Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-10T11:45:00.616Z Has data issue: false hasContentIssue false

7 - Element Fractionations by Cosmochemical and Geochemical Processes

Published online by Cambridge University Press:  10 February 2022

Harry McSween, Jr
Affiliation:
University of Tennessee, Knoxville
Gary Huss
Affiliation:
University of Hawaii, Manoa
Get access

Summary

Condensation, evaporation, chemical and physical processes that partition elements

Type
Chapter
Information
Cosmochemistry , pp. 139 - 164
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Suggestions for Further Reading

Ebel, D. S. (2006) Condensation of rocky material in astrophysical environments. In Meteorites and the Early Solar System, II, Lauretta, D. S., and McSween, H. Y., editors, pp. 253277, University of Arizona Press, Tucson. A good summary of the modern condensation calculations and modeling of solar system processes.CrossRefGoogle Scholar
Wanke, H., and Dreibus, G. (1988) Chemical composition and accretion history of terrestrial planets. Philosophical Transactions of the Royal Society of London, A325, 545557. This paper describes how chemical fractionations may have resulted from accretion of different materials to form the terrestrial planets.Google Scholar
Alexander, C. M. O’D., Grossman, J. N., Ebel, D. S., and Ciesla, F. J. (2008) The formation conditions of chondrules and chondrites. Science, 320, 16171619.Google Scholar
Alexander, C. M. O’D., Bowden, R., Fogel, M. L., and Howard, K. T. (2015) Carbonate abundances and isotopic compositions in chondrites. Meteoritics & Planetary Science, 50, 810833.CrossRefGoogle Scholar
Asphaug, E., Agnor, C. B., and Williams, Q. (2006) Hit-and-run planetary collisions. Nature, 439, 155160.Google Scholar
Asphaug, E., and Reufer, A. (2014) Mercury and other iron-rich planetary bodies as relicts of inefficient accretion. Nature Geoscience, 7, 564568.CrossRefGoogle Scholar
Balta, J. B., and McSween, H. Y. (2013) Application of the MELTS algorithm to martian compositions and implications for magma crystallization. Journal of Geophysical Research, Planets, 118, 25022519.Google Scholar
Brearley, A. J. (2006) The action of water. In Meteorites and the Early Solar System, II, Lauretta, D. S., and McSween, H. Y., editors, pp. 587624, University of Arizona Press, Tucson.Google Scholar
Cameron, A. G. W. (1962) The formation of the sun and planets. Icarus, 1, 1369.Google Scholar
Campbell, A. J., Humayun, M., Meibom, A., et al. (2001) Origin of zoned metal grains in the QUE94411 chondrite. Geochimica et Cosmochimica Acta, 65, 163180.Google Scholar
Cartier, C., and Wood, B. J. (2019) The role of reducing conditions in building Mercury. Elements, 15, 3945.Google Scholar
Chase, M. W. (1998) NIST-JANAF Thermochemical Tables, 4th edition. American Institute of Physics, doi:10.18434/T42S31Google Scholar
Connolly, H. C., Huss, G. R., and Wasserburg, G. J. (2001) On the formation of Fe-Ni metal in CR2 meteorites. Geochimica et Cosmochimica Acta, 65, 45674588.Google Scholar
Davis, A. M. (2006) Volatile element evolution and loss. In Meteorites and the Early Solar System, II, Lauretta, D. S., and McSween, H. Y., editors, pp. 295307, University of Arizona Press, Tucson.Google Scholar
Davis, A. M., and Richter, F. M. (2004) Condensation and evaporation of solar system materials. In Treatise on Geochemistry, Vol. 1: Meteorites, Comets and Planets, Davis, A. M., editor, pp. 407430, Elsevier, Oxford.Google Scholar
Day, J. M. D., Taylor, L A., Floss, C., and McSween, H. Y. (2006) Petrology and chemistry of MIL 03346 and its significance in understanding the petrogenesis of nakhlites on Mars. Meteoritics & Planetary Science, 41, 581606.Google Scholar
Dygert, N., Liang, Y., Sun, C., and Hess, P. (2015) Corrigendum to ‘An experimental study of trace element partitioning between augite and Fe-rich basalts.Geochimica et Cosmochimica Acta, 149, 281283.CrossRefGoogle Scholar
Ebel, D. S., and Grossman, L. (2000) Condensation in dust-enriched systems. Geochimica et Cosmochimica Acta, 65, 469477.Google Scholar
Fedo, C. M., McGlynn, I. O., and McSween, H. Y. (2015) Grain size and hydrodynamic sorting controls on the composition of basaltic sediments: Implications for interpreting martian soils. Earth & Planetary Science Letters, 423, 6777.Google Scholar
Fegley, B. Jr. (1999) Chemical and physical processing of presolar materials in the solar nebula and the implications for preservation of presolar materials in comets. Space Science Reviews, 72, 311326.Google Scholar
