mat. Nauk 8 (1953), 127–130.Google Scholar
[1537] Pogorelov, A. V., Nearly spherical surfaces. J. d'Analyse Math. 19 (1967), 313–321.Google Scholar
[1538] Pogorelov, A. V., Extrinsic Geometry of Convex Surfaces. Translations of Mathematical Monographs 35, Amer. Math. Soc., Providence, RI, 1973 (Russian original: 1969).
[1539] Pogorelov, A. V., The Minkowski Multidimensional Problem. Winston & Sons, Washington, DC, 1978 (Russian original: 1975).
[1540] Polovinkin, E. S., Strongly convex analysis. SbornikMath. 187 (1996), 259–286.Google Scholar
[1541] Polovinkin, E. S., Convex bodies of constant width. Doklady Math. 70 (2004), 560–562.Google Scholar
[1542] Pólya, G., Szegö, G., Isoperimetric Inequalities in Mathematical Physics. Princeton Üniv. Press, Princeton, NJ, 1951.
[1543] Pompeiu, D., Sur la continuité des fonctions de variables complexes (These). Gauthier-Villars, Paris, 1905; Ann. Fac. Sci. Toulouse 7 (1905), 264–315.
[1544] Pontrjagin, L. S., Topologische Gruppen, vol. 1. Teubner, Leipzig, 1957 (English translation of first Russian edn: 1946).
[1545] Pontryagin, L. S., Linear differential games of pursuit (in Russian). Mat. Sb. 112 (1980). English translation: Math. USSR - Sb. 40 (1981), 285–303.Google Scholar
[1546] Positsel'skii, E. D., Characterization of Steiner points (in Russian). Mat. Zametki 14 (1973), 243–247. English translation: Math. Notes 14 (1973), 698–700.Google Scholar
[1547] Pranger, W., Extreme points of convex sets. Math. Ann. 205 (1973), 299–302.Google Scholar
[1548] Protasov, V. Ju., On possible generalizations of convex addition (in Russian). Vestnik Moskov. Univ. Sér. I Mat. Mekh. 1999, No. 4, 13-18, 71. English translation: Moscow Univ. Math. Bull. 54 (1999), 12–17.Google Scholar
[1549] Przesławski, K., Linear and Lipschitz continuous selectors for the family of convex sets in Euclidean vector spaces. Bull. Polish Acad. Sci. Math. 33 (1985), 31–33.Google Scholar
[1550] Przesławski, K., Linear algebra of convex sets and the Euler characteristic. Linear Multilinear Algebra 31 (1992), 153–191.Google Scholar
[1551] Przesławski, K., Integral representations of mixed volumes and mixed moment tensors. Rend. Circ. Mat. Palermo, Serie II, Suppl. 50 (1997), 299–314.Google Scholar
[1552] Pukhlikov, A. V., Khovanskii, A. G., Finitely additive measures of virtual polytopes (in Russian). Algebra i Analiz 4 (1992), 161–185. English translation: St. Petersburg Math. J. 4 (1993), 337–356.Google Scholar
[1553] Rademacher, H., Zur Theorie der Minkowskischen Stützebenenfunktion. Sitzungsber. Berliner Math Ges 20 (1921), 14–19.Google Scholar
[1554] Radon, J., Annäherung konvexer Körper durch analytisch begrenzte. Monatsh. Math. Phys. 43 (1936), 340–344. Gesammelte Abhandlungen, vol. 1 (P. M. Gruber et al., eds), pp. 370-374, Birkhäuser, Wien, 1987.Google Scholar
[1555] Rädström, H., An embedding theorem for spaces of convex sets. Proc. Amer. Math. Soc. 3 (1952), 165–169.Google Scholar
[1556] Rajala, K., Zhong, X., Bonnesen's inequality for John domains in ℝn. J. Funct. Anal. 263 (2012), 3617–3640.Google Scholar
[1557] Rataj, J., Zahle, M., Normal cycles of Lipschitz manifolds by approximation with parallel sets. Diff. Geom. Appl. 19 (2003), 113–126.Google Scholar
[1558] Rataj, J., Zähle, M., General normal cycles and Lipschitz manifolds of bounded curvature. Ann. Global Anal. Geom. 27 (2005), 135–156.Google Scholar
[1559] Ratschek, H., Schröder, G., Representation of semigroups as systems of compact convex sets. Proc. Amer. Math. Soc. 65 (1977), 24–28.Google Scholar
[1560] Rauch, J., An inclusion theorem for ovaloids with comparable second fundamental forms. J. Differential Geom. 9 (1974), 501–505.Google Scholar
[1561] Reay, J. R., Generalizations of a theorem of Caratheodory. Amer. Math. Soc. Memoirs 54 (1965), 50 pp.Google Scholar
[1562] Reidemeister, K., Über die singularen Randpunkte eines konvexen Körpers. Math. Ann. 83 (1921), 116–118.Google Scholar
[1563] Reisner, S., Random polytopes and the volume-product of symmetric convex bodies. Math. Scand. 57 (1985), 386–392.Google Scholar
[1564] Reisner, S., Zonoids with minimal volume product. Math. Z. 192 (1986), 339–346.Google Scholar
[1565] Reisner, S., Minimal volume-product in Banach spaces with a 1-unconditional basis. J. London Math. Soc. 36 (1987), 126–136.Google Scholar
[1566] Reisner, S., Schutt, C., Werner, E., Mahler's conjecture and curvature. Int. Math. Res. Not. IMRN 2012, No. 1, 1–16.Google Scholar
[1567] Reiter, H. B., Stavrakas, N. M., On the compactness of the hyperspace of faces. Pacific J. Math. 73 (1977), 193–196.Google Scholar
[1568] Reitzner, M., The combinatorial structure of random polytopes. Adv. Math. 191 (2005), 178–208.Google Scholar
[1569] Reitzner, M., Random polytopes. In New Perspectives in Stochastic Geometry (W. S., Kendall, I., Molchanov, eds), pp. 45–76, Oxford Univ. Press, Oxford, 2010.
[1570] Ren, D., Topics in Integral Geometry. World Scientific, Singapore, 1994.
[1571] Renegar, J., Hyperbolic programs, and their derivative relaxations. Found. Comp. Math. 6 (2005), 59–79.Google Scholar
[1572] Rényi, A., Integral formulae in the theory of convex curves. Acta Sci. Math. 11 (1946), 158–166.Google Scholar
[1573] Rényi, A., Sulanke, R., Über die konvexe Hülle von n zufällig gewahlten Punkten. Z. Wahrscheinlichkeitsth. verw. Geb. 2 (1963), 75–84.Google Scholar
[1574] Rényi, A., Sulanke, R., Über die konvexe Hülle von n zufällig gewahlten Punkten. II. Z. Wahrscheinlichkeitsth. verw. Geb. 3 (1964), 138–147.Google Scholar
[1575] Resetnjak, Ju. G., Some estimates for almost umbilical surfaces (in Russian). Sibirskii Mat. Zh. 9 (1968), 903–917. English translation: Siberian Math. J. 9 (1968), 671–682.Google Scholar
[1576] Resetnjak, Ju. G., Generalized derivatives and differentiability almost everywhere (in Russian). Mat. Sbornik 75 (1968), 323–334. English translation: Math. USSR (Sbornik) 4 (1968), 293–302.Google Scholar
[1577] Reuleaux, F., Theoretische Kinematik, vol. I. Vieweg, Braunschweig, 1875.
[1578] Ricker, W., A new class of convex bodies. In Papers in Algebra, Analysis and Statistics, Hobart, 1981, Contemp. Math. 9, pp. 333–340, Amer. Math. Soc., Providence, RI, 1981.
[1579] Rickert, N. W., Measures whose range is a ball. Pacific J. Math. 23 (1967), 361–371.Google Scholar
[1580] Rickert, N. W., The range of a measure. Bull. Amer. Math. Soc. 73 (1967), 560–563.Google Scholar
[1581] Roberts, A. W., Varberg, D. E., Convex Functions. Academic Press, New York, 1973.
[1582] Rockafellar, R. T., Characterization of the subdifferentials of convex functions. Pacific J. Math. 17 (1966), 497–510.Google Scholar
[1583] Rockafellar, R. T., Convex Analysis. Princeton Univ. Press, Princeton, NJ, 1970.
[1584] Rodríguez, L., Rosenberg, H., Rigidity of certain polyhedra in R3. Comment. Math. Helvet. 75 (2000), 478–503.Google Scholar
[1585] Rogers, C. A., Hausdorff Measures. Cambridge Univ. Press, Cambridge, 1970.
[1586] Rogers, C. A., Shephard, G. C., The difference body of a convex body. Arch. Math. 8 (1957), 220–233.Google Scholar
[1587] Rogers, C. A., Shephard, G. C., Convex bodies associated with a given convex body. J. London Math. Soc. 33 (1958), 270–281.Google Scholar
[1588] Rogers, C. A., Shephard, G. C., Some extremal problems for convex bodies. Mathematika 5 (1958), 93–102.Google Scholar
[1589] Rota, G.-C., On the foundations of combinatorial theory, I: Theory of Mobius functions. Z. Wahrscheinlichkeitsth. verw. Geb. 2 (1964), 340–368.Google Scholar
[1590] Rota, G.-C., On the combinatorics of the Euler characteristic. In Studies in Pure Math. (Papers presented to Richard Rado), pp. 221–233, Academic Press, London, 1971.
[1591] Rotem, L., On the mean width of log-concave functions. In Geometric Aspects of Functional Analysis (B., Klartag, S., Mendelson, V. D., Milman, eds), Lecture Notes in Math. 2050, pp. 355–372, Springer, Berlin, 2012.
[1592] Rotem, L., Characterization of self-polar convex functions. Bull. Sci. Math. 136 (2012), 831–838.Google Scholar
[1593] Rotem, L., Support functions and mean width for a-concave functions. Adv. Math. 243 (2013), 168–186.Google Scholar
[1594] Rother, W., Zähle, M., A short proof of a principal kinematic formula and extensions. Trans. Amer. Math. Soc. 321 (1990), 547–558.Google Scholar
[1595] Rother, W., Zähle, M., Absolute curvature measures II. Geom. Dedicata 41 (1992), 229–240.Google Scholar
[1596] Routh, E. J., Die Dynamik der Systeme Starrer Körper, vol. 1. Teubner, Leipzig, 1898.
[1597] Roy, A. K., Facial structure of the sum of two compact convex sets. Math. Ann. 197 (1972), 189–196.Google Scholar
[1598] Roy, N. M., Extreme points of convex sets in infinite dimensional spaces. Amer. Math. Monthly 94 (1987), 409–422.Google Scholar
[1599] Roy, S. N., On the vector derivation of the invariants and centroid formulae for convex surfaces. Bull. Calcutta Math. Soc. 28 (1936), 79–88.Google Scholar
[1600] Rubin, B., Zhang, G., Generalizations of the Busemann–Petty problem for sections of convex bodies. J. Funct. Anal. 213 (2004), 473–501.Google Scholar
[1601] Ryabogin, D., Zvavitch, A., The Fourier transform and Firey projections of convex bodies. Indiana Univ. Math. J. 53 (2004), 667–682.Google Scholar
[1602] Sacksteder, R., On hypersurfaces with no negative sectional curvatures. Amer. J. Math. 82 (1960), 609–630.Google Scholar
[1603] Sah, C.-H., Hilbert's Third Problem: Scissors Congruence. Pitman, San Francisco, 1979.
[1604] Saint Pierre, J., Point de Steiner et sections lipschitziennes. In Sémin. Anal. Convexe, Univ. Sci. Tech. Languedoc 15, Exp. No. 7, 1985, 42 pp.
