Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T12:03:27.884Z Has data issue: false hasContentIssue false

6 - Meteorites, Interplanetary Dust, and Lunar Samples

Published online by Cambridge University Press:  10 February 2022

Harry McSween, Jr
Affiliation:
University of Tennessee, Knoxville
Gary Huss
Affiliation:
University of Hawaii, Manoa
Get access

Summary

Compositions and classification of chondritic and differentiated meteories and of interplanetary dust particles

Type
Chapter
Information
Cosmochemistry , pp. 110 - 138
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Suggestions for Further Reading

There are a number of excellent (but rather technical) chapters in recent books that describe the classification of meteorites in greater detail than presented here. The following are highly recommended. All have excellent photographs, but some of these resources probably offer more information than most beginning readers can use.

Davis, A. M., editor (2014) Treatise in Geochemistry, 2nd edition, Vol. 1: Meteorites and Cosmochemical Processes. Elsevier, Oxford, 454 pp. A number of chapters in this book provide excellent descriptions of meteorites and IDPs:Google Scholar
Krot, A. N., Keil, K., Scott, E. R. D., et al., Classification of meteorites and their genetic relationships, pp. 1–63.Google Scholar
Scott, E. R. D., and Krot, A. N., Chondrites and their components, pp. 65–137.CrossRefGoogle Scholar
Mittlefehldt, D. W., Achondrites, pp. 25–266.Google Scholar
Benedix, G. K., Haack, H., and McCoy, T. J., Iron and stony-iron meteorites, pp. 267–285.Google Scholar
Bradley, J. P., Early solar nebula grains – interplanetary dust particles, pp. 287–308.Google Scholar
Grady, M. M. (2000) Catalogue of Meteorites. Cambridge University Press, Cambridge, 689 pp. plus disk. A compiled list of known meteorites, their classifications and recovery information.Google Scholar
Hazen, R. M., and Morrison, S. M. (2020) An evolutionary system of mineralogy. Part I: Stellar mineralogy (>13 to 4.6 Ga). American Mineralogist, 105, 626651. The first in a series of papers detailing the mineralogy of extraterrestrial materials. Other papers in the series, all to be published in American Mineralogist, are:Google Scholar
Part II: Interstellar and solar nebula primary condensation mineralogy (>4,565 Ga).4,565+Ga).>Google Scholar
Part III: Primary chondrule mineralogy (4.566 to 4.561 Ga).Google Scholar
Part IV: Planetesimal differentiation and impact mineralization (4.566 to 4.560 Ga).Google Scholar
Part V: Aqueous and thermal alteration of planetesimals (~4.565 to 4550 Ma).Google Scholar
Weisberg, M. K., McCoy, T. J., and Krot, A. N. (2006) Systematics and evaluation of meteorite classification. In Meteorites and the Early Solar System II, Lauretta, D. S., and McSween, H. Y., editors, pp. 1952, University of Arizona Press, Tucson. Provides a thorough description of meteorite classification.Google Scholar
Brearley, A. J., and Jones, R. H. (1998) Chondritic meteorites. Planetary Materials, Reviews in Mineralogy, 36, Papike, J. J., editor, pp. 3-002 to 3-398. The most complete published description of chondrites.Google Scholar
Agee, C. B., Wilson, N. V., McCubbin, F. M., et al. (2013) Unique meteorite from early Amazonian Mars: Water-rich basaltic breccia Northwest Africa 7034. Science, 339, 780785.CrossRefGoogle ScholarPubMed
Ashley, J. W. (2015) The study of exogenic rocks on Mars – An evolving subdiscipline in meteoritics. Elements, 11, 1011.Google Scholar
Asphaug, E., Jutzi, M., and Movshovitz, M. (2011) Chondrule formation during planetesimal accretion. Earth & Planetary Science Letters, 308, 369379.Google Scholar
Bellucci, J. J., Nemchim, A. A., Grange, M., et al. (2019) Terrestrial-like zircon in a clast from an Apollo 14 breccia. Earth & Planetary Science Letters, 510, 173185.CrossRefGoogle Scholar
Benedix, G. K., McCoy, T. J., Keil, K., et al. (1998) A petrologic and isotopic study of winonaites: Evidence for early partial melting, brecciation, and metamorphism. Geochimica et Cosmochimica Acta, 62, 25352554.Google Scholar
Benedix, G. K., Haack, H., and McCoy, T. J. (2014) Iron and stony-iron meteorites. In Treatise in Geochemistry, 2nd edition, Vol. 1: Meteorites and Cosmochemical Processes, Davis, A. M., editor, pp. 267285, Elsevier, Oxford.Google Scholar
Boesenberg, J. S., Delaney, J., and Hewins, R. (2012) A petrological and chemical re-examination of main-group pallasite formation. Geochimica et Cosmochimica Acta, 89, 134158.Google Scholar
Bonal, L., Quirico, E., Bourot-Denise, M., and Montagnac, G. (2006) Determination of the petrologic type of CV3 chondrites by Raman spectroscopy of included organic matter. Geochimica et Cosmochimica Acta, 70, 18491863.Google Scholar
Bradley, J. P. (1994) Chemically anomalous, preaccretionally irradiated grains in interplanetary dust particles from comets. Science, 265, 925929.Google Scholar
Bryson, J. F. J., Nichols, C. I. O., Herrero-Albilos, J., et al. (2015) Long-lived magnetism from solidification-driven convection on the pallasite parent body. Nature, 517, 472475.Google Scholar
Clayton, R. N. (2004) Oxygen isotopes in meteorites. In Treatise on Geochemistry, Vol. 1: Meteorites, Comets, and Planets, Davis, A. M., editor, pp. 129142, Elsevier, Oxford.Google Scholar
Collinet, M., and Grove, T. L. (2020a) Widespread production of silica- and alkali-rich melts at the onset of planetesimal melting. Geochemica et Cosmochimica Acta, 277, 334357.Google Scholar
