Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-28T22:12:29.692Z Has data issue: false hasContentIssue false
This chapter is part of a book that is no longer available to purchase from Cambridge Core

Bibliography

Steven L. Brunton
Affiliation:
University of Washington
J. Nathan Kutz
Affiliation:
University of Washington
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Data-Driven Science and Engineering
Machine Learning, Dynamical Systems, and Control
, pp. 443 - 470
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abraham, Ralph, Marsden, Jerrold E., and Ratiu, Tudor. Manifolds, Tensor Analysis, and Applications, volume 75 of Applied Mathematical Sciences. Springer-Verlag, 1988.CrossRefGoogle Scholar
Abraham, Ralph and Marsden, Jerrold E.. Foundations of Mechanics, volume 36. Benjam-in/Cummings Publishing Company Reading, Massachusetts, 1978.Google Scholar
Agrawal, Mradul, Vidyashankar, Sandeep, and Huang, Ke. On-chip implementation of ECoG signal data decoding in brain-computer interface. In Mixed-Signal Testing Workshop (IMSTW), 2016 IEEE 21st International, pages 16. IEEE, 2016.Google Scholar
Agrawal, Rakesh, Srikant, Ramakrishnan, et al. Fast algorithms for mining association rules. In Proc. 20th int. conf. very large data bases, VLDB, volume 1215, pages 487–499, 1994.Google Scholar
Ahn, Hyo-Sung, Chen, YangQuan, and Moore, Kevin L.. Iterative learning control: Brief survey and categorization. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 37(6):10991121, 2007.Google Scholar
Akaike, Hirotugu. Fitting autoregressive models for prediction. Annals of the Institute of Statistical Mathematics, 21(1):243247, 1969.CrossRefGoogle Scholar
Akaike, Hirotugu. A new look at the statistical model identification. Automatic Control, IEEE Transactions on, 19(6):716723, 1974.CrossRefGoogle Scholar
Amrein, W. O. and Berthier, Anne-Marie. On support properties of Lp-functions and their Fourier transforms. Journal of Functional Analysis, 24(3):258267, 1977.CrossRefGoogle Scholar
Amsallem, David, Cortial, Julien, and Farhat, Charbel. On-demand cfd-based aeroelastic predictions using a database of reduced-order bases and models. In 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition, page 800, 2009.Google Scholar
Amsallem, David and Farhat, Charbel. An online method for interpolating linear parametric reduced-order models. SIAM Journal on Scientific Computing, 33(5):21692198, 2011.Google Scholar
Amsallem, David, Zahr, Matthew J., and Washabaugh, Kyle. Fast local reduced basis updates for the efficient reduction of nonlinear systems with hyper-reduction. Advances in Computational Mathematics, 41(5):11871230, 2015.Google Scholar
Andén, Joakim and Mallat, Stéphane. Deep scattering spectrum. IEEE Transactions on Signal Processing, 62(16):41144128, 2014.Google Scholar
Anderson, Edward, Bai, Zhaojun, Bischof, Christian, Blackford, Susan, Demmel, James, Dongarra, Jack, Croz, Jeremy Du, Greenbaum, Anne, Hammerling, S., McKenney, Alan, et al. LAPACK Users’ Guide, volume 9. SIAM, 1999.CrossRefGoogle Scholar
Anderson, Jeffrey L.. An ensemble adjustment Kalman filter for data assimilation. Monthly Weather Review, 129(12):28842903, 2001.Google Scholar
Claus, A. Andersson and Rasmus Bro. The n-way toolbox for matlab. Chemometrics and Intelligent Laboratory Systems, 52(1):14, 2000.Google Scholar
Antonini, Marc, Barlaud, Michel, Mathieu, Pierre, and Daubechies, Ingrid. Image coding using wavelet transform. IEEE Transactions on Image Processing, 1(2):205220, 1992.Google Scholar
Athanasios, C. Antoulas. Approximation of large-scale dynamical systems. SIAM, 2005.Google Scholar
Arbabi, Hassan and Mezić, Igor. Ergodic theory, dynamic mode decomposition and computation of spectral properties of the Koopman operator. SIAM Journal on Applied Dynamical Systems, 16 (4):20962126, 2017.CrossRefGoogle Scholar
Ariyur, Kartik B. and Krstić, Miroslav. Real-Time Optimization by Extremum-Seeking Control. Wiley, Hoboken, New Jersey, 2003.Google Scholar
Askham, Travis and Kutz, J. Nathan. Variable projection methods for an optimized dynamic mode decomposition. SIAM Journal on Applied Dynamical Systems, 17 (1):380416, 2018.CrossRefGoogle Scholar
Astrid, Patricia. Fast reduced order modeling technique for large scale LTV systems. In American Control Conference, 2004. Proceedings of the 2004, volume 1, pages 762767. IEEE, 2004.Google Scholar
Aström, Karl Johan and Murray, Richard M.. Feedback Systems: An Introduction for Scientists and Engineers. Princeton University Press, 2010.Google Scholar
Azeez, M. F. A. and Vakakis, A. F.. Proper orthogonal decomposition (POD) of a class of vibroimpact oscillations. Journal of Sound and Vibration, 240(5):859889, 2001.Google Scholar
Bache, K. and Lichman, M.. UCI machine learning repository, 2013.Google Scholar
Brett, W. Bader and Tamara G. Kolda. Efficient MATLAB computations with sparse and factored tensors. SIAM Journal on Scientific Computing, 30(1):205231, December 2007.Google Scholar
Bagheri, S., Brandt, L., and Henningson, D. S.. Input-output analysis, model reduction and control of the flat-plate boundary layer. Journal of Fluid Mechanics, 620:263298, 2009.Google Scholar
