from Part II - Statistical Models
Published online by Cambridge University Press: 17 August 2023
In this chapter we introduce and apply hidden Markov models to model and analyze dynamical data. Hidden Markov models are one of simplest of dynamical models valid for systems evolving in a discrete state-space at discrete time points. We first describe the evaluation of the likelihood relevant to hidden Markov models and introduce the concept of filtering. We then describe how to obtain maximum likelihood estimators using expectation maximization. We then broaden our discussion to the Bayesian paradigm and introduce the Bayesian hidden Markov model. In this context, we describe the forward filtering backward sampling algorithm and Monte Carlo methods for sampling from hidden Markov model posteriors. As hidden Markov models are flexible modeling tools, we present a number of variants including the sticky hidden Markov model, the factorial hidden Markov model, and the infinite hidden Markov model. Finally, we conclude with a case study in fluorescence spectroscopy where we show how the basic filtering theory presented earlier may be extended to evaluate the likelihood of a second-order hidden Markov model.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.