Collinet, M., and Grove, T. L. (2020b) Incremental melting in the ureilite parent body: Initial composition, melting temperatures, and melt compositions. Meteoritics & Planetary Science, 55, 832856.Google Scholar
Connolly, H. C. Jr., and Jones, R. H. (2016) Chondrules: The canonical and noncanonical views. Journal of Geophysical Research, Planets, 121, 18851899.Google Scholar
Desch, S. J., Morris, M. A., Connolly, H. J., and Boss, A. P. (2012) The importance of experiments: Constraints on chondrule formation models. Meteoritics & Planetary Science, 47, 11391156.CrossRefGoogle Scholar
Donohue, P. H., Hill, E., and Huss, G. R. (2018) Experimentally determined subsolidus metal-olivine element partitioning with applications to pallasites. Geochemica et Cosmochimica Acta, 222, 305318.Google Scholar
Folco, L., and Cordier, C. (2015) Micrometeorites. Planetary Mineralogy, EMU Notes in Mineralogy, 15, 253297.Google Scholar
Goodrich, C. A. (1992) Ureilites: A critical review. Meteoritics, 27, 327352.Google Scholar
Goodrich, C. A., and Delaney, J. S. (2000) Fe/Mg-Fe/Mn relations of meteorites and primary heterogeneity of primitive achondrite parent bodies. Geochimica et Cosmochimica Acta, 64, 149160.CrossRefGoogle Scholar
Grossman, J. N., and Brearley, A. J. (2005) The onset of metamorphism in ordinary and carbonaceous chondrites. Meteoritics & Planetary Science, 40, 87122.CrossRefGoogle Scholar
Haack, H., and McCoy, T. J. (2004) Iron and stony-iron meteorites. In Treatise on Geochemistry, Vol. 1: Meteorites, Comets, and Planets, Davis, A. M., editor, pp. 325345, Elsevier, Oxford.Google Scholar
Haba, M. K., Wotzlaw, J.-W., Lai, Y.-J., et al. (2019) Mesosiderite formation on asteroid 4 Vesta by a hit-and-run collision. Nature Geoscience, 12, 510515.Google Scholar
Hasegawa, H., Mikouchi, T., Yamaguchi, A., et al. (2019) Petrological, petrofabric, and oxygen isotopic study of five ungrouped meteorites related to brachinites. Meteoritics & Planetary Science, 54, 752767.Google Scholar
Humayun, M., Nemchin, A., Zanda, B., et al. (2013) Origin and age of the earliest martian crust from meteorite NWA 7533. Nature, 503, 513516.Google Scholar
Ishii, H. A., Bradley, J. P., Bechtel, H. A., et al. (2018) Multiple generations of grain aggregation in different environments preceded solar system body formation. Proceedings of the National Academy of Sciences, USA, 115, doi:10.1073/pnas.1720167115.CrossRefGoogle ScholarPubMed
Jessberger, E. K., Stephan, T., Rost, D., et al. (2001) Properties of interplanetary dust: Information from collected samples. In Interplanetary Dust, Grun, E., Gustafson, B. A. S., Dermott, S. F., and Fechteg, H., editors, pp. 253294, Springer, Berlin.Google Scholar
Joswiak, D. J., Brownlee, D. E., Matrajt, G., et al. (2009) Kosmochloric Ca-rich pyroxenes and FeO-rich olivines (Kool grains) and associated phases in Stardust tracks and chondritic porous interplanetary dust particles: Possible precursors to FeO-rich type II chondrules in ordinary chondrites. Meteoritics & Planetary Sciences, 44, 15611588.Google Scholar
Joy, K. H., Crawford, I. A., Curran, N. M, et al. (2016) The Moon: An archive of small body migration in the Solar System. Earth Moon Planets, 118, 133158.Google Scholar
Keil, K. (2010) Enstatite achondrite meteorites (aubrites) and the histories of their asteroidal parent bodies. Chemie der Erde, 70, 295317.CrossRefGoogle Scholar
Keil, K. (2014) Brachinite meteorites: Partial melt residues from an FeO-rich asteroid. Chemie der Erde, 74, 311329.Google Scholar
Keil, K., and McCoy, T. J. (2018) Acapulcoite-lodranite meteorites: Ultramafic asteroidal partial melt residues. Chemie der Erde, 78, 153203.Google Scholar
Kimura, M., Sugiura, N., Yamaguchi, A., and Ichimura, K. (2020) The most primitive mesosiderite Northwest Africa 1878, subgroup 0. Meteoritics & Planetary Science, 55, 11161127.CrossRefGoogle Scholar
Krot, A. N. (2019) Refractory inclusions in carbonaceous chondrites: Records of early solar system processes. Meteoritics & Planetary Science, 54, 16471691.Google Scholar
Krot, A. N., Petaev, M. I., Scott, E. R. D, et al. (1998) Progressive alteration in CV3 chondrites: More evidence for asteroidal alteration. Meteoritics & Planetary Science, 33, 10651085.Google Scholar
Lauretta, D. S., and Killgore, M. (2005) A Color Atlas of Meteorites in Thin Section. Golden Retriever Press, Tucson, 301 pp.Google Scholar
Lauretta, D. S., Nagahara, H., and Alexander, C. M. O’D. (2006) Petrology and origin of ferromagnesian silicate chondrules. In Meteorites and the Early Solar System II, Lauretta, D. S., and McSween, H. Y., editors, pp. 431462, University of Arizona Press, Tucson.Google Scholar
McCoy, T. J., Dickinson, T. L., and Lofgren, G. E. (1999) Partial melting of the Indarch (EH4) meteorite: A textural, chemical, and phase relations view of melting and melt migration. Meteoritics & Planetary Science, 34, 735746.Google Scholar
McKay, D. S., Gibson, E. K., Thomas-Keprta, K. L., et al. (1996) Search for past life on Mars: Possible relic biogenic activity in martian meteorite ALH84001. Science, 273, 924930.Google Scholar
McKibbin, S. J., Pittarello, L., Makarona, C., et al. (2019) Petrogenesis of main group pallasite meteorites based on relationships among texture, mineralogy, and geochemistry. Meteoritics & Planetary Science, 54, 28142844.Google Scholar
McSween, H. Y. (1976) A new type of chondritic meteorite found in lunar soil. Earth & Planetary Science Letters, 31, 193199.Google Scholar