Bagheri, S., Hoepffner, J., Schmid, P. J., and Henningson, D. S.. Input-output analysis and control design applied to a linear model of spatially developing flows. Applied Mechanics Reviews, 62(2):020803–1..27, 2009.Google Scholar
Bagheri, Shervin. Koopman-mode decomposition of the cylinder wake. Journal of Fluid Mechanics, 726:596623, 2013.CrossRefGoogle Scholar
Bai, Z., Brunton, S. L., Brunton, B. W., Kutz, J. N., Kaiser, E., Spohn, A., and Noack, B. R.. Data-driven methods in fluid dynamics: Sparse classification from experimental data. In Invited Chapter for Whither Turbulence and Big Data in the 21st Century, 2015.CrossRefGoogle Scholar
Bai, Z., Kaiser, E., Proctor, J. L., Kutz, J. N., and Brunton, S. L.. Dynamic mode decomposition for compressive system identification. arXiv preprint arXiv:1710.07737, 2017.Google Scholar
Bai, Zhe, Wimalajeewa, Thakshila, Berger, Zachary, Wang, Guannan, Glauser, Mark, and Varshney, Pramod K.. Low-dimensional approach for reconstruction of airfoil data via compressive sensing. AIAA Journal, 53(4):920933, 2014.Google Scholar
Balajewicz, Maciej J., Dowell, Earl H., and Noack, Bernd R.. Low-dimensional modelling of high-Reynolds-number shear flows incorporating constraints from the Navier–Stokes equation. Journal of Fluid Mechanics, 729:285308, 2013.Google Scholar
Balasubramanian, Madhusudhanan, Zabic, Stanislav, Bowd, Christopher, Thompson, Hilary W., Wolenski, Peter, Iyengar, S. Sitharama, Karki, Bijaya B., and Zangwill, Linda M.. A framework for detecting glaucomatous progression in the optic nerve head of an eye using proper orthogonal decomposition. IEEE Transactions on Information Technology in Biomedicine, 13(5):781793, 2009.CrossRefGoogle ScholarPubMed
Bamieh, B. and Giarré, L.. Identification of linear parameter varying models. International Journal of Robust and Nonlinear Control, 12:841853, 2002.CrossRefGoogle Scholar
Banaszuk, Andrzej, Ariyur, Kartik B., Krstić, Miroslav, and Jacobson, Clas A.. An adaptive algorithm for control of combustion instability. Automatica, 40(11):19651972, 2004.Google Scholar
Banaszuk, Andrzej, Narayanan, Satish, and Zhang, Youping. Adaptive control of flow separation in a planar diffuser. AIAA paper, 617:2003, 2003.CrossRefGoogle Scholar
Banaszuk, Andrzej, Zhang, Youping, and Jacobson, Clas A.. Adaptive control of combustion instability using extremum-seeking. In American Control Conference, 2000. Proceedings of the 2000, volume 1, pages 416422. IEEE, 2000.Google Scholar
Banks, S. P.. Infinite-dimensional Carleman linearization, the Lie series and optimal control of non-linear partial differential equations. International Journal of Systems Science, 23(5):663– 675, 1992.Google Scholar
Baraniuk, R. G.. Compressive sensing. IEEE Signal Processing Magazine, 24(4):118120, 2007.Google Scholar
Baraniuk, R. G., Cevher, V., Duarte, M. F., and Hegde, C.. Model-based compressive sensing. IEEE Transactions on Information Theory, 56(4):19822001, 2010.CrossRefGoogle Scholar
Barrault, Maxime, Maday, Yvon, Nguyen, Ngoc Cuong, and Patera, Anthony T.. An empirical interpolation method: application to efficient reduced-basis discretization of partial differential equations. Comptes Rendus Mathematique, 339(9):667672, 2004.Google Scholar
Basley, J., Pastur, L. R., Delprat, N., and Lusseyran, F.. Space-time aspects of a three-dimensional multi-modulated open cavity flow. Physics of Fluids (1994-present), 25(6):064105, 2013.Google Scholar
Basley, J., Pastur, L. R., Lusseyran, F., Faure, T. M., and Delprat, N.. Experimental investigation of global structures in an incompressible cavity flow using time-resolved PIV. Experiments in Fluids, 50(4):905918, 2011.Google Scholar
Baur, Walter and Strassen, Volker. The complexity of partial derivatives. Theoretical Computer Science, 22(3):317330, 1983.Google Scholar
Beaudoin, J. F., Cadot, O., Aider, J. L., and Wesfreid, J. E.. Bluff-body drag reduction by extremum-seeking control. Journal of Fluids and Structures, 22:973978, 2006.Google Scholar
Beaudoin, Jean-Francois, Cadot, Olivier, Aider, Jean-Luc, and Wesfreid, José-Eduardo. Drag reduction of a bluff body using adaptive control methods. Physics of Fluids, 18(8):085107, 2006.Google Scholar
Becker, R., King, R., Petz, R., and Nitsche, W.. Adaptive closed-loop control on a high-lift configuration using extremum seeking. AIAA Journal, 45(6):1382–92, 2007.Google Scholar
Belhumeur, P. N., Hespanha, J. P., and Kriegman, D. J.. Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 19(7):711720, 1997.Google Scholar
Bellani, G.. Experimental studies of complex flows through image-based techniques. 2011.Google Scholar
Belson, Brandt A., Tu, Jonathan H., and Rowley, Clarence W.. Algorithm 945: modred—a parallelized model reduction library. ACM Transactions on Mathematical Software, 40(4):30, 2014.CrossRefGoogle Scholar
Benedicks, Michael. On Fourier transforms of functions supported on sets of finite Lebesgue measure. Journal of Mathematical Analysis and Applications, 106(1):180183, 1985.CrossRefGoogle Scholar
Bengio, Yoshua, Lamblin, Pascal, Popovici, Dan, and Larochelle, Hugo. Greedy layer-wise training of deep networks. In Advances in Neural Information Processing Systems, pages 153160, 2007.Google Scholar