Ghiorso, M., and Sack, R. (1995) Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures. Contributions to Mineralogy & Petrology, 119, 197212.Google Scholar
Grossman, L. (1972) Condensation in the primitive solar nebula. Geochimica et Cosmochimica Acta, 36, 597619.Google Scholar
Grossman, L., and Larimer, J. W. (1974) Early chemical history of the solar system. Reviews of Geophysics & Space Physics, 12, 71101.CrossRefGoogle Scholar
Haack, H., and McCoy, T. J. (2004) Iron and stony-iron meteorites. In Treatise on Geochemistry, Vol. 1: Meteorites, Comets and Planets, Davis, A. M., editor, pp. 325345, Elsevier, Oxford.Google Scholar
Hurowitz, J. A., and McLennan, S. M. (2007) A ~3.5 GA record of water-limited acidic weathering conditions on Mars. Earth & Planetary Science Letters, 260, 432443.Google Scholar
Huss, G. R. (2004) Implications of isotopic anomalies and presolar grains for the formation of the solar system. Antarctic Meteorite Research, 17, 132152.Google Scholar
Huss, G. R., Meshik, A. P., Smith, J. B., and Hohenberg, C. M. (2003) Presolar diamond, silicon carbide, and graphite in carbonaceous chondrites: Implications for thermal processing in the solar nebula. Geochimica et Cosmochimica Acta, 67, 48234848.Google Scholar
Huss, G. R., Rubin, A. E., and Grossman, J. N. (2006) Thermal metamorphism in chondrites. In Meteorites and the Early Solar System, II, Lauretta, D. S., and McSween, H. Y., editors, pp. 295307, University of Arizona Press, Tucson.Google Scholar
Jungck, M. H. A., Shimamura, T., and Lugmair, G. W. (1984) Ca isotope variations in Allende. Geochimica et Cosmochimica Acta, 48, 26512658.Google Scholar
Kallemeyn, G. W., and Wasson, J. T. (1981) The compositional classification of chondrites-I. The carbonaceous chondrite groups. Geochimica et Cosmochimica Acta, 45, 12171230.Google Scholar
Kallemeyn, G. W., Rubin, A. E., Wang, D., and Wasson, J. T. (1989) Ordinary chondrites: Bulk composition, classification, lithophile-element fractionations, and composition-petrographic type relationships. Geochimica et Cosmochimica Acta, 53, 27472767.Google Scholar
Kallemeyn, G. W., Rubin, A. E., and Wasson, J. T. (1994) The compositional classification of chondrites: VI. The CR carbonaceous chondrite group. Geochimica et Cosmochimica Acta, 58, 28732888.Google Scholar
Krähenbühl, U., Morgan, J. W., Ganapathy, R., and Anders, E. (1973) Abundances of 17 trace elements in carbonaceous chondrites. Geochimica et Cosmochimica Acta, 37, 13531370.Google Scholar
Kuebler, K. E., McSween, H. Y., Carlson, W. D., and Hirsch, D. (1999) Sizes and masses of chondrules and metal-troilite grains in ordinary chondrites: Possible implications for nebular sorting. Icarus, 141, 96106,Google Scholar
Larimer, J. W., and Anders, E. (1967) Chemical fractionations in meteorites-II. Abundance patterns and their interpretation. Geochimica et Cosmochimica Acta, 31, 12391270.Google Scholar
Larimer, J. W., and Anders, E. (1970) Chemical fractionations in meteorites-III. Major element fractionations in chondrites. Geochimica et Cosmochimica Acta, 34, 367387.Google Scholar
Lodders, K., and Fegley, B. (1998) The Planetary Scientist’s Companion. Oxford University Press, New York, 371 pp.Google Scholar
Longhi, J. (1991) Comparative liquidus equilibria of hypersthene-normative basalts at low pressure. American Mineralogist, 76, 785800.Google Scholar
Longhi, J. (2006) Petrogenesis of picritic mare magmas: Constraints on the extent of early lunar differentiation. Geochimica et Cosmochimica Acta, 70, 59195934.Google Scholar
McCoy, T. J., Keil, K., Muenow, D. W., and Wilson, L. (1997) Partial melting and melt migration in the acopulcoite-lodranite parent body. Geochimica et Cosmochimica Acta, 61, 639650.Google Scholar
McGlynn, I. O., Fedo, C. M., and McSween, H. Y. (2011) Origin of basaltic soils at Gusev crater, Mars, by aeolian modification of impact-generated sediment. Journal of Geophysical Research, 116, E00F22.Google Scholar
McSween, H. Y. (2015) Petrology on Mars. American Mineralogist, 100, 23802395.Google Scholar
McSween, H. Y., Moersch, J. E., Burr, D. M., et al. (2019) Planetary Geoscience. Cambridge University Press, Cambridge, 334 pp.Google Scholar
Niederer, F. R., Papanastassiou, D. A., and Wasserburg, G. J. (1981) The isotopic composition of titanium in the Allende and Leoville meteorites. Geochimica et Cosmochimica Acta, 45, 10171031.Google Scholar