McSween, H. Y. (1977) Petrographic variations among carbonaceous chondrites of the Vigarano type. Geochimica et Cosmochimica Acta, 41, 17771790.Google Scholar
McSween, H. Y. (1979) Are carbonaceous chondrites primitive or processed? A review. Reviews of Geophysics & Space Physics, 17, 10591078.Google Scholar
McSween, H. Y. (2015) Petrology on Mars. American Mineralogist, 100, 23802395.Google Scholar
McSween, H. Y., and McLennan, S. M. (2014) Mars. In Treatise on Geochemistry, 2nd Edition, Vol. 2: Planets, Asteroids,, Comets and the Solar System, Davis, A. M., editor, pp. 251300, Elsevier, Oxford.Google Scholar
McSween, H. Y., Mittlefehldt, D. W., Beck, A. W., et al. (2011) HED meteorites and their relationship to the geology of Vesta and the Dawn mission. Space Science Reviews, 163, 141174.Google Scholar
McSween, H. Y., Binzel, R. P., DeSanctis, M. C., et al. (2013) Dawn; the Vesta-HED connection; and the geologic context for eucrites, diogenites, and howardites. Meteoritics & Planetary Science, 48, 20902104.Google Scholar
Mittlefehldt, D. W. (1994) ALH 84001, a cumulate orthopyroxenite member of the martian meteorite clan. Meteoritics, 29, 214221.Google Scholar
Mittlefehldt, D. W., and Lindstrom, M. M. (1990) Geochemistry and genesis of the angrites. Geochimica et Cosmochimica Acta, 54, 32093218.Google Scholar
Mittlefehldt, D. W., McCoy, T. J., Goodrich, C. A., and Kracher, A. (1998) Non-chondritic meteorites from asteroidal bodies. Planetary Materials, Reviews in Mineralogy, 36, Papike, J. J., editor, pp. 4-1 to 4-195.Google Scholar
Papike, J. J., Ryder, G., and Shearer, C. K. (1998) Lunar samples. Planetary Materials, Reviews in Mineralogy, 36, Papike, J. J., editor, pp. 5-1 to 5-234.Google Scholar
Prettyman, T. H., Mittlefehldt, D. W., Lawrence, D. J., et al. (2012) Elemental mapping by Dawn reveals exogenic H in Vesta’s howarditic regolith. Science, 338, 242246.Google Scholar
Rietmeijer, F. J. M. (1998) Interplanetary dust particles. Planetary Materials, Reviews in Mineralogy, 36, Papike, J. J., editor, pp. 2-1 to 2-95.Google Scholar
Rubin, A. E. (2018) Carbonaceous and noncarbonaceous iron meteorites: Differences in chemical, physical, and collective properties. Meteoritics & Planetary Science, 53, 23572371.Google Scholar
Rubin, A. E., and Ma, C. (2017) Meteoritic minerals and their origins. Chemie der Erde, 77, 325385.Google Scholar
Rubin, A. E., Scott, E. R. D., and Keil, K. (1997) Shock metamorphism of enstatite chondrites. Geochimica et Cosmochimica Acta, 61, 847858.Google Scholar
Russell, S. S., Davis, A. M., MacPherson, G. J., et al. (2000) Refractory inclusions from the ungrouped carbonaceous chondrites MacAlpine Hills 87300 and 88107. Meteoritics & Planetary Science, 35, 10511066.Google Scholar
Schramm, L. S., Brownlee, D. E., and Wheelock, M. M. (1989) Major element composition of stratospheric micrometeorites. Meteoritics, 24, 99112.CrossRefGoogle Scholar
Scott, E. R. D., and Wasson, J. T. (1975). Classification and properties of iron meteorites. Reviews of Geophysics & Space Physics, 13, 527546.Google Scholar
Scott, E. R. D., and Krot, A. N. (2004) Chondrites and their components. In Treatise on Geochemistry, Vol. 1: Meteorites, Comets, and Planets, Davis, A. M., editor, pp. 143200, Elsevier, Oxford.Google Scholar
Scott, E. R. D., Jones, R. H., and Rubin, A. E. (1994) Classification, metamorphic history, and pre-metamorphic composition of chondrules. Geochimica et Cosmochimica Acta, 58, 12031209.Google Scholar
Scott, E. R. D., Keil, K., and Stöffler, D. (1992) Shock metamorphism of carbonaceous chondrites. Geochimica et Cosmochimica Acta, 56, 42814293.Google Scholar
Scott, E. R. D., Haack, H., and Love, S. G. (2001) Formation of mesosiderites by fragmentation and reaccretion of a large differentiated asteroid. Meteoritics & Planetary Science, 36, 869881.Google Scholar
Sears, D. W. G., Grossman, J. N., Melcher, C. L., et al. (1980) Measuring the metamorphic history of unequilibrated ordinary chondrites. Nature, 287, 791795.Google Scholar
Stöffler, D., Keil, K., and Scott, E. R. D. (1991) Shock metamorphism of ordinary chondrites. Geochimica et Cosmochimica Acta, 55, 38453867.Google Scholar
Stöffler, D., Hamann, C., and Metzler, K. (2018) Shock metamorphism of planetary silicate rocks and sediments: Proposal for an updated classification system. Meteoritics & Planetary Science, 53, 549.Google Scholar
Tomkins, A. G., Johnson, T. E., and Mitchell, J. T. (2020) A review of the chondrite-achondrite transition, and a metamorphic facies series for equilibrated primitive stony meteorites. Meteoritics & Planetary Science, 55, 857885.Google Scholar
Udry, A., and Day, J. M. D. (2018) 1.34 million-year-old magmatism on Mars evaluated from the co-genetic nakhlite and chassignite meteorites. Geochimica et Cosmochimica Acta, 238, 292315.Google Scholar
Udry, A., Howarth, G. H., Herd, C. D. K., et al. (2020) What martian meteorites reveal about the interior and surface of Mars. Journal of Geophysical Research: Planets, 125, e2020JE006523.Google Scholar
Van Schmus, W. R., and Wood, J. A. (1967) A chemical-petrologic classification for the chondritic meteorites. Geochimica et Cosmochimica Acta, 31, 747765.Google Scholar
Warren, P. H., and Taylor, G. J. (2014) The Moon. In Treatise on Geochemistry, Vol. 1: Meteorites, Comets, and Planets, Davis, A. M., editor, pp. 559599, Elsevier, Oxford.Google Scholar
Warren, P. H., and Wasson, J. T. (1977) Pristine nonmare rocks and the nature of the lunar crust. Proceedings of the Lunar and Planetary Science Conference, 8, 22152235.Google Scholar