[1605] Saint Raymond, J., Sur le volume des corps convexes symetriques. In Séminaire Initiation à l'Analyse, Univ. Pierre et Marie Curie, Paris, 1980/1981, vol. 11, 25 pp.
[1606] Salinetti, G., Wets, R. J.-B., On the convergence of sequences of convex sets in finite dimensions. SIAM Rev. 21 (1979), 18–33.Google Scholar
[1607] Salkowski, E., Affine Differentialgeometrie. W. de Gruyter, Berlin, 1934.
[1608] Sallee, G. T., A valuation property of Steiner points. Mathematika 13 (1966), 76–82.Google Scholar
[1609] Sallee, G. T., Polytopes, valuations, and the Euler relation. Canad. J. Math. 20 (1968), 1412–1424.Google Scholar
[1610] Sallee, G. T., A non-continuous ‘Steiner point’. Israel J. Math. 10 (1971), 1–5.Google Scholar
[1611] Sallee, G. T., Minkowski decomposition of convex sets. Israel J. Math. 12 (1972), 266–276.Google Scholar
[1612] Sallee, G. T., On the indecomposability of the cone. J. London Math. Soc. 9 (1974), 363–367.Google Scholar
[1613] Sallee, G. T., Euler's theorem and where it led. In Convexity and Related Combinatorial Geometry (D. C., Kay, M., Breen, eds), pp. 45–55, Marcel Dekker, New York, 1982.
[1614] Sallee, G. T., Pairs of sets of constant relative width. J. Geom. 29 (1987), 1–11.Google Scholar
[1615] Sandgren, L., On convex cones. Math. Scand. 2 (1954), 19–28.Google Scholar
[1616] Sangwine-Yager, J. R., The mean value of the area of polygons circumscribed about a plane convex body. Israel J. Math. Bl (1986), 351–363.Google Scholar
[1617] Sangwine-Yager, J. R., The mean quermassintegral of simplices circumscribed about a convex body. Geom. Dedicata 15 (1983), 47–57.Google Scholar
[1618] Sangwine-Yager, J. R., A Bonnesen-style inradius inequality in 3-space. Pacific J. Math. 134 (1988), 173–178.Google Scholar
[1619] Sangwine-Yager, J. R., Bonnesen-style inequalities for Minkowski relative geometry. Trans. Amer. Math. Soc. BOl (1988), 373–382.Google Scholar
[1620] Sangwine-Yager, J. R., The missing boundary of the Blaschke diagram. Amer. Math. Monthly 96 (1989), 233–237.Google Scholar
[1621] Sangwine-Yager, J. R., Stability for a cap-body inequality. Geom. Dedicata BS (1991), 347–356.Google Scholar
[1622] Sangwine-Yager, J. R., Mixed volumes. In Handbook of Convex Geometry (P. M., Gruber, J. M., Wills, eds), vol. A, pp. 43–71, North-Holland, Amsterdam, 1993.
[1623] Sangwine-Yager, J. R., A representation of volume involving interior reach. Math. Ann. 298 (1994), 1–5.Google Scholar
[1624] Sangwine-Yager, J. R., A generalization of outer parallel sets of a convex set. Proc. Amer. Math. Soc. 123 (1995), 1559–1564.Google Scholar
[1625] Santaló, L. A., Sobre los cuerpos convexos de anchura constante en En. Portugaliae Math. 5 (1946), 195–201.Google Scholar
[1626] Santaló, L. A., Un invariante afin para los cuerpos convexos del espacio de n dimensiones. Portugaliae Math. 8 (1949), 155–161.Google Scholar
[1627] Santaló, L. A., On parallel hypersurfaces in the elliptic and hyperbolic n-dimensional space. Proc. Amer. Math. Soc. l (1950), 325–330.Google Scholar
[1628] Santaló, L. A., Introduction to Integral Geometry. Hermann & Cie., Paris, 1953.
[1629] Santaló, L. A., Sobre los sistemas completos de desigualdades entre los elementos de una figura convexa plana. Math. Notae ll (1961), 82–104.Google Scholar
[1630] Santaló, L. A., Integral Geometry and Geometric Probability. Addison-Wesley, Reading, MA, 1971.
[1631] Santaló, L. A., Selected Works (A.M., Naveira, A., Reventós, eds), Springer, Berlin, 2009.
[1632] Sanyal, R., Topological obstructions for vertex numbers of Minkowski sums. J. Com-bin. Theory Ser. A 116 (2009), 168–179.Google Scholar
[1633] Saorín, E., On Hadwiger's problem on inner parallel bodies. In Convex and Fractal Geometry, Banach Center Publ. 84, pp. 121–129, Polish Acad. Sci. Inst. Math., Warsaw, 2009.
[1634] Saroglou, C., Characterizations of extremals for some functionals on convex bodies. Canad. J. Math. 62 (2010), 1404–1418.Google Scholar
[1635] Saroglou, C., Volumes of projection bodies of some classes of convex bodies. Mathematika 57 (2011), 329–353.Google Scholar
[1636] Saroglou, C., Minimal surface area position of a convex body is not always an M-position. Israel J. Math. (2012), DOI lG.lGG7/sll856-Glll-3.Google Scholar
[1637] Sas, E., Über eine Extremaleigenschaft der Ellipsen. Compositio Math. 6 (1939), 468–170.Google Scholar
[1638] Saškin, Ju. A., Convex sets, extreme points, and simplexes (in Russian). Itôgi Nauki i Tekhniki (Mat. Analiz) 11 (1973), 5–50. English translation: J. Soviet Math. 4 (1973), 625–655.Google Scholar
[1639] Schaal, H., Prüfung einer Kreisform mit Hohlwinkel und Taster. Elem. Math. 17 (1962), 33–38.Google Scholar
[1640] Schaal, H., Gleitkurven in regulären Polygonen. Z. Angew. Math. Mech. 43 (1963), 459–476.Google Scholar
[1641] Schechtman, G., Concentration, results and applications. In Handbook of the Geometry of Banach Spaces (W. B., Johnson, J., Lindenstrauss, eds), vol. 2, pp. 1603–1634, North-Holland, Amsterdam, 2003.
[1642] Schechtman, G., Schmuckenschlager, M., A concentration inequality for harmonic measures on the sphere. In Geometric Aspects of Functional Analysis (Israel Seminar, 1992-1994), Oper. Theory Adv. Appl. 77, pp. 255–273, Birkhäuser, Basel, 1955.
[1643] Schirokow, P. A., Schirokow, A. P., Affine Differentialgeometrie. B. G. Teubner, Leipzig, 1962.
[1644] Schlaerth, J., Local and equatorial characterization of unit balls of subspaces of Lp, p > 0 and properties of the generalized cosine transform. J. Math. Anal. Appl. 382 (2011), 523–533.Google Scholar
[1645] Schmidt, E., Die Brunn–Minkowskische Ungleichung und ihr Spiegelbild sowie die isoperimetrische Eigenschaft der Kugel in der euklidischen und nichteuklidischen Geometrie I, II. Math. Nachr. 1 (1948), 81–157; 2 (1949), 171-244.Google Scholar
[1646] Schmidt, K. D., Embedding theorems for classes of convex sets. Acta Appl. Math. 5 (1986), 209–237. Acknowledgement of priority: Acta Appl. Math. 11, 295.Google Scholar
[1647] Schmitt, K.-A., Hilbert spaces containing subspaces consisting of symmetry classes of convex bodies. In Proc. Colloq. Convexity, Copenhagen, 1965, pp. 278–280, Københavns Univ. Mat. Inst., 1967.
[1648] Schmitt, K.-A., Kennzeichnung des Steinerpunktes konvexer Körper. Math. Z. 105 (1968), 387–392. (This work is erroneous.)Google Scholar
[1649] Schmuckenschläger, M., The distribution function of the convolution square of a symmetric body in Rn. Israel J. Math. 78 (1992), 309–334.Google Scholar
[1650] Schmuckenschläger, M., Petty's projection inequality and Santaló's affine isoperimetric inequality. Geom. Dedicata 57 (1995), 285–295.Google Scholar
[1651] Schmuckenschläger, M., An extremal property of the regular simplex. In Convex Geometric Analysis (Berkeley, CA, 1996; K. M. Ball, V. Milman, eds), Math. Sci. Res. Inst. Publ. 34, pp. 199–202, Cambridge Univ. Press, Cambridge, 1999.
