Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-10T10:40:39.779Z Has data issue: false hasContentIssue false

13 - Experience-Dependent Plasticity in the Hippocampus

from Part II - Applications

Published online by Cambridge University Press:  18 September 2020

Laurence J. Kirmayer
Affiliation:
McGill University, Montréal
Carol M. Worthman
Affiliation:
Emory University, Atlanta
Shinobu Kitayama
Affiliation:
University of Michigan, Ann Arbor
Robert Lemelson
Affiliation:
University of California, Los Angeles
Constance A. Cummings
Affiliation:
The Foundation for Psychocultural Research
Get access

Summary

Life experiences have been associated with significant changes in brain structure and functioning. This experience-dependent plasticity is thought to reflect the capacity of our nervous systems to adapt to environmental demands, and ultimately shape cognition. This chapter focuses on how such experiences and environment can specifically impact the hippocampus, a structure important for learning, memory, and healthy cognition. The hippocampal memory system maintains a competitive relationship with other memory systems, in particular the caudate nucleus of the striatum, part of the basal ganglia. Specific types of behavior, such as spatial-based vs. response-based navigational strategies, can influence these memory systems both positively and negatively and lead to long-term neuroplastic changes. Overreliance on non-hippocampus dependent navigational strategies is associated with a reduction in hippocampus volume and activity across the lifespan. Emerging research is now pointing to the wide use of electronic devices – GPS, smartphones, and video games – as a contributing factor to greater reliance on non-hippocampus dependent memory. Given the limited, but concerning, evidence that reliance on electronic devices can interact with already established factors related to underuse of the hippocampal memory system, further study is needed to better understand how these imbalances occur and how they can be mitigated.

Type
Chapter
Information
Culture, Mind, and Brain
Emerging Concepts, Models, and Applications
, pp. 375 - 388
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alvarez, P., Zola-Morgan, S., & Squire, L. R. (1995). Damage limited to the hippocampal region produces long-lasting memory impairment in monkeys. Journal of Neuroscience, 15(5 Pt 2), 3796–807. https://doi.org/10.1523/JNEUROSCI.15-05-03796.1995Google Scholar
Amico, F., Meisenzahl, E., Koutsouleris, N., Reiser, M., Möller, H. J., & Frodl, T. (2011). Structural MRI correlates for vulnerability and resilience to major depressive disorder. Journal of Psychiatry and Neuroscience, 36(1), 1522. https://doi.org/10.1503/jpn.090186Google Scholar
Andersen, N. E., Dahmani, L., Konishi, K., & Bohbot, V. D. (2012). Eye tracking, strategies, and sex differences in virtual navigation. Neurobiology of Learning and Memory, 97(1), 81–9. https://doi.org/10.1016/j.nlm.2011.09.007Google Scholar
Apostolova, L. G., Dutton, R. A., Dinov, I. D., Hayashi, K. M., Toga, A. W., Cummings, J. L., & Thompson, P. M. (2006). Conversion of mild cognitive impairment to Alzheimer disease predicted by hippocampal atrophy maps. Archives of Neurology, 63(5), 693–9. https://doi.org/10.1001/archneur.63.5.693Google Scholar
Barnes, C. A., Nadel, L., & Honig, W. K. (1980). Spatial memory deficit in senescent rats. Canadian Journal of Psychology/Revue canadienne de psychologie, 34(1), 2939. https://doi.org/10.1037/h0081022Google Scholar
Bherer, L., Kramer, A. F., Peterson, M. S., Colcombe, S., Erickson, K., & Becic, E. (2006). Testing the limits of cognitive plasticity in older adults: Application to attentional control. Acta Psychologica, 123(3), 261–78. https://doi.org/10.1016/j.actpsy.2006.01.005Google Scholar