Petaev, M. I., and Wood, J. A. (1998) The condensation with partial isolation (CWPI) model of condensation in the solar nebula. Meteoritics & Planetary Science, 33, 11231137.Google Scholar
Righter, K., Herd, C. D. K., and Boujibar, A. (2020) Redox processes in early Earth accretion and in terrestrial bodies. Elements, 16 , 161166.Google Scholar
Rotaru, M., Birck, J. L., and Allegre, C. J. (1992) Clues to early solar-system history from chromium isotopic in carbonaceous chondrites. Nature, 358, 465470.Google Scholar
Rushmer, T., Minarik, W. G., and Taylor, G. J. (2000) Physical processes of core formation. In Origin of the Earth and Moon, Canup, R. M., and Righter, K., editors, pp. 227243, University of Arizona Press, Tucson.Google Scholar
Squyres, S. W., Arvidson, R. E., Ruff, S., et al. (2008) Detection of silica-rich deposits on Mars. Science, 320, 10631067.Google Scholar
Taylor, S. R., and McLennan, S. M. (2009) Planetary Crusts: Their Composition, Origin and Evolution. Cambridge University Press, Cambridge, 378 pp.Google Scholar
Tosca, N.J., McLennan, S. M., Clark, B. C., et al. (2005) Geochemical modeling of evaporation processes on Mars: Insight from the sedimentary record at Meridiani Planum. Earth & Planetary Science Letters, 240, 122148.Google Scholar
Udry, A., McSween, H. Y., Lecumberri-Sanchez, P., and Bodnar, R. J. (2012) Paired nakhlites MIL 090030, 090032, 090136, and 03346: Insights into the Miller Range parent meteorite. Meteoritics & Planetary Science, 47, 15751589.Google Scholar
Udry, A., Gazel, E., and McSween, H. Y. (2018) Formation of evolved rocks at Gale crater by crystal fractionation and implications for Mars crustal composition. Journal of Geophysical Research, Planets, 123, doi:10.1029/2018JE005602.Google Scholar
Wade, J., and Wood, B. J. (2005) Core formation and the oxidation state of the Earth. Earth & Planetary Science Letters, 236, 7895.Google Scholar
Wai, C. M., and Wasson, J. T. (1977) Nebular condensation of moderately volatile elements and their abundances in ordinary chondrites. Earth & Planetary Science Letters, 36, 113.Google Scholar
Warren, P. H. (2008) A depleted, not ideally chondritic bulk Earth: The explosive-volcanic basalt loss hypothesis. Geochimica et Cosmochimica Acta, 72, 22172235.CrossRefGoogle Scholar
Wasson, J. T. (1985) Meteorites. Freeman and Company, New York, 267 pp.Google Scholar
Weidenschilling, S. J. (1978) Iron/silicate fractionation and the origin of Mercury. Icarus, 35, 99111.Google Scholar
Weiss, B. P., and Elkins-Tanton, L. T. (2013) Differentiated planetesimals and the parent bodies of chondrites. Annual Reviews of Earth & Planetary Sciences, 41, 529560.Google Scholar
Wilson, L., and Keil, K. (1991) Consequences of explosive eruptions on small solar-system bodies – The case of the missing basalts on the aubrite parent body. Earth & Planetary Science Letters, 104, 505512.Google Scholar
Wood, J. A., and Hashimoto, A. (1993) Mineral equilibrium in fractionated nebular systems. Geochimica et Cosmochimica Acta, 57, 23772388.Google Scholar
Wurm, G., Trieloff, M., and Rauer, H. (2013) Photophoretic separation of metals and silicates: The formation of Mercury-like planets and metal depletion in chondrites. Astrophysical Journal, 769, doi:10.1088/0004-637X/769/1/78.CrossRefGoogle Scholar
Yang, J., Goldstein, J. F., and Scott, E. R. D. (2007) Iron meteorite evidence for early catastrophic disruption of protoplanets. Nature, 446, 888891.Google Scholar
Yin, Q.-Z. (2005) From dust to planets: The tale told by moderately volatile elements. In Chondrites and the Protoplanetary Disk, Krot, A. N., Scott, E. R. D., and Reipurth, B., editors, pp. 632644, ASP Conference Series 341, Astronomical Society of the Pacific, San Francisco.Google Scholar
Yoneda, S., and Grossman, L. (1995) Condensation of CaO-MgO-Al2O3-SiO2 liquids from cosmic gases. Geochimica et Cosmochimica Acta, 59, 34133444.Google Scholar
Alexander, C. M. O’D., Grossman, J. N., Ebel, D. S., and Ciesla, F. J. (2008) The formation conditions of chondrules and chondrites. Science, 320, 16171619.Google Scholar
Alexander, C. M. O’D., Bowden, R., Fogel, M. L., and Howard, K. T. (2015) Carbonate abundances and isotopic compositions in chondrites. Meteoritics & Planetary Science, 50, 810833.CrossRefGoogle Scholar
Asphaug, E., Agnor, C. B., and Williams, Q. (2006) Hit-and-run planetary collisions. Nature, 439, 155160.Google Scholar
Asphaug, E., and Reufer, A. (2014) Mercury and other iron-rich planetary bodies as relicts of inefficient accretion. Nature Geoscience, 7, 564568.CrossRefGoogle Scholar