[1652] Schneider, R., Ähnlichkeits- und Translationssätze für Eiflächen. Arch. Math. 17 (1966), 267–273.Google Scholar
[1653] Schneider, R., On A. D. Aleksandrov's inequalities for mixed discriminants. J. Math. Mech. 15 (1966), 285–290. (This work is erroneous.)Google Scholar
[1654] Schneider, R., Über die Durchschnitte translationsgleicher konvexer Körper und eine Klasse konvexer Polyeder. Abh. Math. Sem. Univ. Hamburg 30 (1967), 118–128.Google Scholar
[1655] Schneider, R., Eine allgemeine Extremaleigenschaft der Kugel. Monatsh. Math. 71 (1967), 231–237.Google Scholar
[1656] Schneider, R., Zu einem Problem von Shephard über die Projektionen konvexer Körper. Math. Z. 101 (1967), 71–82.Google Scholar
[1657] Schneider, R., Zur affinen Differentialgeometrie im Großen I. Math. Z. 101 (1967), 375–406.Google Scholar
[1658] Schneider, R., Über die Finslerraume mit Sijkl = 0. Arch. Math. 19 (1968), 656–658.Google Scholar
[1659] Schneider, R., Characterization of certain polytopes by intersection properties of their translates. Mathematika 16 (1969), 276–282.Google Scholar
[1660] Schneider, R., Über eine Integralgleichung in der Théorie der konvexen Körper. Math. Nachr. 44 (1970), 55–75.Google Scholar
[1661] Schneider, R., Eine Verallgemeinerung des Differenzenkörpers. Monatsh. Math. 74 (1970), 258–272.Google Scholar
[1662] Schneider, R., On the projections of a convex polytope. Pacific J. Math. 32 (1970), 799–803.Google Scholar
[1663] Schneider, R., On Steiner points of convex bodies. Israel J. Math. 9 (1971), 241–249.Google Scholar
[1664] Schneider, R., Gleitkörper in konvexen Polytopen. J. reine angew. Math. 248 (1971), 193–220.Google Scholar
[1665] Schneider, R., Zwei Extremalaufgaben für konvexe Bereiche. Acta Math. Hungar. 22 (1971), 379–383.Google Scholar
[1666] Schneider, R., The mean surface area of the boxes circumscribed about a convex body. Ann. Polon. Math. 25 (1971), 325–328.Google Scholar
[1667] Schneider, R., Krümmungsschwerpunkte konvexer Körper, I. Abh. Math. Sem. Univ. Hamburg 37 (1972), 112–132.Google Scholar
[1668] Schneider, R., Krümmungsschwerpunkte konvexer Körper, II. Abh. Math. Sem. Univ. Hamburg 37 (1972), 204–217.Google Scholar
[1669] Schneider, R., A characteristic extremal property of simplices. Proc. Amer. Math. Soc. 40 (1973), 247–249.Google Scholar
[1670] Schneider, R., Equivariant endomorphisms of the space of convex bodies. Trans. Amer. Math. Soc. 194 (1974), 53–78.Google Scholar
[1671] Schneider, R., Summanden konvexer Körper. Arch. Math. 25 (1974), 83–85.Google Scholar
[1672] Schneider, R., Bewegungsäquivariante, additive und stetige Transformationen konvexer Bereiche. Arch. Math. 25 (1974), 303–312.Google Scholar
[1673] Schneider, R., Additive Transformationen konvexer Körper. Geom. Dedicata 3 (1974), 221–228.Google Scholar
[1674] Schneider, R., On asymmetry classes of convex bodies. Mathematika 21 (1974), 12–18.Google Scholar
[1675] Schneider, R., Isometrien des Raumes der konvexen Körper. Colloquium Math. 33 (1975), 219–224.Google Scholar
[1676] Schneider, R., Remark on a conjectured characterization of the sphere. Ann. Polon. Math. 31 (1975), 187–190.Google Scholar
[1677] Schneider, R., Zonoids whose polars are zonoids. Proc. Amer. Math. Soc. 50 (1975), 365–368.Google Scholar
[1678] Schneider, R., A measure of convexity for compact sets. Pacific J. Math. 58 (1975), 617–626.Google Scholar
[1679] Schneider, R., Kinematische Berührmaße für konvexe Körper. Abh. Math. Sem. Univ. Hamburg 44 (1975), 12–23.Google Scholar
[1680] Schneider, R., Kinematische Berührmaße für konvexe Körper und Integralrelationen für Oberflachenmaße. Math. Ann. 218 (1975), 253–267.Google Scholar
[1681] Schneider, R., Bestimmung eines konvexen Körpers durch gewisse Berührmaße. Arch. Math. 27 (1976), 99–105.Google Scholar
[1682] Schneider, R., Das Christoffel-Problem für Polytope. Geom. Dedicata 6 (1977), 81–85.Google Scholar
[1683] Schneider, R., Eine kinematische Integralformel für konvexe Körper. Arch. Math. 28 (1977), 217–220.Google Scholar
[1684] Schneider, R., Rekonstruktion eines konvexen Körpers aus seinen Projektionen. Math. Nachr. 79 (1977), 325–329.Google Scholar
[1685] Schneider, R., Kritische Punkte und Krümmung für die Mengen des Konvexringes. L'Enseignement Math. 23 (1977), 1–6.Google Scholar
[1686] Schneider, R., Eine Charakterisierung der Kugel. Arch. Math. 29 (1988), 660–665.Google Scholar
[1687] Schneider, R., Curvature measures of convex bodies. Ann. Mat. Pura Appl. 116 (1978), 101–134.Google Scholar
[1688] Schneider, R., On the skeletons of convex bodies. Bull. London Math. Soc. 10 (1978), 84–85.Google Scholar
[1689] Schneider, R., Über Tangentialkörper der Kugel. Manuscripta Math. 23 (1978), 269–278.Google Scholar
[1690] Schneider, R., Kinematic measures for sets of colliding convex bodies. Mathematika 25 (1978), 1–12.Google Scholar
[1691] Schneider, R., Bestimmung konvexer Körper durch Krümmungsmaße. Comment. Math. Helvet. 54 (1979), 42–60.Google Scholar
[1692] Schneider, R., On the curvatures of convex bodies. Math. Ann. 240 (1979), 177–181.Google Scholar
[1693] Schneider, R., Boundary structure and curvature of convex bodies. In Contributions to Geometry, Proc. Geometry Symp., Siegen 1978 (J., Tölke, J. M., Wills, eds), pp. 13–59, Birkhäuser, Basel, 1979.
[1694] Schneider, R., Parallelmengen mit Vielfachheit und Steiner-Formeln. Geom. Dedicata 9 (1980), 111–127.Google Scholar
[1695] Schneider, R., Curvature measures and integral geometry of convex bodies. Rend. Sem. Mat. Univ. Politecn. Torino 38 (1980), 79–98.Google Scholar
[1696] Schneider, R., Pairs of convex bodies with unique joining metric segments. Bull. Soc. Roy. Sci. Liège 50 (1981), 5–7.Google Scholar
[1697] Schneider, R., Random hyperplanes meeting a convex body. Z. Wahrscheinlichkeitsth. verw. Geb. 61 (1982), 379–387.Google Scholar
[1698] Schneider, R., Random polytopes generated by anisotropic hyperplanes. Bull. London Math. Soc. 14 (1982), 549–553.Google Scholar
[1699] Schneider, R., Nonparametric convex hypersurfaces with a curvature restriction. Ann. Polon. Math. 51 (19983), 57–61.Google Scholar
[1700] Schneider, R., Smooth approximation of convex bodies. Rend. Circ. Mat. Palermo, Ser. II 33 (1984), 436–440.Google Scholar
[1701] Schneider, R., On the Aleksandrov-Fenchel inequality. In Discrete Geometry and Convexity (J. E., Goodman, E., Lutwak, J., Malkevitch, R., Pollack, eds), Ann. New York Acad. Sci. 440 (1985), 132–141.
[1702] Schneider, R., Inequalities for random flats meeting a convex body. J. Appl. Prob. 22 (1985), 710–716.Google Scholar
[1703] Schneider, R., Affine-invariant approximation by convex polytopes. Studia Sci. Math. Hungar. 21 (1986), 401–108.Google Scholar
[1704] Schneider, R., Curvature measures and integral geometry of convex bodies II. Rend. Sem. Mat. Univ. Politecn. Torino 44 (1986), 263–275.Google Scholar
[1705] Schneider, R., Geometric inequalities for Poisson processes of convex bodies and cylinders. Results Math. 11 (1987), 165–185.Google Scholar
[1706] Schneider, R., Equidecomposable polyhedra. In Intuitive Geometry,Siofók 1985, Colloquia Math. Soc. János Bolyai 48, pp. 481–501, North-Holland, Amsterdam, 1987.
[1707] Schneider, R., On the Aleksandrov-Fenchel inequality involving zonoids. Geom. Dedicata 27 (1988), 113–126.Google Scholar
[1708] Schneider, R., Closed convex hypersurfaces with curvature restrictions. Proc. Amer. Math. Soc. 103 (1988), 1201–1204.Google Scholar
[1709] Schneider, R., Random approximation of convex sets. J. Microscopy 151 (1988), 211–227.Google Scholar
[1710] Schneider, R., On a morphological transformation for convex domains. J. Geom. 34 (1989), 172–180.Google Scholar
[1711] Schneider, R., Gemischte Volumina in Kanalscharen. Geom. Dedicata 30 (1989), 223–234.Google Scholar
[1712] Schneider, R., Stability in the Aleksandrov-Fenchel-Jessen theorem. Mathematika 36 (1989), 50–59.Google Scholar
[1713] Schneider, R., On the Aleksandrov-Fenchel inequality for convex bodies, I. Results Math. 17 (1990), 287–295.Google Scholar
[1714] Schneider, R., A stability estimate for the Aleksandrov-Fenchel inequality, with an application to mean curvature. Manuscripta Math. 69 (1990), 291–300.Google Scholar
[1715] Schneider, R., Curvature measures and integral geometry of convex bodies III. Rend. Sem. Mat. Univ. Politecn. Torino 46 (1990), 111–123.Google Scholar
[1716] Schneider, R., On the general Brunn–Minkowski theorem. Beitr. Algebra Geom. 34 (1993), 1–8.Google Scholar
[1717] Schneider, R., Convex Bodies: The Brunn–Minkowski Theory. Cambridge Üniv. Press, Cambridge, 1993.
[1718] Schneider, R., Equality in the Aleksandrov-Fenchel inequality: present state and new results. In Intuitive Geometry (K., Böröczky, G. Fejes, Toth, eds), Colloquia Math. János Bolyai 63, pp. 425–438, North-Holland, Amsterdam, 1994.
[1719] Schneider, R., Polytopes and Brunn–Minkowski theory. In Polytopes: Abstract, Convex and Computational, Scarborough 1993 (T., Bisztriczky, P., McMullen, R., Schneider, A. Ivic, Weiss, eds), NATO ASI Series C, Math. Phys. Sci. 440, pp. 273–299, Kluwer, Dordrecht, 1994.
[1720] Schneider, R., Simple valuations on convex bodies. Mathematika 43 (1996), 32–39.Google Scholar
[1721] Schneider, R., Convex bodies in exceptional relative positions. J. London Math. Soc. 60 (2) (1999), 617–629.Google Scholar
[1722] Schneider, R., Mixed functionals of convex bodies. Discrete Comput. Geom. 24 (2000), 527–538.Google Scholar
[1723] Schneider, R., Tensor valuations on convex bodies and integral geometry. Rend. Circ. Mat. Palermo, Ser. II, Suppl. 65 (2000), 295–316.Google Scholar
[1724] Schneider, R., On the Busemann area in Minkowski spaces. Beitr. Algebra Geom. 42 (2001), 263–273.Google Scholar
[1725] Schneider, R., Mixed polytopes. Discrete Comput. Geom. 29 (2003), 575–593.Google Scholar
[1726] Schneider, R., An integral geometric theorem for simple valuations. Beitr. Algebra Geom. 44 (2003), 487–492.Google Scholar
[1727] Schneider, R., The endomorphisms of the lattice of closed convex cones. Beitr. Algebra Geom. 49 (2008), 541–547.Google Scholar
[1728] Schneider, R., Stability for some extremal properties of the simplex. J. Geom. 96 (2009), 135–148.Google Scholar
[1729] Schneider, R., Weighted faces of Poisson hyperplane tessellations. Adv. Appl. Prob. (SGSA) 41 (2009), 682–694.Google Scholar
[1730] Schneider, R., Vertex numbers of weighted faces in Poisson hyperplane mosaics. Discrete Comput. Geom. 44 (2010), 599–607.Google Scholar
[1731] Schneider, R., Local tensor valuations on convex polytopes. Monatsh. Math., DOI 10.1007/s00605-012-0430-9.
[1732] Schneider, R., Affine surface area and convex bodies of elliptic type. Period. Math. Hungar. (in press).
[1733] Schneider, R., Schuster, F. E., Rotation invariant Minkowski valuations. Int. Math. Res. Not. 2006, Art. ID 72894, 20 pp.
[1734] Schneider, R., Schuster, F. E., Rotation invariant Minkowski classes of convex bodies. Mathematika 54 (2007), 1–13.Google Scholar
[1735] Schneider, R., Schuster, R., Tensor valuations on convex bodies and integral geometry, II. Rend. Circ. Mat. Palermo, Ser. II, Suppl. 70 (2002), 623–633.Google Scholar
[1736] Schneider, R., Schuster, R., Particle orientation from section stereology. Rend. Circ. Mat. Palermo, Ser. II, Suppl. 77 (2006), 295–314.Google Scholar
[1737] Schneider, R., Weil, W., Über die Bestimmung eines konvexen Körpers durch die Inhalte seiner Projektionen. Math. Z. 116 (1970), 338–348.Google Scholar
[1738] Schneider, R., Weil, W., Zonoids and related topics. In Convexity and its Applications (P. M., Gruber, J. M., Wills, eds), pp. 296–317, Birkhäuser, Basel, 1983.
[1739] Schneider, R., Weil, W., Translative and kinematic integral formulae for curvature measures. Math. Nachr. 129 (1986), 67–80.Google Scholar
[1740] Schneider, R., Weil, W., Stochastic and Integral Geometry. Springer, Berlin, 2008.
[1741] Schneider, R., Wieacker, J. A., Approximation of convex bodies by polytopes. Bull. London Math. Soc. 13 (1981), 149–156.Google Scholar
[1742] Scholtes, S., On convex bodies and some applications to optimization. Ph.D. Thesis, Üniversity of Karlsruhe, 1990.