Benner, P., Gugercin, S., and Willcox, K. A survey of projection-based model reduction methods for parametric dynamical systems. SIAM Review, 57(4):483531, 2015.Google Scholar
Benner, Peter, Cohen, Albert, Ohlberger, Mario, and Willcox, Karen. Model Reduction and Approximation: Theory and Algorithms, volume 15. SIAM, 2017.Google Scholar
Benner, Peter, Li, Jing-Rebecca, and Penzl, Thilo. Numerical solution of large-scale Lyapunov equations, Riccati equations, and linear-quadratic optimal control problems. Numerical Linear Algebra with Applications, 15(9):755777, 2008.Google Scholar
Berger, E., Sastuba, M., Vogt, D., Jung, B., and Amor, H. B.. Estimation of perturbations in robotic behavior using dynamic mode decomposition. Journal of Advanced Robotics, 29(5):331343, 2015.CrossRefGoogle Scholar
Berkooz, G., Holmes, P., and Lumley, J. L.. The proper orthogonal decomposition in the analysis of turbulent flows. Annual Review of Fluid Mechanics, 25:539575, 1993.CrossRefGoogle Scholar
Beylkin, Gregory, Coifman, Ronald, and Rokhlin, Vladimir. Fast wavelet transforms and numerical algorithms i. Communications on Pure and Applied Mathematics, 44(2):141183, 1991.Google Scholar
Billings, Stephen A.. Nonlinear System Identification: NARMAX Methods in the Time, Frequency, and Spatio-Temporal Domains. John Wiley & Sons, 2013.CrossRefGoogle Scholar
Binetti, P., Ariyur, K. B., Krstić, M., and Bernelli, F.. Formation flight optimization using extremum seeking feedback. Journal of Guidance, Control, and Dynamics, 26(1):132142, 2003.Google Scholar
Birkhoff, G. D. and Koopman, B. O.. Recent contributions to the ergodic theory. Proceedings of the National Academy of Sciences, 18(3):279282, 1932.Google Scholar
Birkhoff, George D.. Proof of the ergodic theorem. Proceedings of the National Academy of Sciences, 17(12):656660, 1931.Google Scholar
Bishop, Christopher M.. Neural Networks for Pattern Recognition. Oxford university press, 1995.CrossRefGoogle Scholar
Bishop, Christopher M.. Pattern Recognition and Machine Learning. Springer New York, 2006.Google Scholar
Bistrian, D. A. and Navon, I. M.. An improved algorithm for the shallow water equations model reduction: Dynamic mode decomposition vs POD. International Journal for Numerical Methods in Fluids, 2015.Google Scholar
Bistrian, D. A. and Navon, I. M.. Randomized dynamic mode decomposition for non-intrusive reduced order modelling. International Journal for Numerical Methods in Engineering, 2016.Google Scholar
Bondi, Paola, Casalino, Giuseppe, and Gambardella, Lucia. On the iterative learning control theory for robotic manipulators. IEEE Journal on Robotics and Automation, 4(1):1422, 1988.Google Scholar
Bongard, Josh and Lipson, Hod. Automated reverse engineering of nonlinear dynamical systems. Proceedings of the National Academy of Sciences, 104(24):99439948, 2007.Google Scholar
Borges, Jorge Luis. The library of Babel. Collected Fictions, 1998.Google Scholar
Boser, Bernhard E., Guyon, Isabelle M., and Vapnik, Vladimir N.. A training algorithm for optimal margin classifiers. In Proceedings of the Fifth Annual Workshop on Computational Learning Theory, pages 144152. ACM, 1992.Google Scholar
Boulard, H. and Kamp, Y.. Autoassociative memory by multilayer perceptron and singular values decomposition. Biol Cybern, 59:291294, 1989.Google Scholar
Box, George E. P., Jenkins, Gwilym M., Reinsel, Gregory C., and Ljung, Greta M.. Time Series Analysis: Forecasting and Control. John Wiley & Sons, 2015.Google Scholar
Boyd, Stephen, Chua, Leon O., and Desoer, Charles A.. Analytical foundations of Volterra series. IMA Journal of Mathematical Control and Information, 1(3):243282, 1984.Google Scholar
Boyd, Stephen and Vandenberghe, Lieven. Convex Pptimization. Cambridge University Press, 2009.Google Scholar
Bratcu, Antoneta Iuliana, Munteanu, Iulian, Bacha, Seddik, and Raison, Bertrand. Maximum power point tracking of grid-connected photovoltaic arrays by using extremum seeking control. CEAI, 10(4):312, 2008.Google Scholar
Breiman, Leo. Better subset regression using the nonnegative garrote. Technometrics, 37(4):373384, 1995.Google Scholar
Breiman, Leo. Random forests. Machine Learning, 45(1):532, 2001.Google Scholar
Breiman, Leo et al. Statistical modeling: The two cultures (with comments and a rejoinder by the author). Statistical Science, 16(3):199231, 2001.Google Scholar
Breiman, Leo, Friedman, Jerome, Stone, Charles J., and Olshen, Richard A.. Classification and Regression Trees. CRC press, 1984.Google Scholar
Bright, I., Lin, G., and Kutz, J. N.. Compressive sensing and machine learning strategies for characterizing the flow around a cylinder with limited pressure measurements. Physics of Fluids, 25(127102):115, 2013.CrossRefGoogle Scholar
Bright, Ido, Lin, Guang, and Kutz, J. Nathan. Classification of spatio-temporal data via asynchronous sparse sampling: Application to flow around a cylinder. Multiscale Modeling & Simulation, 14 (2), 823838, 2016.Google Scholar
Brin, Sergey and Page, Lawrence. The anatomy of a large-scale hypertextual web search engine. Computer Networks and ISDN Systems, 30(1-7):107117, 1998.Google Scholar
Bristow, Douglas, Tharayil, Marina, Alleyne, Andrew G., et al. A survey of iterative learning control. Control Systems, IEEE, 26(3):96114, 2006.Google Scholar