Balta, J. B., and McSween, H. Y. (2013) Application of the MELTS algorithm to martian compositions and implications for magma crystallization. Journal of Geophysical Research, Planets, 118, 25022519.Google Scholar
Brearley, A. J. (2006) The action of water. In Meteorites and the Early Solar System, II, Lauretta, D. S., and McSween, H. Y., editors, pp. 587624, University of Arizona Press, Tucson.Google Scholar
Cameron, A. G. W. (1962) The formation of the sun and planets. Icarus, 1, 1369.Google Scholar
Campbell, A. J., Humayun, M., Meibom, A., et al. (2001) Origin of zoned metal grains in the QUE94411 chondrite. Geochimica et Cosmochimica Acta, 65, 163180.Google Scholar
Cartier, C., and Wood, B. J. (2019) The role of reducing conditions in building Mercury. Elements, 15, 3945.Google Scholar
Chase, M. W. (1998) NIST-JANAF Thermochemical Tables, 4th edition. American Institute of Physics, doi:10.18434/T42S31Google Scholar
Connolly, H. C., Huss, G. R., and Wasserburg, G. J. (2001) On the formation of Fe-Ni metal in CR2 meteorites. Geochimica et Cosmochimica Acta, 65, 45674588.Google Scholar
Davis, A. M. (2006) Volatile element evolution and loss. In Meteorites and the Early Solar System, II, Lauretta, D. S., and McSween, H. Y., editors, pp. 295307, University of Arizona Press, Tucson.Google Scholar
Davis, A. M., and Richter, F. M. (2004) Condensation and evaporation of solar system materials. In Treatise on Geochemistry, Vol. 1: Meteorites, Comets and Planets, Davis, A. M., editor, pp. 407430, Elsevier, Oxford.Google Scholar
Day, J. M. D., Taylor, L A., Floss, C., and McSween, H. Y. (2006) Petrology and chemistry of MIL 03346 and its significance in understanding the petrogenesis of nakhlites on Mars. Meteoritics & Planetary Science, 41, 581606.Google Scholar
Dygert, N., Liang, Y., Sun, C., and Hess, P. (2015) Corrigendum to ‘An experimental study of trace element partitioning between augite and Fe-rich basalts.Geochimica et Cosmochimica Acta, 149, 281283.CrossRefGoogle Scholar
Ebel, D. S., and Grossman, L. (2000) Condensation in dust-enriched systems. Geochimica et Cosmochimica Acta, 65, 469477.Google Scholar
Fedo, C. M., McGlynn, I. O., and McSween, H. Y. (2015) Grain size and hydrodynamic sorting controls on the composition of basaltic sediments: Implications for interpreting martian soils. Earth & Planetary Science Letters, 423, 6777.Google Scholar
Fegley, B. Jr. (1999) Chemical and physical processing of presolar materials in the solar nebula and the implications for preservation of presolar materials in comets. Space Science Reviews, 72, 311326.Google Scholar
Ghiorso, M., and Sack, R. (1995) Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures. Contributions to Mineralogy & Petrology, 119, 197212.Google Scholar
Grossman, L. (1972) Condensation in the primitive solar nebula. Geochimica et Cosmochimica Acta, 36, 597619.Google Scholar
Grossman, L., and Larimer, J. W. (1974) Early chemical history of the solar system. Reviews of Geophysics & Space Physics, 12, 71101.CrossRefGoogle Scholar
Haack, H., and McCoy, T. J. (2004) Iron and stony-iron meteorites. In Treatise on Geochemistry, Vol. 1: Meteorites, Comets and Planets, Davis, A. M., editor, pp. 325345, Elsevier, Oxford.Google Scholar
Hurowitz, J. A., and McLennan, S. M. (2007) A ~3.5 GA record of water-limited acidic weathering conditions on Mars. Earth & Planetary Science Letters, 260, 432443.Google Scholar
Huss, G. R. (2004) Implications of isotopic anomalies and presolar grains for the formation of the solar system. Antarctic Meteorite Research, 17, 132152.Google Scholar
Huss, G. R., Meshik, A. P., Smith, J. B., and Hohenberg, C. M. (2003) Presolar diamond, silicon carbide, and graphite in carbonaceous chondrites: Implications for thermal processing in the solar nebula. Geochimica et Cosmochimica Acta, 67, 48234848.Google Scholar
Huss, G. R., Rubin, A. E., and Grossman, J. N. (2006) Thermal metamorphism in chondrites. In Meteorites and the Early Solar System, II, Lauretta, D. S., and McSween, H. Y., editors, pp. 295307, University of Arizona Press, Tucson.Google Scholar
Jungck, M. H. A., Shimamura, T., and Lugmair, G. W. (1984) Ca isotope variations in Allende. Geochimica et Cosmochimica Acta, 48, 26512658.Google Scholar
Kallemeyn, G. W., and Wasson, J. T. (1981) The compositional classification of chondrites-I. The carbonaceous chondrite groups. Geochimica et Cosmochimica Acta, 45, 12171230.Google Scholar