[1743] Scholtes, S., Minimal pairs of convex bodies in two dimensions. Mathematika 39 (1992), 267–273.Google Scholar
[1744] Schröcker, H.-P., Uniqueness results for minimal enclosing ellipsoids. Comput. Aided Geom. Design 25 (2008), 756–762.Google Scholar
[1745] Schürger, K., Ergodic theorems for subadditive superstationary families of convex compact random sets. Z. Wahrscheinlichkeitsth. verw. Geb. 62 (1983), 125–135.Google Scholar
[1746] Schuster, F. E., Volume inequalities and additive maps of convex bodies. Mathematika 53 (2006), 211–234.Google Scholar
[1747] Schuster, F. E., Convolutions and multiplier transformations of convex bodies. Trans. Amer. Math. Soc. 359 (2007), 5567–5591.Google Scholar
[1748] Schuster, F. E., Valuations and Busemann–Petty type problems. Adv. Math. 219 (2008), 344–368.Google Scholar
[1749] Schuster, F. E., Crofton measures and Minkowski valuations. Duke Math. J. 154 (2010), 1–30.Google Scholar
[1750] Schuster, F. E., Wannerer, T., GL(n) contravariant Minkowski valuations. Trans. Amer. Math. Soc. 364 (2012), 815–826.Google Scholar
[1751] Schuster, F. E., Weberndorfer, M., Volume inequalities for asymmetric Wulff shapes. J. Differential Geom. 92 (2012), 263–283.Google Scholar
[1752] Schuster, R., Tensorwertige additive Funktionen auf konvexen Körpern. Doctoral Thesis, University of Freiburg, 2004.
[1753] Schutt, C., The convex floating body and polyhedral approximation. Israel J. Math. 73 (1991), 65–77.Google Scholar
[1754] Schutt, C., On the affine surface area. Proc. Amer. Math. Soc. 118 (1993), 1213–1218.Google Scholar
[1755] Schutt, C., Random polytopes and affine surface area. Math. Nachr. 170 (1994), 227–249.Google Scholar
[1756] Schutt, C., Floating body, illumination body, and polytopal approximation. In Convex Geometric Analysis (Berkeley, CA, 1996; K. M. Ball, V. Milman, eds), Math. Sci. Res. Inst. Publ. 34, pp. 203–229, Cambridge Univ. Press, Cambridge, 1999.
[1757] Schutt, C., Werner, E., The convex floating body. Math. Scand. 66 (1990), 275–290.Google Scholar
[1758] Schutt, C., Werner, E., The convex floating body of almost polygonal bodies. Geom. Dedicata 44 (1992), 169–188.Google Scholar
[1759] Schutt, C., Werner, E., Homothetic floating bodies. Geom. Dedicata 49 (1994), 335–348.Google Scholar
[1760] Schutt, C., Werner, E., Polytopes with vertices chosen randomly from the boundary of a convex body. In Geometric Aspects of Functional Analysis, Lecture Notes in Math. 1807, pp. 241–422, Springer, Berlin, 2003.
[1761] Schutt, C., Werner, E., Surface bodies and p-affine surface area. Adv. Math. 187 (2004), 98–145.Google Scholar
[1762] Schwarz, T., Zamfirescu, T., Typical convex sets of convex sets. J. Austral. Math. Soc. (A) 43 (1987), 287–290.Google Scholar
[1763] Schwella, A., Special inequalities for Poisson and Cox hyperplane processes. Diploma Thesis, University of Jena, 2001.
[1764] Seeley, R. T., Spherical harmonics. Amer. Math. Monthly 73 (1966), 115–121.Google Scholar
[1765] Segal, A., Remark on stability of Brunn–Minkowski and isoperimetric inequalities for convex bodies. In Geometric Aspects ofFunctional Analysis (B., Klartag, S., Mendelson, V. D., Milman, eds), Lecture Notes in Math. 2050, pp. 381–392, Springer, Berlin, 2012.
[1766] Segal, A., Slomka, B. A., Projections of log-concave functions. Commun. Contemp. Math. 14:5, 1250036, 16 pp.
[1767] Segal, A., Slomka, B. A., Duality on convex sets in generalized regions. In Asymptotic Geometric Analysis, Proc. of the Fall 2010 Fields Institute Thematic Program (M., Ludwig, V. D., Milman, V., Pӗstov, N., Tomczak-Jaegermann, eds.), Fields Institute Communications 68, pp. 289–298, Springer, New York, 2013.
[1768] Sen'kin, E. P., Stability of the width of a general closed convex surface depending on the change of the integral mean curvature (in Russian). Ukrain. Geom. Sb. 2 (1966), 88–89.Google Scholar
[1769] Sen'kin, E. P., Stability of the width of a general closed convex surface depending on the change of the integral mean curvature, II (in Russian). Ukrain. Geom. Sb. 3 (1966), 93–94.Google Scholar
[1770] Serra, J., Image Analysis and Mathematical Morphology. Academic Press, London, 1982.
[1771] Serra, J. (ed.), Image Analysis and Mathematical Morphology, Vol. 2: Theoretical Advances. Academic Press, London, 1988.
[1772] Shahin, J. K., Some integral formulas for closed hypersurfaces in Euclidean space. Proc. Amer. Math. Soc. 19 (1968), 609–613.Google Scholar
[1773] Sheng, W., Trudinger, N., Wang, X.-J., Convex hypersurfaces of prescribed Weingarten curvature. Comm. Anal. Geom. 12 (2004), 213–232.Google Scholar
[1774] Sheng, W., Trudinger, N., Wang, X.-J., Enclosed convex hypersurfaces with maximal affine surface area. Math. Z. 252 (2006), 497–510.Google Scholar
[1775] Shephard, G. C., Inequalities between mixed volumes of convex sets. Mathematika 7 (1960), 125–138.Google Scholar
[1776] Shephard, G. C., Decomposable convex polyhedra. Mathematika 10 (1963), 89–95.Google Scholar
[1777] Shephard, G. C., Approximation problems for convex polyhedra. Mathematika 11 (1964), 9–18.Google Scholar
[1778] Shephard, G. C., Shadow systems of convex sets. Israel J. Math. 2 (1964), 229–236.Google Scholar
[1779] Shephard, G. C., The Steiner point of a convex polytope. Canad. J. Math. 18 (1966), 1294–1300.Google Scholar
[1780] Shephard, G. C., Reducible convex sets. Mathematika 13 (1966), 49–50.Google Scholar
[1781] Shephard, G. C., A pre-Hilbert space consisting of classes of convex sets. Israel J. Math. 4 (1966), 1–10.Google Scholar
[1782] Shephard, G. C., Polytopes with centrally symmetric faces. Canad. J. Math. 19 (1967), 1206–1213.Google Scholar
[1783] Shephard, G. C., The mean width of a convex polytope. J. London Math. Soc. 43 (1968), 207–209.Google Scholar
[1784] Shephard, G. C., A uniqueness theorem for the Steiner point of a convex region. J. London Math. Soc. 43 (1968), 439–444.Google Scholar
[1785] Shephard, G. C., Euler-type relations for convex polytopes. Proc. London Math. Soc. 18 (3) (1968), 597–606.Google Scholar
[1786] Shephard, G. C., Diagrams for positive bases. J. London Math. Soc. 4 (2) (1971), 165–175.Google Scholar
[1787] Shephard, G. C., Combinatorial properties of associated zonotopes. Canad. J. Math. 26 (1974), 302–321.Google Scholar
[1788] Shephard, G. C., Space-filling zonotopes. Mathematika 21 (1974), 261–269.Google Scholar
[1789] Shephard, G. C., Webster, R. J., Metrics for sets of convex bodies. Mathematika 12 (1965), 73–88.Google Scholar
[1790] Si, L., Xiong, B., Yu, W., Dual Lp affine isoperimetric inequalities. J. Inequal. Appl. 2006, 2006:84825, 11 pp.Google Scholar
[1791] Silverman, R., Decomposition of plane convex sets, Part I. Pacific J. Math. 47 (1973), 521–530.Google Scholar
[1792] Simon, U., Minkowskische Integralformeln und ihre Anwendungen in der Differentialgeometrie im Großen. Math. Ann. 173 (1967), 307–331.Google Scholar
[1793] Slomka, B. A., On duality and endomorphisms of lattices of closed convex sets. Adv. Geom. 11 (2011), 225–239.Google Scholar
[1794] Smilansky, Z., An indecomposable polytope all of whose facets are decomposable. Mathematika 33 (1986), 192–196.Google Scholar
[1795] Smilansky, Z., Decomposability of polytopes and polyhedra. Geom. Dedicata 24 (1987), 29–49.Google Scholar
[1796] Soberon, P., Equal coefficients and tolerance in colored Tverberg partitions. Preprint (2012).
[1797] Soberon, P., Strausz, R., A generalization of Tverberg's theorem. Discrete Comput. Geom. 47 (2012), 455–160.Google Scholar
[1798] Soltan, V., The characteristic intersection property of line-free Choquet simplices in Ed. Discrete Comput. Geom. 29 (2003), 561–573.Google Scholar
[1799] Soltan, V., Choquet simplexes in finite dimension: a survey. Expo. Math. 22 (2004), 301–315.Google Scholar
[1800] Sorokin, V. A., Classes of convex sets as generalized metric spaces (in Russian). Mat. Zametki 4 (1968), 45–52. English translation: Math. Notes 4 (1968), 517–521.Google Scholar
[1801] Spiegel, W., Ein Konvergenzsatz für eine gewisse Klasse kompakter Punktmengen. J. Reine Angew. Math. 227 (1975), 218–220.Google Scholar
[1802] Spiegel, W., Ein Zerlegungssatz für spezielle EiKörperabbildungen in den euklidischen Raum. J. Reine Angew. Math. 283/284 (1976), 282–286.Google Scholar
[1803] Spiegel, W., Ein Beitrag Über additive, translationsinvariante, stetige Eikörperfunktionale. Geom. Dedicata 7 (1978), 9–19.Google Scholar
[1804] Stachó, L. L., On curvature measures. Acta.Sci.Math. 41 (1979), 191–207.Google Scholar
[1805] Stancu, A., The discrete planar L0-Minkowski problem. Adv. Math. 167 (2002), 160–174.Google Scholar
[1806] Stancu, A., On the number of solutions to the discrete two-dimensional L0-Minkowski problem. Adv. Math. 180 (2003), 290–323.Google Scholar
[1807] Stancu, A., The floating body problem. Bull. London Math. Soc. 38 (2006), 839–846.Google Scholar
[1808] Stancu, A., The necessary condition for the discrete L0-Minkowski problem in ℝ2. J. Geom. 88 (2008), 162–168.Google Scholar
[1809] Stancu, A., Two volume-product inequalities and their applications. Canad. Math. Bull. 52 (2009), 464–472.Google Scholar
[1810] Stancu, A., Centro-affine invariants for smooth convex bodies. Int. Math. Res. Not. 2012, No. 10, 2289–2320.
[1811] Stancu, A., Werner, E., New higher-order equiaffine invariants. Israel J. Math. 171 (2009), 221–235.Google Scholar
[1812] Stanley, R. P., Two combinatorial applications of the Aleksandrov–Fenchel inequalities. J. Combinatorial Theory, Ser. A 31 (1981), 56–65.Google Scholar
[1813] Stanley, R. P., Two poset polytopes. Discrete Comput. Geom. 1 (1986), 9–23.Google Scholar
[1814] Starr, R., Quasi-equilibria in markets with nonconvex preferences. Econometrica 37 (1969), 25–38.Google Scholar
[1815] Starr, R., Approximation of points of the convex hull of a sum of sets by points of the sum: an elementary approach. J. Econom. Theory 25 (1981), 314–317.Google Scholar
[1816] Steenaerts, P., Mittlere Schattengrenzenlänge konvexer Körper. Results Math. 8 (1985), 54–77.Google Scholar
[1817] Steiner, J., Von dem Krümmungsschwerpunkte ebener Curven. J. Reine Angew. Math. 21 (1840), 33–63. Ges. Werke, vol. 2, pp. 99–159, Reimer, Berlin, 1882.Google Scholar
[1818] Steiner, J., Über parallele Flächen. Monatsber. Preuß. Akad. Wiss., Berlin (1840) 114–118. Ges Werke, vol. 2, pp. 171–176, Reimer, Berlin, 1882.