Bohbot, V. D., Del Balso, D., Conrad, K., Konishi, K., & Leyton, M. (2013). Caudate nucleus-dependent navigational strategies are associated with increased use of addictive drugs. Hippocampus, 23(11), 973–84. https://doi.org/10.1002/hipo.22187Google Scholar
Bohbot, V. D., Iaria, G., & Petrides, M. (2004). Hippocampal function and spatial memory: Evidence from functional neuroimaging in healthy participants and performance of patients with medial temporal lobe resections. Neuropsychology, 18(3), 418–25. https://doi.org/10.1037/0894-4105.18.3.418Google Scholar
Bohbot, V. D., Konishi, K., Sodums, D., Dahmani, L., & Bherer, L. (2015, October). Hippocampus and cortical plasticity following a virtual spatial memory intervention program promote spontaneous hippocampus-dependent navigation strategies in healthy older adults [Paper presentation]. Society for Neuroscience, 45th Annual Meeting, Chicago, IL, United States.Google Scholar
Bohbot, V. D., Lerch, J., Thorndycraft, B., Iaria, G., & Zijdenbos, A. P. (2007). Gray matter differences correlate with spontaneous strategies in a human virtual navigation task. Journal of Neuroscience, 27(38), 10078–83. https://doi.org/10.1523/JNEUROSCI.1763-07.2007Google Scholar
Bohbot, V. D., McKenzie, S., Konishi, K., Fouquet, C., Kurdi, V., Schachar, R., Boivin, M., & Robaey, P. (2012). Virtual navigation strategies from childhood to senescence: Evidence for changes across the life span. Frontiers in Aging Neuroscience, 4, 28. https://doi.org/10.3389/fnagi.2012.00028Google Scholar
Boyke, J., Driemeyer, J., Gaser, C., Büchel, C., & May, A. (2008). Training-induced brain structure changes in the elderly. Journal of Neuroscience, 28(28), 7031–5. https://doi.org/10.1523/JNEUROSCI.0742-08.2008Google Scholar
Chang, Q., & Gold, P. E. (2003). Switching memory systems during learning: Changes in patterns of brain acetylcholine release in the hippocampus and striatum in rats. Journal of Neuroscience, 23(7), 3001–5. https://doi.org/10.1523/JNEUROSCI.23-07-03001.2003Google Scholar
Cohen, N. J., Poldrack, R. A., & Eichenbaum, H. (1997). Memory for items and memory for relations in the procedural/declarative memory framework. Memory, 5(1–2), 131–78. https://doi.org/10.1080/741941149Google Scholar
Conejero-Goldberg, C., Gomar, J. J., Bobes-Bascaran, T., Hyde, T. M., Kleinman, J. E., Herman, M. M., Chen, S., Davies, P., & Goldberg, T. E. (2014). APOE2 enhances neuroprotection against Alzheimer’s disease through multiple molecular mechanisms. Molecular Psychiatry, 19(11), 1243–50. https://doi.org/10.1038/mp.2013.194Google Scholar
de Toledo-Morrell, L., Goncharova, I., Dickerson, B., Wilson, R.S., & Bennett, D.A. (2000). From healthy aging to early Alzheimer’s disease: In vivo detection of entorhinal cortex atrophy. Annals of the New York Academy of Sciences, 911, 240–53. https://nyaspubs.onlinelibrary.wiley.com/doi/abs/10.1111/j.1749-6632.2000.tb06730.x?sid=nlm%3ApubmedGoogle Scholar
Draganski, B., Gaser, C., Kempermann, G., Kuhn, H. G., Winkler, J., Büchel, C., & May, A. (2006). Temporal and spatial dynamics of brain structure changes during extensive learning. Journal of Neuroscience, 26(23), 6314–17. https://doi.org/10.1523/JNEUROSCI.4628-05.2006Google Scholar
Eichenbaum, H., Stewart, C., & Morris, R. G. (1990). Hippocampal representation in place learning. Journal of Neuroscience, 10(11), 3531–42. https://doi.org/10.1523/JNEUROSCI.10-11-03531.1990Google Scholar