Wlotzka, F. (1993) A weathering scale for the ordinary chondrites. Meteoritics, 28, 460.Google Scholar
Young, E. D., Kohl, I. E., Warren, P. H., et al. (2016) Oxygen isotopic evidence for vigorous mixing during the Moon-forming giant impact. Science, 351, 493496.Google Scholar
Agee, C. B., Wilson, N. V., McCubbin, F. M., et al. (2013) Unique meteorite from early Amazonian Mars: Water-rich basaltic breccia Northwest Africa 7034. Science, 339, 780785.CrossRefGoogle ScholarPubMed
Ashley, J. W. (2015) The study of exogenic rocks on Mars – An evolving subdiscipline in meteoritics. Elements, 11, 1011.Google Scholar
Asphaug, E., Jutzi, M., and Movshovitz, M. (2011) Chondrule formation during planetesimal accretion. Earth & Planetary Science Letters, 308, 369379.Google Scholar
Bellucci, J. J., Nemchim, A. A., Grange, M., et al. (2019) Terrestrial-like zircon in a clast from an Apollo 14 breccia. Earth & Planetary Science Letters, 510, 173185.CrossRefGoogle Scholar
Benedix, G. K., McCoy, T. J., Keil, K., et al. (1998) A petrologic and isotopic study of winonaites: Evidence for early partial melting, brecciation, and metamorphism. Geochimica et Cosmochimica Acta, 62, 25352554.Google Scholar
Benedix, G. K., Haack, H., and McCoy, T. J. (2014) Iron and stony-iron meteorites. In Treatise in Geochemistry, 2nd edition, Vol. 1: Meteorites and Cosmochemical Processes, Davis, A. M., editor, pp. 267285, Elsevier, Oxford.Google Scholar
Boesenberg, J. S., Delaney, J., and Hewins, R. (2012) A petrological and chemical re-examination of main-group pallasite formation. Geochimica et Cosmochimica Acta, 89, 134158.Google Scholar
Bonal, L., Quirico, E., Bourot-Denise, M., and Montagnac, G. (2006) Determination of the petrologic type of CV3 chondrites by Raman spectroscopy of included organic matter. Geochimica et Cosmochimica Acta, 70, 18491863.Google Scholar
Bradley, J. P. (1994) Chemically anomalous, preaccretionally irradiated grains in interplanetary dust particles from comets. Science, 265, 925929.Google Scholar
Bryson, J. F. J., Nichols, C. I. O., Herrero-Albilos, J., et al. (2015) Long-lived magnetism from solidification-driven convection on the pallasite parent body. Nature, 517, 472475.Google Scholar
Clayton, R. N. (2004) Oxygen isotopes in meteorites. In Treatise on Geochemistry, Vol. 1: Meteorites, Comets, and Planets, Davis, A. M., editor, pp. 129142, Elsevier, Oxford.Google Scholar
Collinet, M., and Grove, T. L. (2020a) Widespread production of silica- and alkali-rich melts at the onset of planetesimal melting. Geochemica et Cosmochimica Acta, 277, 334357.Google Scholar
Collinet, M., and Grove, T. L. (2020b) Incremental melting in the ureilite parent body: Initial composition, melting temperatures, and melt compositions. Meteoritics & Planetary Science, 55, 832856.Google Scholar
Connolly, H. C. Jr., and Jones, R. H. (2016) Chondrules: The canonical and noncanonical views. Journal of Geophysical Research, Planets, 121, 18851899.Google Scholar
Desch, S. J., Morris, M. A., Connolly, H. J., and Boss, A. P. (2012) The importance of experiments: Constraints on chondrule formation models. Meteoritics & Planetary Science, 47, 11391156.CrossRefGoogle Scholar
Donohue, P. H., Hill, E., and Huss, G. R. (2018) Experimentally determined subsolidus metal-olivine element partitioning with applications to pallasites. Geochemica et Cosmochimica Acta, 222, 305318.Google Scholar
Folco, L., and Cordier, C. (2015) Micrometeorites. Planetary Mineralogy, EMU Notes in Mineralogy, 15, 253297.Google Scholar
Goodrich, C. A. (1992) Ureilites: A critical review. Meteoritics, 27, 327352.Google Scholar
Goodrich, C. A., and Delaney, J. S. (2000) Fe/Mg-Fe/Mn relations of meteorites and primary heterogeneity of primitive achondrite parent bodies. Geochimica et Cosmochimica Acta, 64, 149160.CrossRefGoogle Scholar
Grossman, J. N., and Brearley, A. J. (2005) The onset of metamorphism in ordinary and carbonaceous chondrites. Meteoritics & Planetary Science, 40, 87122.CrossRefGoogle Scholar
Haack, H., and McCoy, T. J. (2004) Iron and stony-iron meteorites. In Treatise on Geochemistry, Vol. 1: Meteorites, Comets, and Planets, Davis, A. M., editor, pp. 325345, Elsevier, Oxford.Google Scholar
Haba, M. K., Wotzlaw, J.-W., Lai, Y.-J., et al. (2019) Mesosiderite formation on asteroid 4 Vesta by a hit-and-run collision. Nature Geoscience, 12, 510515.Google Scholar
Hasegawa, H., Mikouchi, T., Yamaguchi, A., et al. (2019) Petrological, petrofabric, and oxygen isotopic study of five ungrouped meteorites related to brachinites. Meteoritics & Planetary Science, 54, 752767.Google Scholar
Humayun, M., Nemchin, A., Zanda, B., et al. (2013) Origin and age of the earliest martian crust from meteorite NWA 7533. Nature, 503, 513516.Google Scholar
Ishii, H. A., Bradley, J. P., Bechtel, H. A., et al. (2018) Multiple generations of grain aggregation in different environments preceded solar system body formation. Proceedings of the National Academy of Sciences, USA, 115, doi:10.1073/pnas.1720167115.CrossRefGoogle ScholarPubMed
Jessberger, E. K., Stephan, T., Rost, D., et al. (2001) Properties of interplanetary dust: Information from collected samples. In Interplanetary Dust, Grun, E., Gustafson, B. A. S., Dermott, S. F., and Fechteg, H., editors, pp. 253294, Springer, Berlin.Google Scholar
Joswiak, D. J., Brownlee, D. E., Matrajt, G., et al. (2009) Kosmochloric Ca-rich pyroxenes and FeO-rich olivines (Kool grains) and associated phases in Stardust tracks and chondritic porous interplanetary dust particles: Possible precursors to FeO-rich type II chondrules in ordinary chondrites. Meteoritics & Planetary Sciences, 44, 15611588.Google Scholar