[1819] Stoka, M. I., Géométrie Intégrale. Gauthier–Villars, Paris, 1968.
[1820] Stoker, J. J., Über die Gestalt der positiv gekrÜmmten offenen Flächen. Compositio Math. 3 (1936), 55–88.Google Scholar
[1821] Stoker, J. J., On the uniqueness theorems for the embedding of convex surfaces in three-dimensional space. Commun. Pure Appl. Math. 3 (1950), 231–257.Google Scholar
[1822] Stoyan, D., Kendall, W. S., Mecke, J., Stochastic Geometry and Its Applications, 2nd edn., John Wiley & Sons, Chichester, 1995.
[1823] Straszewicz, S., Über exponierte Punkte abgeschlossener Punktmengen. Fund. Math. 24 (1935), 139–143.Google Scholar
[1824] Su, B., On Steiner's curvature centroid. Japan. J. Math. 4 (1927), 195–201.Google Scholar
[1825] Su, B., On Steiner's curvature centroid, II. Japan. J. Math. 4 (1927), 265–269.Google Scholar
[1826] Sung, C. H., Tam, B. S., On the cone of a finite-dimensional compact convex set at a point. Linear Algebra Appl. 90 (1987), 47–55.Google Scholar
[1827] Süss, W., Zur relativen Differentialgeometrie, V: Über Eihyperflächen im Rn+1. TôhokuMath. J. 30 (1929), 90–95.Google Scholar
[1828] Süss, W., Bestimmung einer geschlossenen konvexen Fläche durch die Gaußsche Krümmung. Sitzungsber. Preuß. Akad. Wiss. 1931, 686–695.
[1829] Süss, W., Die Isoperimetrie der mehrdimensionalen Kugel. Sitzungsber. Preuß. Akad. Wiss. 1931, 342–344.
[1830] Süss, W., Zusammensetzung von Eikörpern und homothetische Eiflächen. Töhoku Math. J. 35 (1932), 47–50.Google Scholar
[1831] Süss, W., Eindeutigkeitssätze und ein Existenztheorem in der Theorie der Eiflächen im Großen. Töhoku Math. J. 35 (1932), 290–293.Google Scholar
[1832] Süss, W., Bestimmung einer geschlossenen konvexen Fläche durch die Summe ihrer Hauptkrümmungsradien. Math. Ann. 108 (1933), 143–148.Google Scholar
[1833] Szarek, S. J., Voiculescu, D., Volumes of restricted Minkowski sums and the free analogue of the entropy power inequality. Comm. Math. Phys. 178 (1996), 563–570.Google Scholar
[1834] Sz.-Nagy, B. v. (Szökefalvi–Nagy), Über ein geometrisches Extremalproblem. Acta. Sci. Math. 9 (1940), 253–257.Google Scholar
[1835] Sz.-Nagy, B. v. (Szökefalvi–Nagy), Über Parallelmengen nichtkonvexer ebener Bereiche. Acta Sci. Math. Szeged 20 (1959), 36–47.Google Scholar
[1836] Sz.-Nagy, G. v. (Szökefalvi–Nagy), Schwerpunkt von konvexen Kurven und von konvexen Flächen. Portugaliae Math. 8 (1949), 17–22.Google Scholar
[1837] Talenti, G., The standard isoperimetric theorem. In Handbook of Convex Geometry (P. M., Gruber, J. M., Wills, eds), vol. A, pp. 73–123, North-Holland, Amsterdam, 1993.
[1838] Talenti, G., On isoperimetric theorems of mathematical physics. In Handbook of Convex Geometry (P. M., Gruber, J. M., Wills, eds), vol. B, pp. 1131–1147, North-Holland, Amsterdam, 1993.
[1839] Tanno, S., C∞-approximation of continuous ovals of constant width. J. Math. Soc. Japan 28 (1976), 384–395.Google Scholar
[1840] Teissier, B., Du théorème de l'index de Hodge aux inégalités isopérimétriques. C. R. Acad. Sci. Paris Sér. A–B 288 (1979), No. 4, A287–A289.Google Scholar
[1841] Teissier, B., Variétés toriques et polytopes. In Séminaire Bourbaki, vol. 1980/1981, Lecture Notes in Math. 901, pp. 71–84, Springer, Berlin, 1981.
[1842] Teissier, B., Bonnesen-type inequalities in algebraic geometry, I: Introduction to the problem. In Seminar on Differential Geometry (S. T., Yau, ed.), Ann. Math. Studies 102 (1982), pp. 85–105, Princeton Univ. Press, Princeton, NJ.
[1843] Tennison, R. L., An almost-measure of symmetry. Amer. Math. Monthly 74 (1967), 820–823.Google Scholar
[1844] Thomas, C., Extremum properties of the intersection densities of stationary Poisson hyperplane processes. Math. Operationsforsch. Statist. (Ser. Statist.) 15 (1984), 443–449.Google Scholar
[1845] Thompson, A. C., Minkowski Geometry. Cambridge Univ. Press, Cambridge, 1996.
[1846] Thompson, A. C., Dualität, Volumenprodukt und Mahlersche Ungleichungen. Math. Semesterber. 54 (2007), 141–153.Google Scholar
[1847] Tiwary, H. R., On the hardness of computing intersection, union and Minkowski sum of polytopes. Discrete Comput. Geom. 40 (2008), 469–479.Google Scholar
[1848] Tölke, J., Wills, J. M. (eds), Contributions to Geometry. Proc. Geom. Symp. Siegen 1978, Birkhäuser, Basel, 1979.
[1849] Tolstonogov, A. A., Support functions of convex compacta (in Russian). Mat. Zametki 22 (1977), 203–213. English translation: Math. Notes 22 (1977), 604–609.Google Scholar
[1850] Tomczak-Jaegermann, N., Banach–Mazur Distances and Finite-dimensional Operator Ideals. Pitman Monographs and Surveys in Pure and Applied Mathematics, 38. Longman Scientific & Technical, Harlow; John Wiley & Sons, New York, 1989.
[1851] Treibergs, A., Bounds for hyperspheres of prescribed Gaussian curvature. J. Differential Geom. 31 (1990), 913–926.Google Scholar
[1852] Trudinger, N. S., Isoperimetric inequalities for quermassintegrals. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 14 (1994), 411–425.Google Scholar
[1853] Trudinger, N. S., Wang, X.-J., Hessian measures, I. Topol. Methods Nonlinear Anal. 10 (1997), 225–239.Google Scholar
[1854] Tsang, A., Valuations on Lp-spaces. Int. Math. Res. Not. IMRN 2010, No. 20, 3993–4023.
[1855] Tsang, A., Minkowski valuations on Lp-spaces. Trans. Amer. Math. Soc. 364 (2012), 6159–6186.Google Scholar
[1856] Tsirelson, B. S., A geometric approach to maximum likelihood estimation for infinite-dimensional Gaussian location, II. Theory Prob. Appl. 30 (1985), 820–828.Google Scholar
[1857] Tsolomitis, A., Convolution bodies and their limiting behaviour. Duke Math. J. 87 (1997), 181–203.Google Scholar
[1858] Tverberg, H., A generalization of Radon's theorem. J. London Math. Soc. 41 (1966), 123–128.Google Scholar
[1859] Tverberg, H., A generalization of Radon's theorem, II. Bull. Austral. Math. Soc. 24 (1981), 321–325.Google Scholar
[1860] Uhrin, B., Sharpenings and extensions of Brunn–Minkowski–Lusternik inequality. Technical Report No. 203, Stanford Univ., Dept. of Statistics, Stanford, CA, 1984.
[1861] Uhrin, B., Extensions and sharpenings of Brunn–Minkowski and Bonnesen inequalities. In Intuitive Geometry, Siófok 1985 (K., Böröczky, G. Fejes, Tóth, eds) Colloquia Math. Soc. János Bolyai 48, pp. 551–571, North-Holland, Amsterdam, 1987.
[1862] Uhrin, B., Curvilinear extensions of the Brunn–Minkowski–Lusternik inequality. Adv. Math. 109 (1994), 288–312.Google Scholar
[1863] Umanskiy, V., On solvability of two-dimensional Lp-Minkowski problem. Adv. Math. 180 (2003), 176–186.Google Scholar
[1864] Urbański, R., A generalization of the Minkowski–Rådstråm–Hörmander theorem. Bull. Acad. Polon. Sci., Sér. Sci., Math., Astr., Phys. 24 (1976), 709–715.Google Scholar
[1865] Valdimarsson, S. I., Optimisers for the Brascamp–Lieb inequality. Israel J. Math. 168 (2008), 253–274.Google Scholar
[1866] Valentine, F. A., Convex Sets. McGraw-Hill, New York, 1964.
[1867] Valette, G., Couples de corps convexes dont la différence des largeurs est constante. Bull. Soc. Math. Belg. 23 (1971), 493–499.Google Scholar
[1868] van Heijenoort, J., On locally convex manifolds. Commun. Pure Appl. Math. 5 (1952), 223–242.Google Scholar
[1869] van Schaftingen, J., Approximation of symmetrizations and symmetry of critical points. Topol. Methods Nonlinear Anal. 28 (2006), 61–85.Google Scholar
[1870] Vidal Abascal, E., A generalization of Steiner's formulae. Bull. Amer. Math. Soc. 53 (1947), 841–844.Google Scholar
[1871] Vilenkin, N. J., Special Functions and the Theory of Group Representations. Transl. Math. Monographs, vol. 22, Amer. Math. Soc., Providence, RI, 1968.
[1872] Vincensini, P., Sur les corps convexes admettant un domaine vectoriel donné. C. R. Acad. Sci. Paris 201 (1935), 761–763.Google Scholar
[1873] Vincensini, P., Sur les domaines vectoriels des corps convexes. J. Math. Pures Appl. 15 (1936), 373–383.Google Scholar
[1874] Vincensini, P., Sur le prolongement des séries linéaires de corps convexes. Applications. Rend. Circ. Mat. Palermo 60 (1937), 361–372.Google Scholar
[1875] Vincensini, P., Les domaines vectoriels et la théorie des corps convexes. L'Enseignement Math. (1937), 69–80.
[1876] Vincensini, P., Sur une transformation des corps convexes et son application à la construction de l'ensemble des corps convexes de l'espace à n dimensions à partir de certains sous-ensembles bases. Bull. Soc. Math. France 65 (1937), 175–189.Google Scholar
[1877] Vincensini, P., Corps Convexes. Séries linéaires. Domaines vectoriels. Mem. des Sci. Math. 44, Gauthier–Villars, Paris, 1938.
[1878] Vincensini, P., Sur l'application d'une méthode géométrique à l'étude de certains ensembles de corps convexes. In Colloque sur les Questions de Réalité en Géométrie, pp. 77–94, Liège, 1955, Paris, 1956.