Erickson, K. I., Voss, M. W., Prakash, R. S., Basak, C., Szabo, A., Chaddock, L., Kim, J. S., Heo, S., Alves, H., White, S. M., Wojcicki, T. R., Mailey, E., Vieira, V. J., Martin, S. A., Pence, B. D., Woods, J. A., McAuley, E., & Kramer, A. F. (2011). Exercise training increases size of hippocampus and improves memory. Proceedings of the National Academy of Sciences of the United States of America, 108(7), 3017–22. https://doi.org/10.1073/pnas.1015950108Google Scholar
Etchamendy, N., & Bohbot, V. D. (2007). Spontaneous navigational strategies and performance in the virtual town. Hippocampus, 17(8), 595–9. https://doi.org/10.1002/hipo.20303Google Scholar
Etchamendy, N., Konishi, K., Pike, G. B., Marighetto, A., & Bohbot, V. D. (2012). Evidence for a virtual human analog of a rodent relational memory task: A study of aging and fMRI in young adults. Hippocampus, 22(4), 869–80. https://doi.org/10.1002/hipo.20948Google Scholar
Filippi, M., Ceccarelli, A., Pagani, E., Gatti, R., Rossi, A., Stefanelli, L., Falini, A., Comi, G., & Rocca, M. A. (2010). Motor learning in healthy humans is associated to gray matter changes: A tensor-based morphometry study. PLoS ONE, 5(4), e10198. https://doi.org/10.1371/journal.pone.0010198Google Scholar
Gardner, R. S., Gold, P. E., & Korol, D. L. (2018, November). A multiple memory systems approach to understanding cognitive aging: Not all aging is equal [Paper presentation]. Society for Neuroscience, 48th Annual Meeting, San Diego, CA, United States.Google Scholar
Gearbox Software. (2009). Borderlands [Video game]. 2K Games. https://borderlands.com/en-US/Google Scholar
Gilbertson, M. W., Shenton, M. E., Ciszewski, A., Kasai, K., Lasko, N. B., Orr, S. P., & Pitman, R. K. (2002). Smaller hippocampal volume predicts pathologic vulnerability to psychological trauma. Nature Neuroscience, 5(11), 1242–7. https://doi.org/10.1038/nn958Google Scholar
Gould, E., Beylin, A., Tanapat, P., Reeves, A., & Shors, T. J. (1999). Learning enhances adult neurogenesis in the hippocampal formation. Nature Neuroscience, 2(3), 260–5. https://doi.org/10.1038/6365Google Scholar
Gould, E., Reeves, A. J., Fallah, M., Tanapat, P., Gross, C. G., & Fuchs, E. (1999). Hippocampal neurogenesis in adult Old World primates. Proceedings of the National Academy of Sciences of the United States of America, 96(9), 5263–7. https://doi.org/10.1073/pnas.96.9.5263Google Scholar
Haroutunian, V., Perl, D. P., Purohit, D. P., Marin, D., Khan, K., Lantz, M., Davis, K. L., & Mohs, R. C. (1998). Regional distribution of neuritic plaques in the nondemented elderly and subjects with very mild Alzheimer disease. Archives of Neurology, 55(9), 1185–91. https://jamanetwork.com/journals/jamaneurology/fullarticle/774252Google Scholar
Hartley, T., Maguire, E. A., Spiers, H. J., & Burgess, N. (2003). The well-worn route and the path less traveled: Distinct neural bases of route following and wayfinding in humans. Neuron, 37(5), 877–88. https://doi.org/10.1016/S0896-6273(03)00095-3Google Scholar
Head, D., & Isom, M. (2010). Age effects on wayfinding and route learning skills. Behavioural Brain Research, 209(1), 4958. https://doi.org/10.1016/j.bbr.2010.01.012Google Scholar
Iaria, G., Petrides, M., Dagher, A., Pike, B., & Bohbot, V. D. (2003). Cognitive strategies dependent on the hippocampus and caudate nucleus in human navigation: Variability and change with practice. Journal of Neuroscience, 23(13), 5945–52. https://doi.org/10.1523/JNEUROSCI.23-13-05945.2003Google Scholar
Infinity Ward. (2003). Call of Duty [Video game]. Activision. https://www.callofduty.com/Google Scholar
Kempermann, G., Brandon, E. P., & Gage, F. H. (1998). Environmental stimulation of 129/SvJ mice causes increased cell proliferation and neurogenesis in the adult dentate gyrus. Current Biology, 8(16), 939–42. https://doi.org/10.1016/S0960-9822(07)00377-6Google Scholar