Bro, Rasmus. Parafac. tutorial and applications. Chemometrics and Intelligent Laboratory Systems, 38(2):149171, 1997.Google Scholar
Broad, Alexander, Murphey, T. D., and Argall, Brenna. Learning models for shared control of human-machine systems with unknown dynamics. Robotics: Science and Systems Proceedings, 2017.Google Scholar
Brockett, Roger W.. Volterra series and geometric control theory. Automatica, 12(2):167176, 1976.Google Scholar
Broomhead, David S. and Lowe, David. Radial basis functions, multi-variable functional interpolation and adaptive networks. Technical report, Royal Signals and Radar Establishment Malvern (United Kingdom), 1988.Google Scholar
Broomhead, D. S. and Jones, R. Time-series analysis. In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, volume 423, pages 103121. The Royal Society, 1989.Google Scholar
Brunton, B. W., Brunton, S. L., Proctor, J. L., and Kutz, J. N.. Sparse sensor placement optimization for classification. SIAM Journal on Applied Mathematics, 76(5):20992122, 2016.Google Scholar
Brunton, B. W., Johnson, L. A., Ojemann, J. G., and Kutz, J. N.. Extracting spatial–temporal coherent patterns in large-scale neural recordings using dynamic mode decomposition. Journal of Neuroscience Methods, 258:115, 2016.Google Scholar
Brunton, S. L., Brunton, B. W., Proctor, J. L., Kaiser, E., and Kutz, J. N.. Chaos as an intermittently forced linear system. Nature Communications, 8(19):19, 2017.Google Scholar
Brunton, S. L., Brunton, B. W., Proctor, J. L., and Kutz, J. N. Koopman invariant subspaces and finite linear representations of nonlinear dynamical systems for control. PLoS ONE, 11(2):e0150171, 2016.Google Scholar
Brunton, S. L., Fu, X., and Kutz, J. N.. Extremum-seeking control of a mode-locked laser. IEEE Journal of Quantum Electronics, 49(10):852861, 2013.Google Scholar
Brunton, S. L. and Noack, B. R.. Closed-loop turbulence control: Progress and challenges. Applied Mechanics Reviews, 67:050801–1–050801–48, 2015.Google Scholar
Brunton, S. L., Proctor, J. L., and Kutz, J. N.. Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proceedings of the National Academy of Sciences, 113(15):39323937, 2016.Google Scholar
Brunton, S. L., Proctor, J. L., Tu, J. H., and Kutz, J. N.. Compressed sensing and dynamic mode decomposition. Journal of Computational Dynamics, 2(2):165191, 2015.Google Scholar
Brunton, S. L. and Rowley, C. W.. Maximum power point tracking for photovoltaic optimization using ripple-based extremum seeking control. IEEE Transactions on Power Electronics, 25(10):25312540, 2010.CrossRefGoogle Scholar
Brunton, S. L., Tu, J. H., Bright, I., and Kutz, J. N.. Compressive sensing and low-rank libraries for classification of bifurcation regimes in nonlinear dynamical systems. SIAM Journal on Applied Dynamical Systems, 13(4):17161732, 2014.Google Scholar
Brunton, Steven L., Fu, Xing, and Kutz, J. Nathan. Self-tuning fiber lasers. IEEE Journal of Selected Topics in Quantum Electronics, 20(5), 2014.Google Scholar
Brunton, Steven L, Proctor, Joshua L, and Kutz, J Nathan. Sparse identification of nonlinear dynamics with control (SINDYc). IFAC NOLCOS, 49(18):710715, 2016.Google Scholar
Buche, D., Stoll, Peter, Dornberger, Rolf, and Koumoutsakos, Petros. Multiobjective evolutionary algorithm for the optimization of noisy combustion processes. Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, 32(4):460473, 2002.Google Scholar
Budišić, Marko and Mezić, Igor. An approximate parametrization of the ergodic partition using time averaged observables. In Decision and Control, 2009 held jointly with the 2009 28th Chinese Control Conference. CDC/CCC 2009. Proceedings of the 48th IEEE Conference on, pages 31623168. IEEE, 2009.Google Scholar
Budišić, Marko and Mezić, Igor. Geometry of the ergodic quotient reveals coherent structures in flows. Physica D: Nonlinear Phenomena, 241(15):12551269, 2012.Google Scholar
Budišić, Marko, Mohr, Ryan, and Mezić, Igor. Applied Koopmanism a). Chaos: An Interdisciplinary Journal of Nonlinear Science, 22(4):047510, 2012.Google Scholar
Burnham, Kenneth P. and Anderson, David R.. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. Springer Science & Business Media, 2003.Google Scholar
Businger, Peter A. and Golub, Gene H.. Algorithm 358: Singular value decomposition of a complex matrix [f1, 4, 5] . Communications of the ACM, 12(10):564565, 1969.Google Scholar
Eduardo, F. Camacho and Carlos Bordons Alba. Model Predictive Control. Springer Science & Business Media, 2013.Google Scholar
Cambria, Erik, Huang, Guang-Bin, Lekamalage, Liyanaarachchi Kasun, Chamara, Zhou, Hongming, Vong, Chi Man, Lin, Jiarun, Yin, Jianping, Cai, Zhiping, Liu, Qiang, Li, Kuan, et al. Extreme learning machines [trends & controversies] . IEEE Intelligent Systems, 28(6):3059, 2013.Google Scholar
Candès, E. J.. Compressive sensing. Proceedings of the International Congress of Mathematics, 2006.Google Scholar
Candès, E. J., Li, X., Ma, Y., and Wright, J.. Robust principal component analysis? Journal of the ACM, 58(3):11–1–11–37, 2011.Google Scholar
Candès, E. J., Romberg, J., and Tao, T.. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 52(2):489509, 2006.Google Scholar