[1879] Vincensini, P., Sur un invariant de partition de l'ensemble des corps convexes de l'espace euclidien à n dimensions. C. R. Acad. Sci. Paris 245 (1957), 132–133.Google Scholar
[1880] Vincensini, P., Questions liées à la notion de géométrie différentielle globale. Rev. Roum. Math. Pures Appl. 10 (1965), 877–893.Google Scholar
[1881] Vincensini, P., Zamfirescu, T., Sur une fibration de l'espace des corps convexes. C. R. Acad. Sci. Paris Sér. A–B 264 (1967), A510–A511.Google Scholar
[1882] Viro, O. Y., Some integral calculus based on Euler characteristic. Topology and Geometry: Rohlin Seminar, Lecture Notes in Math. 1346, pp. 127–138, Springer, Berlin, 1988.
[1883] Vitale, R. A., Approximation of convex set-valued functions. J. Approx. Theory 26 (1979), 301–316.Google Scholar
[1884] Vitale, R. A., On Gaussian random sets. In Proc. Oberwolfach Conf. Stochastic Geom., Geom. Statist., Stereology (R. V., Ambartzumian, W., Weil, eds), pp. 222–224, Teubner, Leipzig, 1984.
[1885] Vitale, R. A., Lp metrics for compact, convex sets. J. Approx. Theory 45 (1985), 280–287.Google Scholar
[1886] Vitale, R. A., The Steiner point in infinite dimensions. Israel J. Math. 52 (1985), 245–250.Google Scholar
[1887] Vitale, R. A., The Brunn–Minkowski inequality for random sets. J. Multivariate Anal. 33 (1990), 286–293.Google Scholar
[1888] Vitale, R. A., The translative expectation of a random set. J. Math. Anal. Appl. 160 (1991), 556–562.Google Scholar
[1889] Vitale, R. A., On the volume of parallel bodies: a probabilistic derivation of the Steiner formula. Adv. Appl. Prob. 27 (1995), 97–101.Google Scholar
[1890] Vitale, R. A., The Wills functional and Gaussian processes. Ann. of Prob. 24 (1996), 2172–2178.Google Scholar
[1891] Vitale, R. A., Intrinsic volumes and Gaussian processes. Adv. Appl. Prob. (SGSA) 33 (2001), 354–364.Google Scholar
[1892] Vitale, R. A., On the Gaussian representation of intrinsic volumes. Statist. Probab. Lett. 78 (2008), 1246–1249.Google Scholar
[1893] Vitale, R. A., Convex bodies and Gaussian processes. Image Anal. Stereol. 29 (2010), 13–18.Google Scholar
[1894] Vlasov, L. P., Approximative properties of sets in normed linear spaces (in Russian). Usp. Mat. Nauk 28 (1973), 3–66. English translation: Russ. Math. Surveys 28 (1973), 1–66.Google Scholar
[1895] Vodop'yanov, S. K., Estimates of the deviation from a sphere of quasi-umbilical surfaces. Sibirskii Mat. Zh. 11 (1970), 971–987. English translation: Siberian Math. J. 11 (1970), 724–735.Google Scholar
[1896] Voiculescu, D., O ecuatie privind corpurile convexe si aplicatii la corpurile asociate unui corp convex. Stud. Cerc. Mat. 18 (1966), 741–745.Google Scholar
[1897] Volčič, A., Random Steiner symmetrization of sets and functions. Calc. Var., DOI 10.1007/s00526-012-0493-4.
[1898] Volkov, Yu. A., Stability of the solution of Minkowski's problem (in Russian). Vestnik Leningrad. Univ., Ser. Mat. Meh. Astronom. 18 (1963), 33–43.Google Scholar
[1899] Volkov, Yu., A.Oliker, V. I., Uniqueness of the solution of Christoffel's problem for nonclosed surfaces (in Russian). Mat. Zametki 8 (1970), 251–257. English translation: Math. Notes 8 (1970), 611–614.Google Scholar
[1900] Volland, W., Ein Fortsetzungssatz für additive Eipolyederfunktionale im euklidischen Raum. Arch. Math. 8 (1957), 144–149.Google Scholar
[1901] Vritsiou, B.-H., Further unifying two approaches to the hyperplane conjecture. Int. Math. Res. Not. (in press).
[1902] Waksman, Z., Epelman, M. S., On point classification in convex sets. Math. Scand. 38 (1976), 83–96.Google Scholar
[1903] Wallen, L. J., All the way with Wirtinger: a short proof of Bonnesen's inequality. Amer. Math. Monthly 94 (1987), 440–442.Google Scholar
[1904] Walter, R., Some analytical properties of geodesically convex sets. Abh. Math. Sem. Univ. Hamburg 45 (1976), 263–282.Google Scholar
[1905] Wan, X., Wang, W. (Weidong), Shephard type problems for the new geometric body Γ−p(K). Math. Inequal. Appl. 12 (2012), 645–656.Google Scholar
[1906] Wang, G., Leng, G., Huang, Q., Volume inequalities for Orlicz zonotopes. J. Math. Anal. Appl. 391 (2012), 183–189.Google Scholar
[1907] Wang, T., The affine Sobolev–Zhang inequality on BV(ℝn). Adv. Math. 230 (2012), 2457–2473.Google Scholar
[1908] Wang, T., Semi-valuations on BV(ℝn). Preprint.
[1909] Wang, W. (Wei), Liu, L., He, B., Lp radial Minkowski homomorphisms. Taiwanese J. Math. 15 (2011), 1183–1199.Google Scholar
[1910] Wang, W. (Weidong), On extensions of the Zhang's projection inequality. Adv. Appl. Math. Sci. 2 (2010), 199–207.Google Scholar
[1911] Wang, W. (Weidong), Feng, Y., A general Lp-version of Petty's affine projection inequality. Taiwanese J. Math. 17 (2013), 517–528.Google Scholar
[1912] Wang, W. (Wei), He, B., Lp-dual affine surface area. J. Math. Anal. Appl. 348 (2008), 746–751.Google Scholar
[1913] Wang, W. (Weidong), Leng, G., Lp-dual mixed quermassintegrals. Indian J. Pure Appl. Math. 36 (2005), 177–188. Corrigendum: Indian J. Pure Appl. Math. 38 (2007), 609.Google Scholar
[1914] Wang, W. (Weidong), Leng, G., Lp-mixed affine surface area. J. Math. Anal. Appl. 335 (2007), 341–354.Google Scholar
[1915] Wang, W. (Weidong), Leng, G., The Petty projection inequality for Lp-mixed projection bodies. Acta Math. Sinica (English series) 23 (2007), 1485–1494.Google Scholar
[1916] Wang, W. (Weidong), Leng, G., On the Lp-version of the Petty's conjectured projection inequality and its applications. Taiwanese J. Math. 12 (2008), 1067–1086.Google Scholar
[1917] Wang, W. (Weidong), Leng, G., Some affine isoperimetric inequalities associated with Lp-affine surface area. Houston J. Math. 34 (2008), 443–453.Google Scholar
[1918] Wang, W. (Weidong), Leng, G., Inequalities of the quermassintegrals for the Lp-projection body and the Lp-centroid body. Acta Math. Scientia 30B (2010), 359–368.Google Scholar
[1919] Wang, W. (Weidong), Qi, C., Lp-dual geominimal surface area. J. Inequal. Appl. 2011, 2011:6, 10 pp.Google Scholar
[1920] Wang, W. (Weidong), Wan, X., Shephard type problems for general Lp-projection bodies. Taiwanese J. Math. 16 (2012), 1749–1762.Google Scholar
[1921] Wang, W. (Weidong), Wei, D., Xiang, Y., Some inequalities for the Lp-curvature image. J. Inequal. Appl. 2009, 2009:320786, 12 pp.Google Scholar
[1922] Wannerer, T., SO(n)-equivariant Minkowski valuations. PhD Thesis, Vienna Univ. of Technology, 2011.
[1923] Wannerer, T., GL(n) equivariant Minkowski valuations. Indiana Univ. Math. J. 60 (2011), 1655–1672.Google Scholar
[1924] Wannerer, T., The module of unitarily invariant area measures. arXiv:1207.6481v1.
[1925] Weberndorfer, M., Shadow systems of asymmetric Lp zonotopes. Adv. Math. 240 (2013), 613–635.Google Scholar
[1926] Webster, A. G., The Dynamics of Particles and of Rigid, Elastic, and Fluid Bodies, 3rd edn. Teubner, Leipzig, 1925.
[1927] Webster, R. J., The space of affine-equivalence classes of compact subsets of Euclidean space. J. London Math. Soc. 40 (1965), 425–432.Google Scholar
[1928] Webster, R., Convexity. Oxford Univ. Press, Oxford, 1994.
[1929] Wegmann, R., Einige Maßzahlen für nichtkonvexe Mengen. Arch. Math. 34 (1980), 69–74.Google Scholar
[1930] Wegner, B., Analytic approximation of continuous ovals of constant width. J. Math. Soc. Japan 29 (1977), 537–540.Google Scholar
[1931] Weil, W., Über die Projektionenkörper konvexer Polytope. Arch. Math. 22 (1971), 664–672.Google Scholar
[1932] Weil, W., Ein Approximationssatz für konvexe Körper. Manuscripta Math. 8 (1973), 335–362.Google Scholar
[1933] Weil, W., Über den Vektorraum der Differenzen von Stützfunktionen konvexer Körper. Math. Nachr. 59 (1974), 353–369.Google Scholar
[1934] Weil, W., Decomposition of convex bodies. Mathematika 21 (1974), 19–25.Google Scholar
[1935] Weil, W., On mixed volumes of nonconvex sets. Proc. Amer. Math. Soc. 53 (1975), 191–194.Google Scholar
[1936] Weil, W., Einschachtelung konvexer Körper. Arch. Math. 26 (1975), 666–669.Google Scholar
[1937] Weil, W., Kontinuierliche Linearkombination von Strecken. Math. Z. 148 (1976), 71–84.Google Scholar
[1938] Weil, W., Centrally symmetric convex bodies and distributions. Israel J. Math. 24 (1976), 352–367.Google Scholar
[1939] Weil, W., Blaschkes Problem der lokalen Charakterisierung von Zonoiden. Arch. Math. 29 (1977), 655–659.Google Scholar
[1940] Weil, W., Centrally symmetric convex bodies and distributions, II. Israel J. Math. 32 (1979), 173–182.Google Scholar
[1941] Weil, W., Berührwahrscheinlichkeiten für konvexe Körper. Z. Wahrscheinlichkeitsth. verw. Geb. 48 (1979), 327–338.Google Scholar
[1942] Weil, W., Kinematic integral formulas for convex bodies. In Contributions to Geometry, Proc. Geometry Symp., Siegen, 1978 (J., Tölke, J. M., Wills, eds), pp. 60–76, Birkhäuser, Basel, 1979.
[1943] Weil, W., On surface area measures of convex bodies. Geom. Dedicata 9 (1980), 299–306.Google Scholar
[1944] Weil, W., Eine Charakterisierung von Summanden konvexer Körper. Arch. Math. 34 (1980), 283–288.Google Scholar
[1945] Weil, W., Zufällige Berührung konvexer Körper durch q-dimensionale Ebenen. Resultate Math. 4 (1981), 84–101.Google Scholar
[1946] Weil, W., Das gemischte Volumen als Distribution. Manuscripta Math. 36 (1981), 1–18.Google Scholar
[1947] Weil, W., Inner contact probabilities for convex bodies. Adv. Appl. Prob. 14 (1982), 582–599.Google Scholar
[1948] Weil, W., An application of the central limit theorem for Banach space-valued random variables to the theory of random sets. Z. Wahrscheinlichkeitsth. verw. Geb. 60 (1982), 203–208.Google Scholar
[1949] Weil, W., Zonoide und verwandte Klassen konvexer Körper. Monatsh. Math. 94 (1982), 73–84.Google Scholar
[1950] Weil, W., Lectures on translative integral geometry and stochastic geometry of anisotropic random geometric structures. Rend. Sem. Mat. Messina (Serie II) 13 (1990), 79–97.Google Scholar
[1951] Weil, W., On the mean shape of particle processes. Adv. Appl. Probab. 29 (1997), 890–908.Google Scholar
[1952] Weis, S., A note on touching cones and faces. J. Convex Anal. 19 (2012), 323–353.Google Scholar
[1953] Weiss, V., Relations between mean values for stationary random hyperplane mosaics of Rd. Forschungserg. FSU N/86/33. Friedrich-Schiller-Universität, Jena, 1986.