Kallemeyn, G. W., Rubin, A. E., Wang, D., and Wasson, J. T. (1989) Ordinary chondrites: Bulk composition, classification, lithophile-element fractionations, and composition-petrographic type relationships. Geochimica et Cosmochimica Acta, 53, 27472767.Google Scholar
Kallemeyn, G. W., Rubin, A. E., and Wasson, J. T. (1994) The compositional classification of chondrites: VI. The CR carbonaceous chondrite group. Geochimica et Cosmochimica Acta, 58, 28732888.Google Scholar
Krähenbühl, U., Morgan, J. W., Ganapathy, R., and Anders, E. (1973) Abundances of 17 trace elements in carbonaceous chondrites. Geochimica et Cosmochimica Acta, 37, 13531370.Google Scholar
Kuebler, K. E., McSween, H. Y., Carlson, W. D., and Hirsch, D. (1999) Sizes and masses of chondrules and metal-troilite grains in ordinary chondrites: Possible implications for nebular sorting. Icarus, 141, 96106,Google Scholar
Larimer, J. W., and Anders, E. (1967) Chemical fractionations in meteorites-II. Abundance patterns and their interpretation. Geochimica et Cosmochimica Acta, 31, 12391270.Google Scholar
Larimer, J. W., and Anders, E. (1970) Chemical fractionations in meteorites-III. Major element fractionations in chondrites. Geochimica et Cosmochimica Acta, 34, 367387.Google Scholar
Lodders, K., and Fegley, B. (1998) The Planetary Scientist’s Companion. Oxford University Press, New York, 371 pp.Google Scholar
Longhi, J. (1991) Comparative liquidus equilibria of hypersthene-normative basalts at low pressure. American Mineralogist, 76, 785800.Google Scholar
Longhi, J. (2006) Petrogenesis of picritic mare magmas: Constraints on the extent of early lunar differentiation. Geochimica et Cosmochimica Acta, 70, 59195934.Google Scholar
McCoy, T. J., Keil, K., Muenow, D. W., and Wilson, L. (1997) Partial melting and melt migration in the acopulcoite-lodranite parent body. Geochimica et Cosmochimica Acta, 61, 639650.Google Scholar
McGlynn, I. O., Fedo, C. M., and McSween, H. Y. (2011) Origin of basaltic soils at Gusev crater, Mars, by aeolian modification of impact-generated sediment. Journal of Geophysical Research, 116, E00F22.Google Scholar
McSween, H. Y. (2015) Petrology on Mars. American Mineralogist, 100, 23802395.Google Scholar
McSween, H. Y., Moersch, J. E., Burr, D. M., et al. (2019) Planetary Geoscience. Cambridge University Press, Cambridge, 334 pp.Google Scholar
Niederer, F. R., Papanastassiou, D. A., and Wasserburg, G. J. (1981) The isotopic composition of titanium in the Allende and Leoville meteorites. Geochimica et Cosmochimica Acta, 45, 10171031.Google Scholar
Petaev, M. I., and Wood, J. A. (1998) The condensation with partial isolation (CWPI) model of condensation in the solar nebula. Meteoritics & Planetary Science, 33, 11231137.Google Scholar
Righter, K., Herd, C. D. K., and Boujibar, A. (2020) Redox processes in early Earth accretion and in terrestrial bodies. Elements, 16 , 161166.Google Scholar
Rotaru, M., Birck, J. L., and Allegre, C. J. (1992) Clues to early solar-system history from chromium isotopic in carbonaceous chondrites. Nature, 358, 465470.Google Scholar
Rushmer, T., Minarik, W. G., and Taylor, G. J. (2000) Physical processes of core formation. In Origin of the Earth and Moon, Canup, R. M., and Righter, K., editors, pp. 227243, University of Arizona Press, Tucson.Google Scholar
Squyres, S. W., Arvidson, R. E., Ruff, S., et al. (2008) Detection of silica-rich deposits on Mars. Science, 320, 10631067.Google Scholar
Taylor, S. R., and McLennan, S. M. (2009) Planetary Crusts: Their Composition, Origin and Evolution. Cambridge University Press, Cambridge, 378 pp.Google Scholar
Tosca, N.J., McLennan, S. M., Clark, B. C., et al. (2005) Geochemical modeling of evaporation processes on Mars: Insight from the sedimentary record at Meridiani Planum. Earth & Planetary Science Letters, 240, 122148.Google Scholar
Udry, A., McSween, H. Y., Lecumberri-Sanchez, P., and Bodnar, R. J. (2012) Paired nakhlites MIL 090030, 090032, 090136, and 03346: Insights into the Miller Range parent meteorite. Meteoritics & Planetary Science, 47, 15751589.Google Scholar
Udry, A., Gazel, E., and McSween, H. Y. (2018) Formation of evolved rocks at Gale crater by crystal fractionation and implications for Mars crustal composition. Journal of Geophysical Research, Planets, 123, doi:10.1029/2018JE005602.Google Scholar
Wade, J., and Wood, B. J. (2005) Core formation and the oxidation state of the Earth. Earth & Planetary Science Letters, 236, 7895.Google Scholar
Wai, C. M., and Wasson, J. T. (1977) Nebular condensation of moderately volatile elements and their abundances in ordinary chondrites. Earth & Planetary Science Letters, 36, 113.Google Scholar