Candès, E. J., Romberg, J., and Tao, T.. Stable signal recovery from incomplete and inaccurate measurements. Communications in Pure and Applied Mathematics, 8(1207–1223), 59.Google Scholar
Candès, E. J. and Tao, T.. Near optimal signal recovery from random projections: Universal encoding strategies? IEEE Transactions on Information Theory, 52(12):54065425, 2006.Google Scholar
Candès, E. J. and Wakin, M. B.. An introduction to compressive sampling. IEEE Signal Processing Magazine, pages 21–30, 2008.Google Scholar
Candes, Emmanuel J. and Tao, Terence. Decoding by linear programming. Information Theory, IEEE Transactions on, 51(12):42034215, 2005.Google Scholar
Cao, Yanhua, Zhu, Jiang, Luo, Zhendong, and Navon, IM. Reduced-order modeling of the upper tropical pacific ocean model using proper orthogonal decomposition. Computers & Mathematics with Applications, 52(8):13731386, 2006.CrossRefGoogle Scholar
Cao, Yanhua, Zhu, Jiang, Navon, I Michael, and Luo, Zhendong. A reduced-order approach to four-dimensional variational data assimilation using proper orthogonal decomposition. International Journal for Numerical Methods in Fluids, 53(10):15711583, 2007.Google Scholar
Carlberg, Kevin, Barone, Matthew, and Antil, Harbir. Galerkin v. least-squares Petrov–Galerkin projection in nonlinear model reduction. Journal of Computational Physics, 330:693734, 2017.Google Scholar
Carlberg, Kevin, Bou-Mosleh, Charbel, and Farhat, Charbel. Efficient non-linear model reduction via a least-squares Petrov–Galerkin projection and compressive tensor approximations. International Journal for Numerical Methods in Engineering, 86(2):155181, 2011.Google Scholar
Carlberg, Kevin, Farhat, Charbel, Cortial, Julien, and Amsallem, David. The GNAT method for nonlinear model reduction: effective implementation and application to computational fluid dynamics and turbulent flows. Journal of Computational Physics, 242:623647, 2013.Google Scholar
Carleman, Torsten. Application de la théorie des équations intégrales linéaires aux systémes d’équations différentielles non linéaires. Acta Mathematica, 59(1):6387, 1932.Google Scholar
Carleman, Torsten. Sur la théorie de l’équation intégrodifférentielle de boltzmann. Acta Mathematica, 60(1):91146, 1933.Google Scholar
Carleman, Torsten. Sur les systemes lineaires aux dérivées partielles du premier ordrea deux variables. CR Acad. Sci. Paris, 197:471474, 1933.Google Scholar
J. Carroll, Douglas and Chang, Jih-Jie. Analysis of individual differences in multidimensional scaling via an N-way generalization of “Eckart-Young” decomposition. Psychometrika, 35:283319, 1970.Google Scholar
Chartrand, Rick. Numerical differentiation of noisy, nonsmooth data. ISRN Applied Mathematics, 2011, 2011.Google Scholar
Chatterjee, Anindya. An introduction to the proper orthogonal decomposition. Current Science, 78(7):808817, 2000.Google Scholar
Chaturantabut, S. and Sorensen, D. C.. Nonlinear model reduction via discrete empirical interpolation. SIAM Journal on Scientific Computing, 32(5):27372764, 2010.Google Scholar
Chen, K. K. and Rowley, C. W.. Normalized coprime robust stability and performance guarantees for reduced-order controllers. IEEE Transactions on Automatic Control, 58(4):1068– 1073, 2013.Google Scholar
Chen, K. K., Tu, J. H., and Rowley, C. W.. Variants of dynamic mode decomposition: Boundary condition, Koopman, and Fourier analyses. Journal of Nonlinear Science, 22(6):887915, 2012.Google Scholar
Chen, Yangquan, Moore, Kevin L, and Ahn, Hyo-Sung. Iterative learning control. In Encyclopedia of the Sciences of Learning, pages 1648–1652. Springer, 2012.Google Scholar
Cherry, Steve. Singular value decomposition analysis and canonical correlation analysis. Journal of Climate, 9(9):20032009, 1996.Google Scholar
Cho, Kyunghyun, Merriënboer, Bart Van, Gulcehre, Caglar, Bahdanau, Dzmitry, Bougares, Fethi, Schwenk, Holger, and Bengio, Yoshua. Learning phrase representations using rnn encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078, 2014.Google Scholar
Choi, J. Y., Krstić, M., Ariyur, K. B., and Lee, J. S.. Extremum seeking control for discrete-time systems. IEEE Transactions on Automatic Control, 47(2):318323, FEB 2002.Google Scholar
Choi, Youngsoo, Amsallem, David, and Farhat, Charbel. Gradient-based constrained optimization using a database of linear reduced-order models. arXiv preprint arXiv:1506.07849, 2015.Google Scholar
Colonius, T. and Taira, K.. A fast immersed boundary method using a nullspace approach and multi-domain far-field boundary conditions. Computer Methods in Applied Mechanics and Engineering, 197:21312146, 2008.Google Scholar
Cooley, James W., Lewis, Peter A. W., and Welch, Peter D.. Historical notes on the fast Fourier transform. Proceedings of the IEEE, 55(10):16751677, 1967.Google Scholar
Cooley, James W. and Tukey, John W. An algorithm for the machine calculation of complex Fourier series. Mathematics of Computation, 19(90):297301, 1965.Google Scholar
Cortes, Corinna and Vapnik, Vladimir. Support-vector networks. Machine Learning, 20(3):273297, 1995.Google Scholar
Cross, Mark C. and Hohenberg, Pierre C.. Pattern formation outside of equilibrium. Reviews of Modern Physics, 65(3):851, 1993.Google Scholar
Crutchfield, James P. and McNamara, Bruce S.. Equations of motion from a data series. Complex Systems, 1:417452, 1987.Google Scholar