Kempermann, G., Kuhn, H. G., & Gage, F. H. (1998). Experience-induced neurogenesis in the senescent dentate gyrus. Journal of Neuroscience, 18(9), 3206–12. https://doi.org/10.1523/JNEUROSCI.18-09-03206.1998Google Scholar
Kim, J. J., Lee, H. J., Han, J. S., & Packard, M. G. (2001). Amygdala is critical for stress-induced modulation of hippocampal long-term potentiation and learning. Journal of Neuroscience, 21(14), 5222–8. https://doi.org/10.1523/JNEUROSCI.21-14-05222.2001Google Scholar
Konishi, K., Bhat, V., Banner, H., Poirier, J., Joober, R., & Bohbot, V. D. (2016). APOE2 is associated with spatial navigational strategies and increased gray matter in the hippocampus. Frontiers in Human Neuroscience, 10, 349. https://doi.org/10.3389/fnhum.2016.00349Google Scholar
Konishi, K., & Bohbot, V. D. (2013). Spatial navigational strategies correlate with gray matter in the hippocampus of healthy older adults tested in a virtual maze. Frontiers in Aging Neuroscience, 5, 1. https://doi.org/10.3389/fnagi.2013.00001Google Scholar
Konishi, K., Etchamendy, N., Roy, S., Marighetto, A., Rajah, N., & Bohbot, V. D. (2013). Decreased functional magnetic resonance imaging activity in the hippocampus in favor of the caudate nucleus in older adults tested in a virtual navigation task. Hippocampus, 23(11), 1005–14. https://doi.org/10.1002/hipo.22181Google Scholar
Kühn, S., & Gallinat, J. (2014). Amount of lifetime video gaming is positively associated with entorhinal, hippocampal and occipital volume. Molecular Psychiatry, 19(7), 842–7. https://doi.org/10.1038/mp.2013.100Google Scholar
Kühn, S., Gleich, T., Lorenz, R. C., Lindenberger, U., & Gallinat, J. (2014). Playing Super Mario induces structural brain plasticity: Gray matter changes resulting from training with a commercial video game. Molecular Psychiatry, 19(2), 265–71. https://doi.org/10.1038/mp.2013.120Google Scholar
La Grutta, V., Sabatino, M., Gravante, G., Morici, G., Ferraro, G., & La Grutta, G. (1988). A study of caudate inhibition on an epileptic focus in the cat hippocampus. Archives Internationales de Physiologie et de Biochimie, 96(2), 113–20. https://doi.org/10.3109/13813458809079632Google Scholar
Lee, D. W., Miyasato, L. E., & Clayton, N. S. (1998). Neurobiological bases of spatial learning in the natural environment: Neurogenesis and growth in the avian and mammalian hippocampus. NeuroReport, 9(7), R15R27. https://doi.org/10.1097/00001756-199805110-00076Google Scholar
Leong, K. C., & Packard, M.G. (2014). Exposure to predator odor influences the relative use of multiple memory systems: Role of basolateral amygdala. Neurobiology of Learning and Memory, 109, 5661. www.sciencedirect.com/science/article/pii/S1074742713002438?via%3DihubGoogle Scholar
Lerch, J. P., Yiu, A. P., Martínez-Canabal, A., Pekar, T., Bohbot, V. D., Frankland, P. W., Henkelman, R. M., Josselyn, S. A., & Sled, J. G. (2011). Maze training in mice induces MRI-detectable brain shape changes specific to the type of learning. NeuroImage, 54(3), 2086–95. https://doi.org/10.1016/j.neuroimage.2010.09.086Google Scholar
Lin, S. Y., Calcott, R., Germann, J., Konishi, K., Bohbot, V. D., & Lerch, J. P. (2012, October). Decreased use of hippocampus-dependent spatial strategy in favor of caudate nucleus-dependent response strategy from childhood to adolescence [Poster presentation]. Society for Neuroscience, 42nd Annual Meeting, New Orleans, LA, United States.Google Scholar
Lupien, S. J., de Leon, M., de Santi, S., Convit, A., Tarshish, C., Nair, N. P. V., Thakur, M., McEwen, B. S., Hauger, R. L., & Meaney, M. J. (1998). Cortisol levels during human aging predict hippocampal atrophy and memory deficits. Nature Neuroscience, 1(1), 6973. https://doi.org/10.1038/271Google Scholar