Warren, P. H. (2008) A depleted, not ideally chondritic bulk Earth: The explosive-volcanic basalt loss hypothesis. Geochimica et Cosmochimica Acta, 72, 22172235.CrossRefGoogle Scholar
Wasson, J. T. (1985) Meteorites. Freeman and Company, New York, 267 pp.Google Scholar
Weidenschilling, S. J. (1978) Iron/silicate fractionation and the origin of Mercury. Icarus, 35, 99111.Google Scholar
Weiss, B. P., and Elkins-Tanton, L. T. (2013) Differentiated planetesimals and the parent bodies of chondrites. Annual Reviews of Earth & Planetary Sciences, 41, 529560.Google Scholar
Wilson, L., and Keil, K. (1991) Consequences of explosive eruptions on small solar-system bodies – The case of the missing basalts on the aubrite parent body. Earth & Planetary Science Letters, 104, 505512.Google Scholar
Wood, J. A., and Hashimoto, A. (1993) Mineral equilibrium in fractionated nebular systems. Geochimica et Cosmochimica Acta, 57, 23772388.Google Scholar
Wurm, G., Trieloff, M., and Rauer, H. (2013) Photophoretic separation of metals and silicates: The formation of Mercury-like planets and metal depletion in chondrites. Astrophysical Journal, 769, doi:10.1088/0004-637X/769/1/78.CrossRefGoogle Scholar
Yang, J., Goldstein, J. F., and Scott, E. R. D. (2007) Iron meteorite evidence for early catastrophic disruption of protoplanets. Nature, 446, 888891.Google Scholar
Yin, Q.-Z. (2005) From dust to planets: The tale told by moderately volatile elements. In Chondrites and the Protoplanetary Disk, Krot, A. N., Scott, E. R. D., and Reipurth, B., editors, pp. 632644, ASP Conference Series 341, Astronomical Society of the Pacific, San Francisco.Google Scholar
Yoneda, S., and Grossman, L. (1995) Condensation of CaO-MgO-Al2O3-SiO2 liquids from cosmic gases. Geochimica et Cosmochimica Acta, 59, 34133444.Google Scholar

Other References

Alexander, C. M. O’D., Grossman, J. N., Ebel, D. S., and Ciesla, F. J. (2008) The formation conditions of chondrules and chondrites. Science, 320, 16171619.Google Scholar
Alexander, C. M. O’D., Bowden, R., Fogel, M. L., and Howard, K. T. (2015) Carbonate abundances and isotopic compositions in chondrites. Meteoritics & Planetary Science, 50, 810833.CrossRefGoogle Scholar
Asphaug, E., Agnor, C. B., and Williams, Q. (2006) Hit-and-run planetary collisions. Nature, 439, 155160.Google Scholar
Asphaug, E., and Reufer, A. (2014) Mercury and other iron-rich planetary bodies as relicts of inefficient accretion. Nature Geoscience, 7, 564568.CrossRefGoogle Scholar
Balta, J. B., and McSween, H. Y. (2013) Application of the MELTS algorithm to martian compositions and implications for magma crystallization. Journal of Geophysical Research, Planets, 118, 25022519.Google Scholar
Brearley, A. J. (2006) The action of water. In Meteorites and the Early Solar System, II, Lauretta, D. S., and McSween, H. Y., editors, pp. 587624, University of Arizona Press, Tucson.Google Scholar
Cameron, A. G. W. (1962) The formation of the sun and planets. Icarus, 1, 1369.Google Scholar
Campbell, A. J., Humayun, M., Meibom, A., et al. (2001) Origin of zoned metal grains in the QUE94411 chondrite. Geochimica et Cosmochimica Acta, 65, 163180.Google Scholar
Cartier, C., and Wood, B. J. (2019) The role of reducing conditions in building Mercury. Elements, 15, 3945.Google Scholar
Chase, M. W. (1998) NIST-JANAF Thermochemical Tables, 4th edition. American Institute of Physics, doi:10.18434/T42S31Google Scholar
Connolly, H. C., Huss, G. R., and Wasserburg, G. J. (2001) On the formation of Fe-Ni metal in CR2 meteorites. Geochimica et Cosmochimica Acta, 65, 45674588.Google Scholar
Davis, A. M. (2006) Volatile element evolution and loss. In Meteorites and the Early Solar System, II, Lauretta, D. S., and McSween, H. Y., editors, pp. 295307, University of Arizona Press, Tucson.Google Scholar
Davis, A. M., and Richter, F. M. (2004) Condensation and evaporation of solar system materials. In Treatise on Geochemistry, Vol. 1: Meteorites, Comets and Planets, Davis, A. M., editor, pp. 407430, Elsevier, Oxford.Google Scholar
Day, J. M. D., Taylor, L A., Floss, C., and McSween, H. Y. (2006) Petrology and chemistry of MIL 03346 and its significance in understanding the petrogenesis of nakhlites on Mars. Meteoritics & Planetary Science, 41, 581606.Google Scholar
Dygert, N., Liang, Y., Sun, C., and Hess, P. (2015) Corrigendum to ‘An experimental study of trace element partitioning between augite and Fe-rich basalts.Geochimica et Cosmochimica Acta, 149, 281283.CrossRefGoogle Scholar