Dam, Magnus, Brøns, Morten, Rasmussen, Jens Juul, Naulin, Volker, and Hesthaven, Jan S.. Sparse identification of a predator-prey system from simulation data of a convection model. Physics of Plasmas, 24(2):022310, 2017.CrossRefGoogle Scholar
Daniels, Bryan C. and Nemenman, Ilya. Automated adaptive inference of phenomenological dynamical models. Nature Communications, 6, 2015.Google Scholar
Daniels, Bryan C. and Nemenman, Ilya. Efficient inference of parsimonious phenomenological models of cellular dynamics using s-systems and alternating regression. PloS one, 10(3):e0119821, 2015.Google Scholar
Das, Suddhasattwa and Giannakis, Dimitrios. Delay-coordinate maps and the spectra of Koopman operators. arXiv preprint arXiv:1706.08544, 2017.Google Scholar
Daubechies, Ingrid. The wavelet transform, time-frequency localization and signal analysis. IEEE transactions on information theory, 36(5):9611005, 1990.Google Scholar
Davis, Lawrence et al. Handbook of Genetic Algorithms, volume 115. Van Nostrand Reinhold New York, 1991.Google Scholar
Dawson, Scott T. M., Hemati, Maziar S., Williams, Matthew O., and Rowley, Clarence W.. Characterizing and correcting for the effect of sensor noise in the dynamic mode decomposition. Experiments in Fluids, 57(3):119, 2016.Google Scholar
Dempster, Arthur P., Laird, Nan M., and Rubin, Donald B.. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society. Series B (methodological), pages 1–38, 1977.Google Scholar
Devasia, Santosh, Chen, Degang, and Paden, Brad. Nonlinear inversion-based output tracking. Automatic Control, IEEE Transactions on, 41(7):930942, 1996.Google Scholar
Donoho, D. L.. Compressed sensing. IEEE Transactions on Information Theory, 52(4):1289– 1306, 2006.Google Scholar
Donoho, D. L. and Gavish, M.. Code supplement to “The optimal hard threshold for singular values is http://purl.stanford.edu/vg705qn9070, 2014.Google Scholar
Donoho, David. 50 years of data science. In Based on a Presentation at the Tukey Centennial Workshop. NJ Princeton, 2015.Google Scholar
Donoho, David L., Johnstone, Iain M, Hoch, Jeffrey C, and Stern, Alan S. Maximum entropy and the nearly black object. Journal of the Royal Statistical Society. Series B (Methodological), pages 41–81, 1992.Google Scholar
Donoho, David L. and Johnstone, Jain M.. Ideal spatial adaptation by wavelet shrinkage. Biometrika, 81(3):425455, 1994.Google Scholar
Doyle, J. C.. Guaranteed margins for LQG regulators. IEEE Transactions on Automatic Control, 23(4):756757, 1978.Google Scholar
Doyle, J. C., Glover, K., Khargonekar, P. P., and Francis, B. A.. State-space solutions to standard H2 and H control problems. IEEE Transactions on Automatic Control, 34(8):831847, 1989.Google Scholar
Doyle, John C., Francis, Bruce A., and Tannenbaum, Allen R.. Feedback Control Theory. Courier Corporation, 2013.Google Scholar
Drineas, Petros and Mahoney, Michael W.. A randomized algorithm for a tensor-based generalization of the singular value decomposition. Linear Algebra and Its Applications, 420(2-3):553571, 2007.Google Scholar
Drmac, Zlatko and Gugercin, Serkan. A new selection operator for the discrete empirical interpolation method—improved a priori error bound and extensions. SIAM Journal on Scientific Computing, 38(2):A631A648, 2016.Google Scholar
Du, Qiang and Gunzburger, Max. Model reduction by proper orthogonal decomposition coupled with centroidal voronoi tessellations (keynote). In ASME 2002 Joint US-European Fluids Engineering Division Conference, pages 1401–1406. American Society of Mechanical Engineers, 2002.Google Scholar
Duda, R. O., Hart, P. E., and Stork, D. G.. Pattern Classification. Wiley-Interscience, 2000.Google Scholar
Duersch, Jed A. and Gu, Ming. Randomized QR with column pivoting. SIAM Journal on Scientific Computing, 39(4):C263C291, 2017.Google Scholar
Duke, D., Honnery, D., and Soria, J.. Experimental investigation of nonlinear instabilities in annular liquid sheets. Journal of Fluid Mechanics, 691:594604, 2012.Google Scholar
Duke, Daniel, Soria, Julio, and Honnery, Damon. An error analysis of the dynamic mode decomposition. Experiments in Fluids, 52(2):529542, 2012.Google Scholar
Dullerud, Geir. E. and Paganini, Fernando. A Course in Robust Control Theory: A Convex Approach. Texts in Applied Mathematics. Springer, Berlin, Heidelberg, 2000.Google Scholar
Dunne, R. and McKeon, B. J.. Dynamic stall on a pitching and surging airfoil. Experiments in Fluids, 56(8):115, 2015.Google Scholar
Duriez, T., Brunton, S. L., and Noack, B. R.. Machine Learning Control: Taming Nonlinear Dynamics and Turbulence. Springer, 2016.Google Scholar
Duriez, Thomas, Parezanović, Vladimir, Cordier, Laurent, Noack, Bernd R., Delville, Joël, Bonnet, Jean-Paul, Segond, Marc, and Abel, Markus. Closed-loop turbulence control using machine learning. arXiv preprint arXiv:1404.4589, 2014.Google Scholar
Duriez, Thomas, Parezanovic, Vladimir, Laurentie, Jean-Charles, Fourment, Carine, Delville, Joël, Bonnet, Jean-Paul, Cordier, Laurent, Noack, Bernd R, Segond, Marc, Abel, Markus, Gautier, Nicolas, Aider, Jean-Luc, Raibaudo, Cedric, Cuvier, Christophe, Stanislas, Michel, and Brunton, Steven L. Closed-loop control of experimental shear flows using machine learning. AIAA Paper 2014-2219, 7th Flow Control Conference, 2014.Google Scholar