Lustig, C., Shah, P., Seidler, R., & Reuter-Lorenz, P. A. (2009). Aging, training, and the brain: A review and future directions. Neuropsychology Review, 19(4), 504–22. https://doi.org/10.1007/s11065-009-9119-9Google Scholar
Maguire, E. A., Spiers, H. J., Good, C. D., Hartley, T., Frackowiak, R. S., & Burgess, N. (2003). Navigation expertise and the human hippocampus: A structural brain imaging analysis. Hippocampus, 13(2), 250–9. https://doi.org/10.1002/hipo.10087Google Scholar
McDonald, R. J., & White, N. M. (1993). A triple dissociation of memory systems: Hippocampus, amygdala, and dorsal striatum. Behavioral Neuroscience, 107(1), 322. https://doi.org/10.1037/0735-7044.107.1.3Google Scholar
Mishkin, M., & Petri, H. L. (1984). Memories and habits: Some implications for the analysis of learning and retention. In Squire, L. R. & Butters, N. (Eds.), Neuropsychology of memory (pp. 287–96). Guilford Press.Google Scholar
Nintendo. (1996). Super Mario 64 [Video game]. Nintendo.Google Scholar
O’Dwyer, L., Lamberton, F., Matura, S., Tanner, C., Scheibe, M., Miller, J., Rujescu, D., Prvulovic, D., & Hampel, H. (2012). Reduced hippocampal volume in healthy young ApoE4 carriers: An MRI study. PLoS ONE, 7(11), e48895. https://doi.org/10.1371/journal.pone.0048895Google Scholar
O’Keefe, J., & Nadel, L. (1978). The hippocampus as a cognitive map. Oxford University Press. www.cognitivemap.net/Google Scholar
Packard, M. G., Hirsh, R., & White, N. M. (1989). Differential effects of fornix and caudate nucleus lesions on two radial maze tasks: Evidence for multiple memory systems. Journal of Neuroscience, 9(5), 1465–72. https://doi.org/10.1523/JNEUROSCI.09-05-01465.1989Google Scholar
Packard, M. G., & McGaugh, J. L. (1992). Double dissociation of fornix and caudate nucleus lesions on acquisition of two water maze tasks: Further evidence for multiple memory systems. Behavioral Neuroscience, 106(3), 439–46. https://doi.org/10.1037/0735-7044.106.3.439Google Scholar
Packard, M. G., & McGaugh, J. L. (1996). Inactivation of hippocampus or caudate nucleus with lidocaine differentially affects expression of place and response learning. Neurobiology of Learning and Memory, 65(1), 6572. https://doi.org/10.1006/nlme.1996.0007Google Scholar
Pantelis, C., Velakoulis, D., McGorry, P. D., Wood, S. J., Suckling, J., Phillips, L. J., Yung, A. R., Bullmore, E. T., Brewer, W., Soulsby, B., Desmond, P., & McGuire, P. K. (2003). Neuroanatomical abnormalities before and after onset of psychosis: A cross-sectional and longitudinal MRI comparison. Lancet, 361(9354), 281–8. https://doi.org/10.1016/S0140-6736(03)12323-9Google Scholar
Pievani, M., Galluzzi, S., Thompson, P. M., Rasser, P. E., Bonetti, M., & Frisoni, G. B. (2011). APOE4 is associated with greater atrophy of the hippocampal formation in Alzheimer’s disease. NeuroImage, 55(3), 909–19. https://doi.org/10.1016/j.neuroimage.2010.12.081Google Scholar
Pinaud, R., Tremere, L. A., Penner, M. R., Hess, F. F., Robertson, H. A., & Currie, R. W. (2002). Complexity of sensory environment drives the expression of candidate-plasticity gene, nerve growth factor induced-A. Neuroscience, 112(3), 573–82. https://doi.org/10.1016/S0306-4522(02)00094-5Google Scholar
Price, J. L., & Morris, J. C. (1999). Tangles and plaques in nondemented aging and “preclinical” Alzheimer’s disease. Annals of Neurology, 45(3), 358–68. https://doi.org/10.1002/1531-8249(199903)45:3<358::AID-ANA12>3.0.CO;2-XGoogle Scholar
Sánchez-Benavides, G., Grau-Rivera, O., Suárez-Calvet, M., Minguillon, C., Cacciaglia, R., Gramunt, N.; ALFA Study, Falcon, C., Gispert, J. D., & Molinuevo, J. L. (2018). Brain and cognitive correlates of subjective cognitive decline-plus features in a population-based cohort. Alzheimer’s Research & Therapy, 10(1), 123. https://doi.org/10.1186/s13195-018-0449-9Google Scholar