Ebel, D. S., and Grossman, L. (2000) Condensation in dust-enriched systems. Geochimica et Cosmochimica Acta, 65, 469477.Google Scholar
Fedo, C. M., McGlynn, I. O., and McSween, H. Y. (2015) Grain size and hydrodynamic sorting controls on the composition of basaltic sediments: Implications for interpreting martian soils. Earth & Planetary Science Letters, 423, 6777.Google Scholar
Fegley, B. Jr. (1999) Chemical and physical processing of presolar materials in the solar nebula and the implications for preservation of presolar materials in comets. Space Science Reviews, 72, 311326.Google Scholar
Ghiorso, M., and Sack, R. (1995) Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures. Contributions to Mineralogy & Petrology, 119, 197212.Google Scholar
Grossman, L. (1972) Condensation in the primitive solar nebula. Geochimica et Cosmochimica Acta, 36, 597619.Google Scholar
Grossman, L., and Larimer, J. W. (1974) Early chemical history of the solar system. Reviews of Geophysics & Space Physics, 12, 71101.CrossRefGoogle Scholar
Haack, H., and McCoy, T. J. (2004) Iron and stony-iron meteorites. In Treatise on Geochemistry, Vol. 1: Meteorites, Comets and Planets, Davis, A. M., editor, pp. 325345, Elsevier, Oxford.Google Scholar
Hurowitz, J. A., and McLennan, S. M. (2007) A ~3.5 GA record of water-limited acidic weathering conditions on Mars. Earth & Planetary Science Letters, 260, 432443.Google Scholar
Huss, G. R. (2004) Implications of isotopic anomalies and presolar grains for the formation of the solar system. Antarctic Meteorite Research, 17, 132152.Google Scholar
Huss, G. R., Meshik, A. P., Smith, J. B., and Hohenberg, C. M. (2003) Presolar diamond, silicon carbide, and graphite in carbonaceous chondrites: Implications for thermal processing in the solar nebula. Geochimica et Cosmochimica Acta, 67, 48234848.Google Scholar
Huss, G. R., Rubin, A. E., and Grossman, J. N. (2006) Thermal metamorphism in chondrites. In Meteorites and the Early Solar System, II, Lauretta, D. S., and McSween, H. Y., editors, pp. 295307, University of Arizona Press, Tucson.Google Scholar
Jungck, M. H. A., Shimamura, T., and Lugmair, G. W. (1984) Ca isotope variations in Allende. Geochimica et Cosmochimica Acta, 48, 26512658.Google Scholar
Kallemeyn, G. W., and Wasson, J. T. (1981) The compositional classification of chondrites-I. The carbonaceous chondrite groups. Geochimica et Cosmochimica Acta, 45, 12171230.Google Scholar
Kallemeyn, G. W., Rubin, A. E., Wang, D., and Wasson, J. T. (1989) Ordinary chondrites: Bulk composition, classification, lithophile-element fractionations, and composition-petrographic type relationships. Geochimica et Cosmochimica Acta, 53, 27472767.Google Scholar
Kallemeyn, G. W., Rubin, A. E., and Wasson, J. T. (1994) The compositional classification of chondrites: VI. The CR carbonaceous chondrite group. Geochimica et Cosmochimica Acta, 58, 28732888.Google Scholar
Krähenbühl, U., Morgan, J. W., Ganapathy, R., and Anders, E. (1973) Abundances of 17 trace elements in carbonaceous chondrites. Geochimica et Cosmochimica Acta, 37, 13531370.Google Scholar
Kuebler, K. E., McSween, H. Y., Carlson, W. D., and Hirsch, D. (1999) Sizes and masses of chondrules and metal-troilite grains in ordinary chondrites: Possible implications for nebular sorting. Icarus, 141, 96106,Google Scholar
Larimer, J. W., and Anders, E. (1967) Chemical fractionations in meteorites-II. Abundance patterns and their interpretation. Geochimica et Cosmochimica Acta, 31, 12391270.Google Scholar
Larimer, J. W., and Anders, E. (1970) Chemical fractionations in meteorites-III. Major element fractionations in chondrites. Geochimica et Cosmochimica Acta, 34, 367387.Google Scholar
Lodders, K., and Fegley, B. (1998) The Planetary Scientist’s Companion. Oxford University Press, New York, 371 pp.Google Scholar
Longhi, J. (1991) Comparative liquidus equilibria of hypersthene-normative basalts at low pressure. American Mineralogist, 76, 785800.Google Scholar
Longhi, J. (2006) Petrogenesis of picritic mare magmas: Constraints on the extent of early lunar differentiation. Geochimica et Cosmochimica Acta, 70, 59195934.Google Scholar
McCoy, T. J., Keil, K., Muenow, D. W., and Wilson, L. (1997) Partial melting and melt migration in the acopulcoite-lodranite parent body. Geochimica et Cosmochimica Acta, 61, 639650.Google Scholar