Eckart, C. and Young, G.. The approximation of one matrix by another of lower rank. Psychometrika, 1(3):211218, 1936.Google Scholar
Eftang, Jens L., Patera, Anthony T., and Rønquist, Einar M.. An” hp” certified reduced basis method for parametrized elliptic partial differential equations. SIAM Journal on Scientific Computing, 32(6):31703200, 2010.Google Scholar
Elman, Jeffrey L.. Finding structure in time. Cognitive Science, 14(2):179211, 1990.Google Scholar
Eren, Utku, Prach, Anna, Koçer, Başaran Bahadır, Raković, Saša V., Kayacan, Erdal, and Açıkmeşe, Behçet. Model predictive control in aerospace systems: Current state and opportunities. Journal of Guidance, Control, and Dynamics, 40(7):15411566, 2017.Google Scholar
Erichson, N. B., Brunton, S. L., and Kutz, J. N.. Compressed dynamic mode decomposition for real-time object detection. Journal of Real-Time Image Processing, 2016.Google Scholar
Erichson, N. B., Brunton, S. L., and Kutz, J. N.. Randomized dynamic mode decomposition. arXiv preprint arXiv:1702.02912, 2017.Google Scholar
Erichson, N. B., Manohar, K., Brunton, S. L., and Kutz, J. N.. Randomized CP tensor decomposition. arXiv preprint arXiv:1703.09074.Google Scholar
Erichson, N. B., Voronin, S., Brunton, S. L., and Kutz, J. N.. Randomized matrix decompositions using R. arXiv preprint arXiv:1608.02148, 2016.Google Scholar
Esram, Trishan, Kimball, Jonathan W., Krein, Philip T, Chapman, Patrick L., and Midya, Pallab. Dynamic maximum power point tracking of photovoltaic arrays using ripple correlation control. Ieee Transactions On Power Electronics, 21(5):12821291, September 2006.Google Scholar
Everson, Richard and Sirovich, Lawrence. Karhunen–Loeve procedure for gappy data. JOSA A, 12(8):16571664, 1995.Google Scholar
Fabbiane, N., Semeraro, O., Bagheri, S., and Henningson, D. S.. Adaptive and model-based control theory applied to convectively unstable flows. Appl. Mech. Rev., 66(6):060801–1–20, 2014.Google Scholar
Feeny, B. F.. On proper orthogonal co-ordinates as indicators of modal activity. Journal of Sound and Vibration, 255(5):805817, 2002.Google Scholar
Fisher, Ronald A.. The use of multiple measurements in taxonomic problems. Annals of Human Genetics, 7(2):179188, 1936.Google Scholar
Fisher, Ronald Aylmer. On the mathematical foundations of theoretical statistics. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 222:309368, 1922.Google Scholar
Fleming, P. J. and Purshouse, R. C.. Evolutionary algorithms in control systems engineering: a survey. Control Engineering Practice, 10:12231241, 2002.Google Scholar
Fourier, Jean Baptiste Joseph. The Analytical Theory of Heat. The University Press, 1878.Google Scholar
Fourier, Joseph. Theorie analytique de la chaleur, par M. Fourier. Chez Firmin Didot, père et fils, 1822.Google Scholar
Fowler, J. E.. Compressive-projection principal component analysis. IEEE Transactions on Image Processing, 18(10):22302242, 2009.Google Scholar
Freund, Yoav and Schapire, Robert E.. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55(1):119139, 1997.Google Scholar
Friedman, Jerome H.. Greedy function approximation: a gradient boosting machine. Annals of Statistics, pages 11891232, 2001.Google Scholar
Frieze, Alan, Kannan, Ravi, and Vempala, Santosh. Fast Monte-Carlo algorithms for finding low-rank approximations. Journal of the ACM, 51(6):10251041, 2004.Google Scholar
Fu, Xing, Brunton, Steven L., and Kutz, J. Nathan. Classification of birefringence in mode-locked fiber lasers using machine learning and sparse representation. Optics Express, 22(7):85858597, 2014.Google Scholar
Fukagata, Koji, Kern, Stefan, Chatelain, Philippe, Koumoutsakos, Petros, and Kasagi, Nobuhide. Evolutionary optimization of an anisotropic compliant surface for turbulent friction drag reduction. Journal of Turbulence, 9(35):117, 2008.Google Scholar
Fukushima, F.. A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological Cybernetic, 36:193202, 1980.Google Scholar
Gao, H., Lam, J., Wang, C., and Wang, Y.. Delay-dependent output-feedback stabilisation of discrete-time systems with time-varying state delay. IEE Proceedings-Control Theory and Applications, 151(6):691698, 2004.Google Scholar
Garcia, Carlos E., Prett, David M., and Morari, Manfred. Model predictive control: theory and practice: A survey. Automatica, 25(3):335348, 1989.Google Scholar
Garriga, Jorge L. and Soroush, Masoud. Model predictive control tuning methods: A review. Industrial & Engineering Chemistry Research, 49(8):35053515, 2010.Google Scholar
Gauss, Carl-Friedrich. Theoria combinationis observationum erroribus minimis obnoxiae, volume 1. Henricus Dieterich, 1823.Google Scholar
Gauss, C. F.. Nachlass: Theoria interpolationis methodo nova tractata, volume werke. Königliche Gesellschaft der Wissenschaften, Göttingen, 1866.Google Scholar
Gautier, Nicolas, Aider, J-L., Duriez, Thomas, Noack, B. R., Segond, Marc, and Abel, Markus. Closed-loop separation control using machine learning. Journal of Fluid Mechanics, 770:442– 457, 2015.Google Scholar
Gavish, M. and Donoho, D. L.. The optimal hard threshold for singular values is 4/ 3. IEEE Transactions on Information Theory, 60(8):50405053, 2014.Google Scholar