Sankar, T., Li, S. X., Obuchi, T., Fasano, A., Cohn, M., Hodaie, M., Chakravarty, M. M., & Lozano, A. M. (2016). Structural brain changes following subthalamic nucleus deep brain stimulation in Parkinson’s disease. Movement Disorders, 31(9), 1423–5. https://doi.org/10.1002/mds.26707Google Scholar
Schinazi, V. R., Nardi, D., Newcombe, N. S., Shipley, T. F., & Epstein, R. A. (2013). Hippocampal size predicts rapid learning of a cognitive map in humans. Hippocampus, 23(6), 515–28. https://doi.org/10.1002/hipo.22111Google Scholar
Schwabe, L., Dalm, S., Schächinger, H., & Oitzl, M. S. (2008). Chronic stress modulates the use of spatial and stimulus-response learning strategies in mice and man. Neurobiology of Learning and Memory, 90(3), 495503. https://doi.org/10.1016/j.nlm.2008.07.015Google Scholar
Schwabe, L., Oitzl, M. S., Philippsen, C., Richter, S., Bohringer, A., Wippich, W., & Schachinger, H. (2007). Stress modulates the use of spatial versus stimulus-response learning strategies in humans. Learning & Memory, 14(1), 109–16. https://doi.org/10.1101/lm.435807Google Scholar
Shohamy, D., & Adcock, R. A. (2010). Dopamine and adaptive memory. Trends in Cognitive Sciences, 14(10), 464–72. https://doi.org/10.1016/j.tics.2010.08.002Google Scholar
Smulders, T. V., Sasson, A. D., & DeVoogd, T. J. (1995). Seasonal variation in hippocampal volume in a food-storing bird, the black-capped chickadee. Journal of Neurobiology, 27(1), 1525. https://doi.org/10.1002/neu.480270103Google Scholar
Squire, L. R., & Zola, S. M. (1996). Structure and function of declarative and nondeclarative memory systems. Proceedings of the National Academy of Sciences of the United States of America, 93(24), 13515–22. https://doi.org/10.1073/pnas.93.24.13515Google Scholar
Swan, G. E., & Lessov-Schlaggar, C. N. (2007). The effects of tobacco smoke and nicotine on cognition and the brain. Neuropsychology Review, 17(3), 259–73. https://doi.org/10.1007/s11065-007-9035-9Google Scholar
Tang, Y. Y., Lu, Q., Geng, X., Stein, E. A., Yang, Y., & Posner, M. I. (2010). Short-term meditation induces white matter changes in the anterior cingulate. Proceedings of the National Academy of Sciences of the United States of America, 107(35), 15649–52. https://doi.org/10.1073/pnas.1011043107Google Scholar
Techland. (2011). Dead Island [Video game]. Deep Silver. https://www.deepsilver.com/us/games/dead-island/Google Scholar
Tulving, E., & Markowitsch, H. J. (1998). Episodic and declarative memory: Role of the hippocampus. Hippocampus, 8(3), 198204. https://doi.org/10.1002/(SICI)1098-1063(1998)8:3<198::AID-HIPO2>3.0.CO;2-GGoogle Scholar
West, G. L., Konishi, K., Diarra, M., Benady-Chorney, J., Drisdelle, B. L., Dahmani, L., Sodums, D. J., Lepore, F., Jolicoeur, P., & Bohbot, V. D. (2018). Impact of video games on plasticity of the hippocampus. Molecular Psychiatry, 23(7), 1566–74. https://doi.org/10.1038/mp.2017.155Google Scholar
West, G. L., Zendel, B. R., Konishi, K., Benady-Chorney, J., Bohbot, V. D., Peretz, I., & Belleville, S. (2017). Playing Super Mario 64 increases hippocampal grey matter in older adults. PLoS ONE, 12(12), e0187779. https://doi.org/10.1371/journal.pone.0187779Google Scholar
Wolbers, T., Weiller, C., & Büchel, C. (2004). Neural foundations of emerging route knowledge in complex spatial environments. Cognitive Brain Research, 21(3), 401–11. https://doi.org/10.1016/j.cogbrainres.2004.06.013Google Scholar
Woollett, K., & Maguire, E. A. (2011). Acquiring “the knowledge” of London’s layout drives structural brain changes. Current Biology, 21(24), 2109–14. https://doi.org/10.1016/j.cub.2011.11.018Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×