Joy, K. H., Crawford, I. A., Curran, N. M, et al. (2016) The Moon: An archive of small body migration in the Solar System. Earth Moon Planets, 118, 133158.Google Scholar
Keil, K. (2010) Enstatite achondrite meteorites (aubrites) and the histories of their asteroidal parent bodies. Chemie der Erde, 70, 295317.CrossRefGoogle Scholar
Keil, K. (2014) Brachinite meteorites: Partial melt residues from an FeO-rich asteroid. Chemie der Erde, 74, 311329.Google Scholar
Keil, K., and McCoy, T. J. (2018) Acapulcoite-lodranite meteorites: Ultramafic asteroidal partial melt residues. Chemie der Erde, 78, 153203.Google Scholar
Kimura, M., Sugiura, N., Yamaguchi, A., and Ichimura, K. (2020) The most primitive mesosiderite Northwest Africa 1878, subgroup 0. Meteoritics & Planetary Science, 55, 11161127.CrossRefGoogle Scholar
Krot, A. N. (2019) Refractory inclusions in carbonaceous chondrites: Records of early solar system processes. Meteoritics & Planetary Science, 54, 16471691.Google Scholar
Krot, A. N., Petaev, M. I., Scott, E. R. D, et al. (1998) Progressive alteration in CV3 chondrites: More evidence for asteroidal alteration. Meteoritics & Planetary Science, 33, 10651085.Google Scholar
Lauretta, D. S., and Killgore, M. (2005) A Color Atlas of Meteorites in Thin Section. Golden Retriever Press, Tucson, 301 pp.Google Scholar
Lauretta, D. S., Nagahara, H., and Alexander, C. M. O’D. (2006) Petrology and origin of ferromagnesian silicate chondrules. In Meteorites and the Early Solar System II, Lauretta, D. S., and McSween, H. Y., editors, pp. 431462, University of Arizona Press, Tucson.Google Scholar
McCoy, T. J., Dickinson, T. L., and Lofgren, G. E. (1999) Partial melting of the Indarch (EH4) meteorite: A textural, chemical, and phase relations view of melting and melt migration. Meteoritics & Planetary Science, 34, 735746.Google Scholar
McKay, D. S., Gibson, E. K., Thomas-Keprta, K. L., et al. (1996) Search for past life on Mars: Possible relic biogenic activity in martian meteorite ALH84001. Science, 273, 924930.Google Scholar
McKibbin, S. J., Pittarello, L., Makarona, C., et al. (2019) Petrogenesis of main group pallasite meteorites based on relationships among texture, mineralogy, and geochemistry. Meteoritics & Planetary Science, 54, 28142844.Google Scholar
McSween, H. Y. (1976) A new type of chondritic meteorite found in lunar soil. Earth & Planetary Science Letters, 31, 193199.Google Scholar
McSween, H. Y. (1977) Petrographic variations among carbonaceous chondrites of the Vigarano type. Geochimica et Cosmochimica Acta, 41, 17771790.Google Scholar
McSween, H. Y. (1979) Are carbonaceous chondrites primitive or processed? A review. Reviews of Geophysics & Space Physics, 17, 10591078.Google Scholar
McSween, H. Y. (2015) Petrology on Mars. American Mineralogist, 100, 23802395.Google Scholar
McSween, H. Y., and McLennan, S. M. (2014) Mars. In Treatise on Geochemistry, 2nd Edition, Vol. 2: Planets, Asteroids,, Comets and the Solar System, Davis, A. M., editor, pp. 251300, Elsevier, Oxford.Google Scholar
McSween, H. Y., Mittlefehldt, D. W., Beck, A. W., et al. (2011) HED meteorites and their relationship to the geology of Vesta and the Dawn mission. Space Science Reviews, 163, 141174.Google Scholar
McSween, H. Y., Binzel, R. P., DeSanctis, M. C., et al. (2013) Dawn; the Vesta-HED connection; and the geologic context for eucrites, diogenites, and howardites. Meteoritics & Planetary Science, 48, 20902104.Google Scholar
Mittlefehldt, D. W. (1994) ALH 84001, a cumulate orthopyroxenite member of the martian meteorite clan. Meteoritics, 29, 214221.Google Scholar
Mittlefehldt, D. W., and Lindstrom, M. M. (1990) Geochemistry and genesis of the angrites. Geochimica et Cosmochimica Acta, 54, 32093218.Google Scholar
Mittlefehldt, D. W., McCoy, T. J., Goodrich, C. A., and Kracher, A. (1998) Non-chondritic meteorites from asteroidal bodies. Planetary Materials, Reviews in Mineralogy, 36, Papike, J. J., editor, pp. 4-1 to 4-195.Google Scholar
Papike, J. J., Ryder, G., and Shearer, C. K. (1998) Lunar samples. Planetary Materials, Reviews in Mineralogy, 36, Papike, J. J., editor, pp. 5-1 to 5-234.Google Scholar
Prettyman, T. H., Mittlefehldt, D. W., Lawrence, D. J., et al. (2012) Elemental mapping by Dawn reveals exogenic H in Vesta’s howarditic regolith. Science, 338, 242246.Google Scholar
Rietmeijer, F. J. M. (1998) Interplanetary dust particles. Planetary Materials, Reviews in Mineralogy, 36, Papike, J. J., editor, pp. 2-1 to 2-95.Google Scholar
Rubin, A. E. (2018) Carbonaceous and noncarbonaceous iron meteorites: Differences in chemical, physical, and collective properties. Meteoritics & Planetary Science, 53, 23572371.Google Scholar
Rubin, A. E., and Ma, C. (2017) Meteoritic minerals and their origins. Chemie der Erde, 77, 325385.Google Scholar
Rubin, A. E., Scott, E. R. D., and Keil, K. (1997) Shock metamorphism of enstatite chondrites. Geochimica et Cosmochimica Acta, 61, 847858.Google Scholar
Russell, S. S., Davis, A. M., MacPherson, G. J., et al. (2000) Refractory inclusions from the ungrouped carbonaceous chondrites MacAlpine Hills 87300 and 88107. Meteoritics & Planetary Science, 35, 10511066.Google Scholar
Schramm, L. S., Brownlee, D. E., and Wheelock, M. M. (1989) Major element composition of stratospheric micrometeorites. Meteoritics, 24, 99112.CrossRefGoogle Scholar
