Published online by Cambridge University Press: 16 May 2024
First, the solution to the problem of the cube is easy. If we use every switch once, then each light will change three times, and hence each light will change from ON to OFF. In fact, if we operate the three switches that are adjacent to a given vertex this has the same effect as a normal switch at that vertex; thus we can pass from any one state of the lights to any other state.
Let us continue by addressing the question: if, in the original problem, n is odd, can we pass from any even state to any other even state, and from any odd state to any other odd state? It is always a good idea to experiment with some special cases, so here is one. Suppose that n = 5 and that A = (1, 0, 1, 0, 1) and B = (1, 1, 1, 0, 0): can we pass from A to B? Let us agree to use switch 1 k1 times, switch 2 k2 times, and so on, where each kj is 0 or 1. We will pass from A to B with this choice of switches if and only if we can solve the congruence equation
where the kj are the ‘unknowns’ (and each is 0 or 1). This equation is equivalent to the equation
or to the system
taken modulo 2. By subtraction we see that k1 = k3 = k4 and k2 = k5, and hence the unique solution (modulo 2) is k2 = k5 = 1 and k1 = k3 = k4 = 0. Thus we should use only switches 2 and 5, and it is easy to check that this combination does indeed take us from state A to state B. More generally, if we consider any two states A and B and write A + B = C = (c1, c2, c3, c4, c5), then we obtain the equations
If we now add all of these equations together, we find that a necessary condition for a solution is that c1 +· · ·+c5 = 0 (mod 2). This confirms that (with n = 5) we can only pass between even states, and between odd states.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.