McGlynn, I. O., Fedo, C. M., and McSween, H. Y. (2011) Origin of basaltic soils at Gusev crater, Mars, by aeolian modification of impact-generated sediment. Journal of Geophysical Research, 116, E00F22.Google Scholar
McSween, H. Y. (2015) Petrology on Mars. American Mineralogist, 100, 23802395.Google Scholar
McSween, H. Y., Moersch, J. E., Burr, D. M., et al. (2019) Planetary Geoscience. Cambridge University Press, Cambridge, 334 pp.Google Scholar
Niederer, F. R., Papanastassiou, D. A., and Wasserburg, G. J. (1981) The isotopic composition of titanium in the Allende and Leoville meteorites. Geochimica et Cosmochimica Acta, 45, 10171031.Google Scholar
Petaev, M. I., and Wood, J. A. (1998) The condensation with partial isolation (CWPI) model of condensation in the solar nebula. Meteoritics & Planetary Science, 33, 11231137.Google Scholar
Righter, K., Herd, C. D. K., and Boujibar, A. (2020) Redox processes in early Earth accretion and in terrestrial bodies. Elements, 16 , 161166.Google Scholar
Rotaru, M., Birck, J. L., and Allegre, C. J. (1992) Clues to early solar-system history from chromium isotopic in carbonaceous chondrites. Nature, 358, 465470.Google Scholar
Rushmer, T., Minarik, W. G., and Taylor, G. J. (2000) Physical processes of core formation. In Origin of the Earth and Moon, Canup, R. M., and Righter, K., editors, pp. 227243, University of Arizona Press, Tucson.Google Scholar
Squyres, S. W., Arvidson, R. E., Ruff, S., et al. (2008) Detection of silica-rich deposits on Mars. Science, 320, 10631067.Google Scholar
Taylor, S. R., and McLennan, S. M. (2009) Planetary Crusts: Their Composition, Origin and Evolution. Cambridge University Press, Cambridge, 378 pp.Google Scholar
Tosca, N.J., McLennan, S. M., Clark, B. C., et al. (2005) Geochemical modeling of evaporation processes on Mars: Insight from the sedimentary record at Meridiani Planum. Earth & Planetary Science Letters, 240, 122148.Google Scholar
Udry, A., McSween, H. Y., Lecumberri-Sanchez, P., and Bodnar, R. J. (2012) Paired nakhlites MIL 090030, 090032, 090136, and 03346: Insights into the Miller Range parent meteorite. Meteoritics & Planetary Science, 47, 15751589.Google Scholar
Udry, A., Gazel, E., and McSween, H. Y. (2018) Formation of evolved rocks at Gale crater by crystal fractionation and implications for Mars crustal composition. Journal of Geophysical Research, Planets, 123, doi:10.1029/2018JE005602.Google Scholar
Wade, J., and Wood, B. J. (2005) Core formation and the oxidation state of the Earth. Earth & Planetary Science Letters, 236, 7895.Google Scholar
Wai, C. M., and Wasson, J. T. (1977) Nebular condensation of moderately volatile elements and their abundances in ordinary chondrites. Earth & Planetary Science Letters, 36, 113.Google Scholar
Warren, P. H. (2008) A depleted, not ideally chondritic bulk Earth: The explosive-volcanic basalt loss hypothesis. Geochimica et Cosmochimica Acta, 72, 22172235.CrossRefGoogle Scholar
Wasson, J. T. (1985) Meteorites. Freeman and Company, New York, 267 pp.Google Scholar
Weidenschilling, S. J. (1978) Iron/silicate fractionation and the origin of Mercury. Icarus, 35, 99111.Google Scholar
Weiss, B. P., and Elkins-Tanton, L. T. (2013) Differentiated planetesimals and the parent bodies of chondrites. Annual Reviews of Earth & Planetary Sciences, 41, 529560.Google Scholar
Wilson, L., and Keil, K. (1991) Consequences of explosive eruptions on small solar-system bodies – The case of the missing basalts on the aubrite parent body. Earth & Planetary Science Letters, 104, 505512.Google Scholar
Wood, J. A., and Hashimoto, A. (1993) Mineral equilibrium in fractionated nebular systems. Geochimica et Cosmochimica Acta, 57, 23772388.Google Scholar
Wurm, G., Trieloff, M., and Rauer, H. (2013) Photophoretic separation of metals and silicates: The formation of Mercury-like planets and metal depletion in chondrites. Astrophysical Journal, 769, doi:10.1088/0004-637X/769/1/78.CrossRefGoogle Scholar
Yang, J., Goldstein, J. F., and Scott, E. R. D. (2007) Iron meteorite evidence for early catastrophic disruption of protoplanets. Nature, 446, 888891.Google Scholar
Yin, Q.-Z. (2005) From dust to planets: The tale told by moderately volatile elements. In Chondrites and the Protoplanetary Disk, Krot, A. N., Scott, E. R. D., and Reipurth, B., editors, pp. 632644, ASP Conference Series 341, Astronomical Society of the Pacific, San Francisco.Google Scholar
Yoneda, S., and Grossman, L. (1995) Condensation of CaO-MgO-Al2O3-SiO2 liquids from cosmic gases. Geochimica et Cosmochimica Acta, 59, 34133444.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×