Scott, E. R. D., and Wasson, J. T. (1975). Classification and properties of iron meteorites. Reviews of Geophysics & Space Physics, 13, 527546.Google Scholar
Scott, E. R. D., and Krot, A. N. (2004) Chondrites and their components. In Treatise on Geochemistry, Vol. 1: Meteorites, Comets, and Planets, Davis, A. M., editor, pp. 143200, Elsevier, Oxford.Google Scholar
Scott, E. R. D., Jones, R. H., and Rubin, A. E. (1994) Classification, metamorphic history, and pre-metamorphic composition of chondrules. Geochimica et Cosmochimica Acta, 58, 12031209.Google Scholar
Scott, E. R. D., Keil, K., and Stöffler, D. (1992) Shock metamorphism of carbonaceous chondrites. Geochimica et Cosmochimica Acta, 56, 42814293.Google Scholar
Scott, E. R. D., Haack, H., and Love, S. G. (2001) Formation of mesosiderites by fragmentation and reaccretion of a large differentiated asteroid. Meteoritics & Planetary Science, 36, 869881.Google Scholar
Sears, D. W. G., Grossman, J. N., Melcher, C. L., et al. (1980) Measuring the metamorphic history of unequilibrated ordinary chondrites. Nature, 287, 791795.Google Scholar
Stöffler, D., Keil, K., and Scott, E. R. D. (1991) Shock metamorphism of ordinary chondrites. Geochimica et Cosmochimica Acta, 55, 38453867.Google Scholar
Stöffler, D., Hamann, C., and Metzler, K. (2018) Shock metamorphism of planetary silicate rocks and sediments: Proposal for an updated classification system. Meteoritics & Planetary Science, 53, 549.Google Scholar
Tomkins, A. G., Johnson, T. E., and Mitchell, J. T. (2020) A review of the chondrite-achondrite transition, and a metamorphic facies series for equilibrated primitive stony meteorites. Meteoritics & Planetary Science, 55, 857885.Google Scholar
Udry, A., and Day, J. M. D. (2018) 1.34 million-year-old magmatism on Mars evaluated from the co-genetic nakhlite and chassignite meteorites. Geochimica et Cosmochimica Acta, 238, 292315.Google Scholar
Udry, A., Howarth, G. H., Herd, C. D. K., et al. (2020) What martian meteorites reveal about the interior and surface of Mars. Journal of Geophysical Research: Planets, 125, e2020JE006523.Google Scholar
Van Schmus, W. R., and Wood, J. A. (1967) A chemical-petrologic classification for the chondritic meteorites. Geochimica et Cosmochimica Acta, 31, 747765.Google Scholar
Warren, P. H., and Taylor, G. J. (2014) The Moon. In Treatise on Geochemistry, Vol. 1: Meteorites, Comets, and Planets, Davis, A. M., editor, pp. 559599, Elsevier, Oxford.Google Scholar
Warren, P. H., and Wasson, J. T. (1977) Pristine nonmare rocks and the nature of the lunar crust. Proceedings of the Lunar and Planetary Science Conference, 8, 22152235.Google Scholar
Wlotzka, F. (1993) A weathering scale for the ordinary chondrites. Meteoritics, 28, 460.Google Scholar
Young, E. D., Kohl, I. E., Warren, P. H., et al. (2016) Oxygen isotopic evidence for vigorous mixing during the Moon-forming giant impact. Science, 351, 493496.Google Scholar

Other References

Agee, C. B., Wilson, N. V., McCubbin, F. M., et al. (2013) Unique meteorite from early Amazonian Mars: Water-rich basaltic breccia Northwest Africa 7034. Science, 339, 780785.CrossRefGoogle ScholarPubMed
Ashley, J. W. (2015) The study of exogenic rocks on Mars – An evolving subdiscipline in meteoritics. Elements, 11, 1011.Google Scholar
Asphaug, E., Jutzi, M., and Movshovitz, M. (2011) Chondrule formation during planetesimal accretion. Earth & Planetary Science Letters, 308, 369379.Google Scholar
Bellucci, J. J., Nemchim, A. A., Grange, M., et al. (2019) Terrestrial-like zircon in a clast from an Apollo 14 breccia. Earth & Planetary Science Letters, 510, 173185.CrossRefGoogle Scholar
Benedix, G. K., McCoy, T. J., Keil, K., et al. (1998) A petrologic and isotopic study of winonaites: Evidence for early partial melting, brecciation, and metamorphism. Geochimica et Cosmochimica Acta, 62, 25352554.Google Scholar
Benedix, G. K., Haack, H., and McCoy, T. J. (2014) Iron and stony-iron meteorites. In Treatise in Geochemistry, 2nd edition, Vol. 1: Meteorites and Cosmochemical Processes, Davis, A. M., editor, pp. 267285, Elsevier, Oxford.Google Scholar
Boesenberg, J. S., Delaney, J., and Hewins, R. (2012) A petrological and chemical re-examination of main-group pallasite formation. Geochimica et Cosmochimica Acta, 89, 134158.Google Scholar
Bonal, L., Quirico, E., Bourot-Denise, M., and Montagnac, G. (2006) Determination of the petrologic type of CV3 chondrites by Raman spectroscopy of included organic matter. Geochimica et Cosmochimica Acta, 70, 18491863.Google Scholar
Bradley, J. P. (1994) Chemically anomalous, preaccretionally irradiated grains in interplanetary dust particles from comets. Science, 265, 925929.Google Scholar
Bryson, J. F. J., Nichols, C. I. O., Herrero-Albilos, J., et al. (2015) Long-lived magnetism from solidification-driven convection on the pallasite parent body. Nature, 517, 472475.Google Scholar
Clayton, R. N. (2004) Oxygen isotopes in meteorites. In Treatise on Geochemistry, Vol. 1: Meteorites, Comets, and Planets, Davis, A. M., editor, pp. 129142, Elsevier, Oxford.Google Scholar
Collinet, M., and Grove, T. L. (2020a) Widespread production of silica- and alkali-rich melts at the onset of planetesimal melting. Geochemica et Cosmochimica Acta, 277, 334357.Google Scholar
Collinet, M., and Grove, T. L. (2020b) Incremental melting in the ureilite parent body: Initial composition, melting temperatures, and melt compositions. Meteoritics & Planetary Science, 55, 832856.Google Scholar
Connolly, H. C. Jr., and Jones, R. H. (2016) Chondrules: The canonical and noncanonical views. Journal of Geophysical Research, Planets, 121, 18851899.Google Scholar