[1954] Weissbach, B., Rotoren im regulären Dreieck. Publ. Math. Debrecen 19 (1972), 21–27.Google Scholar
[1955] Weissbach, B., Zur Inhaltsschätzung von Eibereichen. Beitr. Algebra Geom. 6 (1977), 27–35.Google Scholar
[1956] Weissbach, B., Ausbohrung von Rhomben. Beitr. Algebra Geom. 6 (1977), 153–158.Google Scholar
[1957] Weisshaupt, H., Isometries with respect to symmetric difference metrics. Studia Sci. Math. Hungar. 37 (2001), 273–318.Google Scholar
[1958] Wenger, R., Helly-type theorems and geometric transversals. In Handbook of Discrete and Computational Geometry (J. E., Goodman, J., O'Rourke, eds), 2nd edn., pp. 73–96. Chapman & Hall/CRC, Boca Raton, 2004.
[1959] Werner, E., Illumination bodies and affine surface area. Studia Math. 110 (1994), 257–269.Google Scholar
[1960] Werner, E., The illumination body of a simplex. Discrete Comput. Geom. 15 (1996), 297–306.Google Scholar
[1961] Werner, E., A general construction for affine surface areas. Studia Math. 132 (1999), 227–238.Google Scholar
[1962] Werner, E., The p-affine surface area and geometric interpretations. Rend. Circ. Mat. Palermo (2) Suppl. 70, part II (2002), 367–382.Google Scholar
[1963] Werner, E., Floating bodies and illumination bodies. In Integral Geometry and Convexity: Proceedings of the International Conference, Wuhan, China, 2004 (E. L., Grinberg, S., Li, G., Zhang, J., Zhou, eds), pp. 129–140, World Scientific, Hackensack, NJ, 2006.
[1964] Werner, E., On Lp-affine surface areas. Indiana Univ. Math. J. 56 (2007), 2305–2323.Google Scholar
[1965] Werner, E. M., Rényi divergence and Lp-affine surface area for convex bodies. Adv. Math. 230 (2012), 1040–1059.Google Scholar
[1966] Werner, E. M., f-Divergence for convex bodies. In Asymptotic Geometric Analysis, Proc. of the Fall 2010 Fields Institute Thematic Program (M., Ludwig, V. D., Milman, V., Pestor, N., Tomczak-Jaegermann, eds), Fields Institute Communications 68, pp. 381–395, Springer, New York, 2013.
[1967] Werner, E., Ye, D., New Lp affine isperimetric inequalities. Adv. Math. 218 (2008), 762–780.Google Scholar
[1968] Werner, E., Ye, D., Inequalities for mixed p-affine surface areas. Math. Ann. 347 (2010), 703–737.Google Scholar
[1969] Werner, E., Ye, D., On the homothety conjecture. Indiana Univ. Math. J. 60 (2011), 1–20.Google Scholar
[1970] Wets, R. J.-B., Über einen Satz von Klee und Strascewicz. Oper. Res. Verf. 19 (1974), 185–189.Google Scholar
[1971] Weyl, H., Über die Starrheit der Eiflächen und konvexen Polyeder. Sitzungsber. Preuß. Akad. Wiss., Berlin (1917), 250–266.
[1972] Weyl, H., On the volume of tubes. Amer. J. Math. 61 (1939), 461–172.Google Scholar
[1973] Wieacker, J. A., Intersections of random hypersurfaces and visibility. Prob. Th. Rel. Fields 71 (1986), 405–133.Google Scholar
[1974] Wieacker, J. A., Helly-type decomposition theorems for convex sets. Arch. Math. 50 (1988), 59–67.Google Scholar
[1975] Wieacker, J. A., The convex hull of a typical compact set. Math. Ann. 282 (1988), 637–644.Google Scholar
[1976] Wieacker, J. A., Decomposition of closed convex sets. Geom. Dedicata 28 (1988), 221–228.Google Scholar
[1977] Wiesler, H., On convexity for generalized barycentric coordinates (in Russian). Stud. Cerc. Mat. 15 (1964), 369–373.Google Scholar
[1978] Wijsman, R. A., Convergence of sequences of convex sets, cones and functions. Bull. Amer. Math. Soc. 70 (1964), 186–188.Google Scholar
[1979] Wijsman, R. A., Convergence of sequences of convex sets, cones and functions II. Trans. Amer. Math. Soc. 123 (1966), 32–45.Google Scholar
[1980] Wills, J. M., Zum Verhältnis von Volumen zu Oberfläche bei konvexen Körpern. Arch. Math. 21 (1970), 557–560.Google Scholar
[1981] Wills, J. M., Zur Gitterpunktanzahl konvexer Mengen. Elem. Math. 28 (1973), 57–63.Google Scholar
[1982] Wills, J. M., Kugellagerungen und Konvexgeometrie. Jahresber. Deutsche Math.-Ver. 92 (1990), 21–46.Google Scholar
[1983] Wills, J. M., Minkowski's successive minima and the zeros of a convexity function. Monatsh. Math. 109 (1990), 157–164.Google Scholar
[1984] Wills, M. D., Hausdorff distance and convex sets. J. Convex Anal. 14 (2007), 109–117.Google Scholar
[1985] Willson, S. J., A semigroup on the space of compact convex bodies. SIAM J. Math. Anal. 11 (1980), 448–457.Google Scholar
[1986] Winternitz, A., Über affine Geometrie XXXIV: Neuer Beweis für Blaschkes isoperimetrische Sätze der Affingeometrie. Abh. Math. Sem. Univ. Hamburg 1 (1922), 99–101.Google Scholar
[1987] Wintgen, P., Normal cycle and integral curvature for polyhedra in Riemannian manifolds. In Differential Geometry, Budapest, 1979 (G., Soos, J., Szenthe, eds), Coll. Math. Soc. János Bolyai 31, pp. 805–816, North-Holland, Amsterdam, 1982.
[1988] Wintner, A., On parallel surfaces. Amer. J. Math. 74 (1952), 365–376.Google Scholar
[1989] Witsenhausen, H. S., Metric inequalities and the zonoid problem. Proc. Amer. Math. Soc. 40 (1973), 517–520.Google Scholar
[1990] Witsenhausen, H. S., A support characterization of zonotopes. Mathematika 25 (1978), 13–16.Google Scholar
[1991] Wu, H., The spherical images of convex hypersurfaces. J. Differential Geom. 9 (1974), 279–290.Google Scholar
[1992] Wulff, G., Zur Frage der Geschwindigkeit des Wachstums und der Auflösung der Krystallflächen. Z. Kryst. 84 (2001), 449–530.Google Scholar
[1993] Wunderlich, W., Über eine Klasse zwangläufiger höherer Elementenpaare. Z. Angew. Math. Mech. 19 (1939), 177–181.Google Scholar
[1994] Xiao, J., The sharp Sobolev and isoperimetric inequalities split twice. Adv. Math. 211 (2007), 417–435.Google Scholar
[1995] Xiong, G., Extremum problems for the cone volume functional of convex polytopes. Adv. Math. 225 (2010), 3214–3228.Google Scholar
[1996] Xiong, G., Cheung, W.-S., Chord power integrals and radial mean bodies. J. Math. Anal. Appl. 342 (2008), 629–637.Google Scholar
[1997] Xiong, G., Cheung, W.-S., Li, D.-Y., Bounds for inclusion measures of convex bodies. Adv. Appl. Prob. 41 (2008), 584–598.Google Scholar
[1998] Xiong, G., Song, X., Inequalities for chord power integrals. J. Korean Math. Soc. 45 (2008), 587–596.Google Scholar
[1999] Yano, K., Tani, M., Integral formulas for closed hypersurfaces. Kōdai Math. Sem. Rep. 21 (1969), 335–349.Google Scholar
[2000] Yaskin, V., Yaskina, M., Centroid bodies and comparison of volumes. Indiana Univ. Math. J. 55 (2006), 1175–1194.Google Scholar
[2001] Yaskina, M., Non-intersection bodies, all of whose central sections are intersection bodies. Proc. Amer. Math. Soc. 135 (2007), 851–860.Google Scholar
[2002] Ye, D., Inequalities for general mixed affine surface areas. J. London Math. Soc. 85 (2) (2012), 101–120.Google Scholar
[2003] Yost, D., Irreducible convex sets. Mathematika 38 (1991), 134–155.Google Scholar
[2004] Yu, W., Equivalence of some affine isoperimetric inequalities. J. Inequal. Appl. 2009, 2009:981258, 11 pp.Google Scholar
[2005] Yu, W., Leng, G., Wu, D., Dual Lp John ellipsoids. Proc. Edinb. Math. Soc., II. Ser. 50 (2007), 737–753.Google Scholar
[2006] Yu, W., Wu, D., The monotony properties of generalized projection bodies, intersection bodies and centroid bodies. J. Korean Math. Soc. 43 (2006), 609–622.Google Scholar
[2007] Yuan, J., Lp intersection bodies. J. Math. Anal. Appl. 338 (2008), 1431–1439. Correction (concerning authorship): J. Math. Anal. Appl. 344 (2008), 592.Google Scholar
[2008] Yuan, J., Leng, G., Cheung, W.-S., Convex bodies with minimal p-mean width. Houston J. Math. 36 (2010), 499–511.Google Scholar
[2009] Yuan, J., Lv, S., Leng, G., The p-affine surface area. Math. Inequal. Appl. 10 (2007), 693–702.Google Scholar
[2010] Yuan, J., Si, L., Leng, G., Extremum properties of the new ellipsoid. Tamkang J. Math. 38 (2007), 159–165.Google Scholar
[2011] Yuan, J., Yuan, S., Leng, G., Inequalities for dual harmonic quermassintegrals. J. Korean Math. Soc. 43 (2006), 593–607.Google Scholar
[2012] Yuan, J., Yuan, S., Leng, G., The dual Brunn–Minkowski inequalities for intersection bodies and two additions. Taiwanese J. Math. 10 (2006), 905–915.Google Scholar
[2013] Yuan, J., Zhao, L., Duan, X., Isoperimetric inequalities for dual harmonic quermassintegrals. Austral. J. Math. Anal. Appl. 5:1 (2008), Article 6, 6 pp.Google Scholar
[2014] Yuan, J., Zhao, L., Leng, G., Inequalities for Lp centroid body. Taiwanese J. Math. 11 (2007), 1315–1325.Google Scholar
[2015] Yuan, J., Zhu, H., Leng, G., Inequalities for star duals of intersection bodies. J. Korean Math. Soc. 44 (2007), 297–306.Google Scholar
[2016] Yuan, S., Leng, G., Inequalities for mixed intersection bodies. Chin. Ann. Math. 26B (2005), 423–436.Google Scholar
[2017] Zaguskin, V. L., On circumscribed and inscribed ellipsoids of extremal volume (in Russian). Uspehi Mat. Nauk 13 (1958), 89–93.Google Scholar
[2018] Zähle, M., Curvature measures and random sets, I. Math. Nachr. 119 (1984), 327–339.Google Scholar
[2019] Zähle, M., Properties of signed curvature measures. In Proc. Conf. Stochastic Geom., Geom. Statist., Stereology, Oberwolfach, 1983 (R. V., Ambartzumian, W., Weil, eds), pp. 256–266, Teubner, Leipzig, 1984.