Desch, S. J., Morris, M. A., Connolly, H. J., and Boss, A. P. (2012) The importance of experiments: Constraints on chondrule formation models. Meteoritics & Planetary Science, 47, 11391156.CrossRefGoogle Scholar
Donohue, P. H., Hill, E., and Huss, G. R. (2018) Experimentally determined subsolidus metal-olivine element partitioning with applications to pallasites. Geochemica et Cosmochimica Acta, 222, 305318.Google Scholar
Folco, L., and Cordier, C. (2015) Micrometeorites. Planetary Mineralogy, EMU Notes in Mineralogy, 15, 253297.Google Scholar
Goodrich, C. A. (1992) Ureilites: A critical review. Meteoritics, 27, 327352.Google Scholar
Goodrich, C. A., and Delaney, J. S. (2000) Fe/Mg-Fe/Mn relations of meteorites and primary heterogeneity of primitive achondrite parent bodies. Geochimica et Cosmochimica Acta, 64, 149160.CrossRefGoogle Scholar
Grossman, J. N., and Brearley, A. J. (2005) The onset of metamorphism in ordinary and carbonaceous chondrites. Meteoritics & Planetary Science, 40, 87122.CrossRefGoogle Scholar
Haack, H., and McCoy, T. J. (2004) Iron and stony-iron meteorites. In Treatise on Geochemistry, Vol. 1: Meteorites, Comets, and Planets, Davis, A. M., editor, pp. 325345, Elsevier, Oxford.Google Scholar
Haba, M. K., Wotzlaw, J.-W., Lai, Y.-J., et al. (2019) Mesosiderite formation on asteroid 4 Vesta by a hit-and-run collision. Nature Geoscience, 12, 510515.Google Scholar
Hasegawa, H., Mikouchi, T., Yamaguchi, A., et al. (2019) Petrological, petrofabric, and oxygen isotopic study of five ungrouped meteorites related to brachinites. Meteoritics & Planetary Science, 54, 752767.Google Scholar
Humayun, M., Nemchin, A., Zanda, B., et al. (2013) Origin and age of the earliest martian crust from meteorite NWA 7533. Nature, 503, 513516.Google Scholar
Ishii, H. A., Bradley, J. P., Bechtel, H. A., et al. (2018) Multiple generations of grain aggregation in different environments preceded solar system body formation. Proceedings of the National Academy of Sciences, USA, 115, doi:10.1073/pnas.1720167115.CrossRefGoogle ScholarPubMed
Jessberger, E. K., Stephan, T., Rost, D., et al. (2001) Properties of interplanetary dust: Information from collected samples. In Interplanetary Dust, Grun, E., Gustafson, B. A. S., Dermott, S. F., and Fechteg, H., editors, pp. 253294, Springer, Berlin.Google Scholar
Joswiak, D. J., Brownlee, D. E., Matrajt, G., et al. (2009) Kosmochloric Ca-rich pyroxenes and FeO-rich olivines (Kool grains) and associated phases in Stardust tracks and chondritic porous interplanetary dust particles: Possible precursors to FeO-rich type II chondrules in ordinary chondrites. Meteoritics & Planetary Sciences, 44, 15611588.Google Scholar
Joy, K. H., Crawford, I. A., Curran, N. M, et al. (2016) The Moon: An archive of small body migration in the Solar System. Earth Moon Planets, 118, 133158.Google Scholar
Keil, K. (2010) Enstatite achondrite meteorites (aubrites) and the histories of their asteroidal parent bodies. Chemie der Erde, 70, 295317.CrossRefGoogle Scholar
Keil, K. (2014) Brachinite meteorites: Partial melt residues from an FeO-rich asteroid. Chemie der Erde, 74, 311329.Google Scholar
Keil, K., and McCoy, T. J. (2018) Acapulcoite-lodranite meteorites: Ultramafic asteroidal partial melt residues. Chemie der Erde, 78, 153203.Google Scholar
Kimura, M., Sugiura, N., Yamaguchi, A., and Ichimura, K. (2020) The most primitive mesosiderite Northwest Africa 1878, subgroup 0. Meteoritics & Planetary Science, 55, 11161127.CrossRefGoogle Scholar
Krot, A. N. (2019) Refractory inclusions in carbonaceous chondrites: Records of early solar system processes. Meteoritics & Planetary Science, 54, 16471691.Google Scholar
Krot, A. N., Petaev, M. I., Scott, E. R. D, et al. (1998) Progressive alteration in CV3 chondrites: More evidence for asteroidal alteration. Meteoritics & Planetary Science, 33, 10651085.Google Scholar
Lauretta, D. S., and Killgore, M. (2005) A Color Atlas of Meteorites in Thin Section. Golden Retriever Press, Tucson, 301 pp.Google Scholar
Lauretta, D. S., Nagahara, H., and Alexander, C. M. O’D. (2006) Petrology and origin of ferromagnesian silicate chondrules. In Meteorites and the Early Solar System II, Lauretta, D. S., and McSween, H. Y., editors, pp. 431462, University of Arizona Press, Tucson.Google Scholar
McCoy, T. J., Dickinson, T. L., and Lofgren, G. E. (1999) Partial melting of the Indarch (EH4) meteorite: A textural, chemical, and phase relations view of melting and melt migration. Meteoritics & Planetary Science, 34, 735746.Google Scholar
McKay, D. S., Gibson, E. K., Thomas-Keprta, K. L., et al. (1996) Search for past life on Mars: Possible relic biogenic activity in martian meteorite ALH84001. Science, 273, 924930.Google Scholar
McKibbin, S. J., Pittarello, L., Makarona, C., et al. (2019) Petrogenesis of main group pallasite meteorites based on relationships among texture, mineralogy, and geochemistry. Meteoritics & Planetary Science, 54, 28142844.Google Scholar
McSween, H. Y. (1976) A new type of chondritic meteorite found in lunar soil. Earth & Planetary Science Letters, 31, 193199.Google Scholar
McSween, H. Y. (1977) Petrographic variations among carbonaceous chondrites of the Vigarano type. Geochimica et Cosmochimica Acta, 41, 17771790.Google Scholar
McSween, H. Y. (1979) Are carbonaceous chondrites primitive or processed? A review. Reviews of Geophysics & Space Physics, 17, 10591078.Google Scholar
McSween, H. Y. (2015) Petrology on Mars. American Mineralogist, 100, 23802395.Google Scholar
McSween, H. Y., and McLennan, S. M. (2014) Mars. In Treatise on Geochemistry, 2nd Edition, Vol. 2: Planets, Asteroids,, Comets and the Solar System, Davis, A. M., editor, pp. 251300, Elsevier, Oxford.Google Scholar
McSween, H. Y., Mittlefehldt, D. W., Beck, A. W., et al. (2011) HED meteorites and their relationship to the geology of Vesta and the Dawn mission. Space Science Reviews, 163, 141174.Google Scholar
McSween, H. Y., Binzel, R. P., DeSanctis, M. C., et al. (2013) Dawn; the Vesta-HED connection; and the geologic context for eucrites, diogenites, and howardites. Meteoritics & Planetary Science, 48, 20902104.Google Scholar
Mittlefehldt, D. W. (1994) ALH 84001, a cumulate orthopyroxenite member of the martian meteorite clan. Meteoritics, 29, 214221.Google Scholar
Mittlefehldt, D. W., and Lindstrom, M. M. (1990) Geochemistry and genesis of the angrites. Geochimica et Cosmochimica Acta, 54, 32093218.Google Scholar
Mittlefehldt, D. W., McCoy, T. J., Goodrich, C. A., and Kracher, A. (1998) Non-chondritic meteorites from asteroidal bodies. Planetary Materials, Reviews in Mineralogy, 36, Papike, J. J., editor, pp. 4-1 to 4-195.Google Scholar
Papike, J. J., Ryder, G., and Shearer, C. K. (1998) Lunar samples. Planetary Materials, Reviews in Mineralogy, 36, Papike, J. J., editor, pp. 5-1 to 5-234.Google Scholar
Prettyman, T. H., Mittlefehldt, D. W., Lawrence, D. J., et al. (2012) Elemental mapping by Dawn reveals exogenic H in Vesta’s howarditic regolith. Science, 338, 242246.Google Scholar
Rietmeijer, F. J. M. (1998) Interplanetary dust particles. Planetary Materials, Reviews in Mineralogy, 36, Papike, J. J., editor, pp. 2-1 to 2-95.Google Scholar
Rubin, A. E. (2018) Carbonaceous and noncarbonaceous iron meteorites: Differences in chemical, physical, and collective properties. Meteoritics & Planetary Science, 53, 23572371.Google Scholar
Rubin, A. E., and Ma, C. (2017) Meteoritic minerals and their origins. Chemie der Erde, 77, 325385.Google Scholar
Rubin, A. E., Scott, E. R. D., and Keil, K. (1997) Shock metamorphism of enstatite chondrites. Geochimica et Cosmochimica Acta, 61, 847858.Google Scholar
Russell, S. S., Davis, A. M., MacPherson, G. J., et al. (2000) Refractory inclusions from the ungrouped carbonaceous chondrites MacAlpine Hills 87300 and 88107. Meteoritics & Planetary Science, 35, 10511066.Google Scholar
Schramm, L. S., Brownlee, D. E., and Wheelock, M. M. (1989) Major element composition of stratospheric micrometeorites. Meteoritics, 24, 99112.CrossRefGoogle Scholar
Scott, E. R. D., and Wasson, J. T. (1975). Classification and properties of iron meteorites. Reviews of Geophysics & Space Physics, 13, 527546.Google Scholar
Scott, E. R. D., and Krot, A. N. (2004) Chondrites and their components. In Treatise on Geochemistry, Vol. 1: Meteorites, Comets, and Planets, Davis, A. M., editor, pp. 143200, Elsevier, Oxford.Google Scholar
Scott, E. R. D., Jones, R. H., and Rubin, A. E. (1994) Classification, metamorphic history, and pre-metamorphic composition of chondrules. Geochimica et Cosmochimica Acta, 58, 12031209.Google Scholar
Scott, E. R. D., Keil, K., and Stöffler, D. (1992) Shock metamorphism of carbonaceous chondrites. Geochimica et Cosmochimica Acta, 56, 42814293.Google Scholar
Scott, E. R. D., Haack, H., and Love, S. G. (2001) Formation of mesosiderites by fragmentation and reaccretion of a large differentiated asteroid. Meteoritics & Planetary Science, 36, 869881.Google Scholar
Sears, D. W. G., Grossman, J. N., Melcher, C. L., et al. (1980) Measuring the metamorphic history of unequilibrated ordinary chondrites. Nature, 287, 791795.Google Scholar
Stöffler, D., Keil, K., and Scott, E. R. D. (1991) Shock metamorphism of ordinary chondrites. Geochimica et Cosmochimica Acta, 55, 38453867.Google Scholar
Stöffler, D., Hamann, C., and Metzler, K. (2018) Shock metamorphism of planetary silicate rocks and sediments: Proposal for an updated classification system. Meteoritics & Planetary Science, 53, 549.Google Scholar
Tomkins, A. G., Johnson, T. E., and Mitchell, J. T. (2020) A review of the chondrite-achondrite transition, and a metamorphic facies series for equilibrated primitive stony meteorites. Meteoritics & Planetary Science, 55, 857885.Google Scholar
Udry, A., and Day, J. M. D. (2018) 1.34 million-year-old magmatism on Mars evaluated from the co-genetic nakhlite and chassignite meteorites. Geochimica et Cosmochimica Acta, 238, 292315.Google Scholar
Udry, A., Howarth, G. H., Herd, C. D. K., et al. (2020) What martian meteorites reveal about the interior and surface of Mars. Journal of Geophysical Research: Planets, 125, e2020JE006523.Google Scholar
Van Schmus, W. R., and Wood, J. A. (1967) A chemical-petrologic classification for the chondritic meteorites. Geochimica et Cosmochimica Acta, 31, 747765.Google Scholar
Warren, P. H., and Taylor, G. J. (2014) The Moon. In Treatise on Geochemistry, Vol. 1: Meteorites, Comets, and Planets, Davis, A. M., editor, pp. 559599, Elsevier, Oxford.Google Scholar
Warren, P. H., and Wasson, J. T. (1977) Pristine nonmare rocks and the nature of the lunar crust. Proceedings of the Lunar and Planetary Science Conference, 8, 22152235.Google Scholar
Wlotzka, F. (1993) A weathering scale for the ordinary chondrites. Meteoritics, 28, 460.Google Scholar
Young, E. D., Kohl, I. E., Warren, P. H., et al. (2016) Oxygen isotopic evidence for vigorous mixing during the Moon-forming giant impact. Science, 351, 493496.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×