[2020] Zähle, M., Integral and current representation of Federer's curvature measures. Arch. Math. 46 (1986), 557–567.Google Scholar
[2021] Zähle, M., Curvatures and currents for unions of sets with positive reach. Geom. Dedicata 23 (1987), 155–171.Google Scholar
[2022] Zähle, M., Normal cycles and second order rectifiable sets. Forschungsergebnisse FSU N/87/40. Friedrich-Schiller-Universität, Jena, 1987.
[2023] Zähle, M., Polyhedron theorems for non-smooth cell complexes. Math. Nachr. 131 (1987), 299–310.Google Scholar
[2024] Zähle, M., Random cell complexes and generalized sets. Ann. Prob. 16 (1988), 1742–1766.Google Scholar
[2025] Zähle, M., Absolute curvature measures. Math. Nachr. 140 (1989), 83–90.Google Scholar
[2026] Zähle, M., Approximation and characterization of generalized Lipschitz–Killing curvatures. Ann. Global Anal. Geom. 8 (1990), 249–260.Google Scholar
[2027] Zajíček, L., On the differentiation of convex functions in finite and infinite dimensional spaces. Czech. Math. J. 29 (1979), 340–348.Google Scholar
[2028] Zalgaller, V. A., Über k-dimensionale Richtungen, die für einen konvexen Körper F In Rn singulär sind (in Russian). Zapiski naučn. Sem. Leningrad. Otd. mat. Inst. Steklov 27 (1972), 67–72. English translation: J. Soviet Math. 3 (1972), 437–441.Google Scholar
[2029] Zamfirescu, T., Sur les corps associés à un corps convexe. Rev. Roum. Math. Pures Appl. 11 (1966), 727–735.Google Scholar
[2030] Zamfirescu, T., Sur les séries linéaires de corps convexes à frontières non diflérentiables et applications à la réductibilité. Rev. Roum. Math. Pures. Appl. 11 (1966), 1015–1022.Google Scholar
[2031] Zamfirescu, T., Réductibilité et séries linéaires de corps convexes. L'Enseignement Math. 12 (1966), 57–67.Google Scholar
[2032] Zamfirescu, T., Sur la réductibilité des corps convexes. Math. Z. 95 (1967), 20–33.Google Scholar
[2033] Zamfirescu, T., Sur quelques questions de continuité liées à la réductibilité des corps convexes. Rev. Roum. Math. Pures Appl. 21 (1967), 989–998.Google Scholar
[2034] Zamfirescu, T., Reducibility of convex bodies. Proc. London Math. Soc. 17 (1967), 653–668.Google Scholar
[2035] Zamfirescu, T., Conditions nécessaires et suffisantes pour la réductibilité des voisinages des corps convexes. Rev. Roum. Math. Pures Appl. 21 (1967), 1523–1527.Google Scholar
[2036] Zamfirescu, T., Two characterizations of the reducible convex bodies. Abh. Math. Sem. Univ. Hamburg 39 (1973), 69–75.Google Scholar
[2037] Zamfirescu, T., Metric spaces consisting of classes of convex bodies. Rend. Ist. Mat. Univ. Trieste 7 (1975), 128–136.Google Scholar
[2038] Zamfirescu, T., The curvature of most convex surfaces vanishes almost everywhere. Math. Z. 174 (1980), 135–139.Google Scholar
[2039] Zamfirescu, T., Nonexistence of curvature in most points of most convex surfaces. Math. Ann. 252 (1980), 217–219.Google Scholar
[2040] Zamfirescu, T., Most convex mirrors are magic. Topology 21 (1982), 65–69.Google Scholar
[2041] Zamfirescu, T., Many endpoints and few interior points of geodesics. Invent. Math. 69 (1982), 253–257.Google Scholar
[2042] Zamfirescu, T., Intersecting diameters in convex bodies. Ann. Discrete Math. 20 (1984), 311–316.Google Scholar
[2043] Zamfirescu, T., Points on infinitely many normals to convex surfaces. J. Reine Angew. Math. 350 (1984), 183–187.Google Scholar
[2044] Zamfirescu, T., Using Baire categories in geometry. Rend. Sem. Mat. Univers. Politecn. Torino 43 (1985), 67–88.Google Scholar
[2045] Zamfirescu, T., Nearly all convex bodies are smooth and strictly convex. Monatsh. Math. 103 (1987), 57–62.Google Scholar
[2046] Zamfirescu, T., Typical convex curves on convex surfaces. Monatsh. Math. 103 (1987), 241–247.Google Scholar
[2047] Zamfirescu, T., Curvature properties of typical convex surfaces. Pacific J. Math. 131 (1988), 191–207.Google Scholar
[2048] Zamfirescu, T., Too long shadow boundaries. Proc. Amer. Math. Soc. 103 (1988), 587–590.Google Scholar
[2049] Zamfirescu, T., Nondifferentiability properties of the nearest point mapping. J. d'Analyse Math. 54 (1990), 90–98.Google Scholar
[2050] Zamfirescu, T., On two conjectures of Franz Hering about convex surfaces. Discrete Comput. Geom. 6 (1991), 171–180.Google Scholar
[2051] Zamfirescu, T., Baire categories in convexity. Atti Sem. Fis. Univ. Modena 39 (1991), 139–164.Google Scholar
[2052] Zamfirescu, T., Long geodesics on convex surfaces. Math. Ann. 293 (1992), 109–114.Google Scholar
[2053] Zamfirescu, T., The Majority in Convexity. Editura Univ. Bucureşti, Bucarest, 2009.
[2054] Zhang, G., Restricted chord projection and affine inequalities. Geom. Dedicata 39 (1991), 213–222.Google Scholar
[2055] Zhang, G., Geometric inequalities and inclusion measures of convex bodies. Mathematika 41 (1994), 95–116.Google Scholar
[2056] Zhang, G., Centered bodies and dual mixed volumes. Trans. Amer. Math. Soc. 345 (1994), 777–801.Google Scholar
[2057] Zhang, G., Sections of convex bodies. Amer. J. Math. 118 (1996), 319–340.Google Scholar
[2058] Zhang, G., Dual kinematic formulas. Trans. Amer. Math. Soc. 351 (1999), 985–995.Google Scholar
[2059] Zhang, G., A positive answer to the Busemann–Petty problem in four dimensions. Ann. of Math. 149 (1999), 535–543.Google Scholar
[2060] Zhang, G., The affine Sobolev inequality. J. Differential Geom. 53 (1999), 183–202.Google Scholar
[2061] Zhang, G., Zhou, J., Containment measures in integral geometry. In Integral Geometry and Convexity: Proceedings of the International Conference, Wuhan, China, 2004 (E. L., Grinberg, S., Li, G., Zhang, J., Zhou, eds), pp. 153–168, World Scientific, Hackensack, NJ, 2006.
[2062] Zhao, C.-J., Lp-mixed intersection bodies. Sci. China Ser. A 51 (2008), 2172–2188.Google Scholar
[2063] Zhao, C.-J., On intersection and mixed intersection bodies. Geom. Dedicata 141 (2009), 109–122.Google Scholar
[2064] Zhao, C.-J., The Brunn–Minkowski-type inequality. Bull. Iran. Math. Soc. 36 (2010), 157–167.Google Scholar
[2065] Zhao, C.-J., On Blaschke–Minkowski homomorphisms. Geom. Dedicata 149 (2010), 373–378.Google Scholar
[2066] Zhao, C.-J., Chen, L.-Y., Cheung, W.-S., Polar duals of convex and star bodies. J. Inequal. Appl. 2012, 2012:90, 5 pp.Google Scholar
[2067] Zhao, C.-J., Cheung, W.-S., Lp-Aleksandrov–Fenchel inequality. J. Math. Anal. Appl. 336 (2007), 205–212.Google Scholar
[2068] Zhao, C.-J., Cheung, W.-S., Lp-mixed intersection bodies and star duality. Proc. Indian. Acad. Sci. (Math. Sci.) 129 (2010), 429–440.Google Scholar
[2069] Zhao, C.-J., Cheung, W.-S., Radial Blaschke–Minkowski homomorphisms and volume differences. Geom. Dedicata 154 (2011), 81–91.Google Scholar
[2070] Zhao, C.-J., Leng, G.-S., Inequalities for dual quermassintegrals of mixed intersection bodies. Proc. Indian Acad. Sci. (Math. Sci.) 115 (2005), 79–91.Google Scholar
[2071] Zhao, C.-J., Leng, G.-S., Brunn–Minkowski inequality for mixed intersection bodies. J. Math. Anal. Appl. 301 (2005), 115–123.Google Scholar
[2072] Zhao, C.-J., Leng, G.-S., On polars of mixed projection bodies. J. Math. Anal. Appl. 316 (2006), 664–678.Google Scholar
[2073] Zhao, C.-J., Leng, G.-S., Lp dual Brunn–Minkowski type inequalities. In Integral Geometry and Convexity: Proceedings of the International Conference, Wuhan, China, 2004 (E. L., Grinberg, S., Li, G., Zhang, J., Zhou, eds), pp. 189–197, World Scientific, Hackensack, NJ, 2006.
[2074] Zhu, B., Li, N., Zhou, J., Isoperimetric inequalities for Lp geominimal surface area. Glasgow Math. J. 53 (2011), 717–726.Google Scholar
[2075] Zhu, G., The Orlicz centroid inequality for star bodies. Adv. Appl. Math. 48 (2012), 432–445.Google Scholar
[2076] Zhu, X., Leng, G., On the Lp-intersection body. Appl. Math. Mech. (English Ed.) 28 (2007), 1669–1678.Google Scholar
[2077] Zhu, X., Lv, S., Leng, G., Extended affine surface area and zonotopes. Bol. Soc. Mat. Mexicana 14 (2008), 125–138.Google Scholar
[2078] Zhu, X., Shen, Y., The dual Brunn–Minkowski inequalities for star dual of mixed intersection bodies. Acta Math. Sci. 30B (2010), 739–746.Google Scholar
[2079] Ziegler, G. M., Lectures on Polytopes. Springer, New York, 1995.
[2080] Živaljević, R. T., Extremal Minkowski additive selections of compact convex sets. Proc. Amer. Math. Soc. 105 (1989), 697–700.Google Scholar
[2081] Zong, C., Strange Phenomena in Convex and Discrete Geometry. Springer, New York, 1996.
[2082] Zong, C., The Cube: A Window to Convex and Discrete Geometry. Cambridge Univ. Press, Cambridge, 2006.
[2083] Zymonopoulou, M., The modified complex Busemann–Petty problem on sections of convex bodies. Positivity 13 (2009), 717–733.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Rolf Schneider, Albert-Ludwigs-Universität Freiburg, Germany
  • Book: Convex Bodies: The Brunn–Minkowski Theory
  • Online publication: 05 December 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9781139003858.015
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Rolf Schneider, Albert-Ludwigs-Universität Freiburg, Germany
  • Book: Convex Bodies: The Brunn–Minkowski Theory
  • Online publication: 05 December 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9781139003858.015
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Rolf Schneider, Albert-Ludwigs-Universität Freiburg, Germany
  • Book: Convex Bodies: The Brunn–Minkowski Theory
  • Online publication: 05 December 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9781139003858.015
Available formats
×