Gazzola, Mattia, Vasilyev, Oleg V., and Koumoutsakos, Petros. Shape optimization for drag reduction in linked bodies using evolution strategies. Computers & Structures, 89(11):1224– 1231, 2011.Google Scholar
Gelbert, Gregor, Moeck, Jonas P., Paschereit, Christian O., and King, Rudibert. Advanced algorithms for gradient estimation in one-and two-parameter extremum seeking controllers. Journal of Process Control, 22(4):700709, 2012.Google Scholar
Georghiades, A. S., Belhumeur, P. N., and Kriegman, D. J.. From few to many: Illumination cone models for face recognition under variable lighting and pose. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 23(6):643660, 2001.Google Scholar
Gerbrands, Jan J.. On the relationships between SVD, KLT and PCA. Pattern Recognition, 14(1):375381, 1981.Google Scholar
Gilbert, A. C. and Indyk, P.. Sparse recovery using sparse matrices. Proceedings of the IEEE, 98(6):937947, 2010.Google Scholar
Gilbert, A. C., Park, J. Y., and Wakin, M. B.. Sketched SVD: Recovering spectral features from compressive measurements. ArXiv e-prints, 2012.Google Scholar
Gilbert, A. C., Strauss, M. J., and Tropp, J. A.. A tutorial on fast Fourier sampling. IEEE Signal Processing Magazine, pages 57–66, 2008.Google Scholar
Glaz, Bryan, Liu, Li, and Friedmann, Peretz P. Reduced-order nonlinear unsteady aerodynamic modeling using a surrogate-based recurrence framework. AIAA Journal, 48(10):24182429, 2010.Google Scholar
Goddard, Philip J and Glover, Keith. Controller approximation: approaches for preserving H performance. IEEE Transactions on Automatic Control, 43(7):858–871, 1998.Google Scholar
David, E Goldberg. Genetic Algorithms. Pearson Education India, 2006.Google Scholar
Golub, G. H. and Reinsch, C.. Singular value decomposition and least squares solutions. Numerical Mathematics, 14:403420, 1970.Google Scholar
Golub, Gene and Kahan, William. Calculating the singular values and pseudo-inverse of a matrix. Journal of the Society for Industrial & Applied Mathematics, Series B: Numerical Analysis, 2(2):205224, 1965.Google Scholar
Golub, Gene, Nash, Stephen, and Loan, Charles Van. A Hessenberg-Schur method for the problem ax + xb = c. IEEE Transactions on Automatic Control, 24(6):909913, 1979.Google Scholar
Golub, Gene H. and Van Loan, Charles F.. Matrix Computations, volume 3. JHU Press, 2012.Google Scholar
Gonzalez-Garcia, R., Rico-Martinez, R., and Kevrekidis, I. G.. Identification of distributed parameter systems: A neural net based approach. Comp. & Chem. Eng., 22:S965S968, 1998.Google Scholar
Goodfellow, Ian, Bengio, Yoshua, and Courville, Aaron. Deep Learning. MIT Press, 2016. http://www.deeplearningbook.org.Google Scholar
Goodfellow, Ian, Pouget-Abadie, Jean, Mirza, Mehdi, Xu, Bing, Warde-Farley, David, Ozair, Sherjil, Courville, Aaron, and Bengio, Yoshua. Generative adversarial nets. In Advances in Neural Information Processing Systems, pages 26722680, 2014.Google Scholar
Grant, Michael, Boyd, Stephen, and Ye, Yinyu. Cvx: Matlab software for disciplined convex programming, 2008.Google Scholar
Graves, Alex, Wayne, Greg, and Danihelka, Ivo. Neural turing machines. arXiv preprint arXiv:1410.5401, 2014.Google Scholar
Greenbaum, Anne. Iterative Methods for Solving Linear Systems. SIAM, 1997.Google Scholar
Grewal, Mohinder S.. filtering, Kalman. In International Encyclopedia of Statistical Science, pages 705708. Springer, 2011.Google Scholar
Grilli, M., Schmid, P. J., Hickel, S., and Adams, N. A.. Analysis of unsteady behaviour in shockwave turbulent boundary layer interaction. Journal of Fluid Mechanics, 700:1628, 2012.Google Scholar
Grosek, Jacob and Kutz, J. Nathan. Dynamic mode decomposition for real-time background/-foreground separation in video. arXiv preprint arXiv:1404.7592, 2014.Google Scholar
Ming, Gu. Subspace iteration randomization and singular value problems. SIAM Journal on Scientific Computing, 37(3):11391173, 2015.Google Scholar
Gueniat, F., Mathelin, L., and Pastur, L.. A dynamic mode decomposition approach for large and arbitrarily sampled systems. Physics of Fluids, 27(2):025113, 2015.Google Scholar
Gustafsson, Fredrik, Gunnarsson, Fredrik, Bergman, Niclas, Forssell, Urban, Jansson, Jonas, Karlsson, Rickard, and Nordlund, P-J.. Particle filters for positioning, navigation, and tracking. IEEE Transactions on signal processing, 50(2):425437, 2002.Google Scholar
Haar, Alfred. Zur theorie der orthogonalen funktionensysteme. Mathematische Annalen, 69(3):331371, 1910.Google Scholar
Halko, N., Martinsson, P. G., and Tropp, J. A.. Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions. SIAM Review, 53(2):217– 288, 2011.Google Scholar
Halko, Nathan, Martinsson, Per-Gunnar, Shkolnisky, Yoel, and Tygert, Mark. An algorithm for the principal component analysis of large data sets. SIAM Journal on Scientific Computing, 33:25802594, 2011.Google Scholar
Halko, Nathan, Martinsson, Per-Gunnar, and Tropp, Joel A.. Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions. SIAM Review, 53(2):217288, 2011.Google Scholar
Hammarling, Sven J.. Numerical solution of the stable, non-negative definite Lyapunov equation. IMA Journal of Numerical Analysis, 2(3):303323, 1982.Google Scholar
Han, Sangbo and Feeny, Brian. Application of proper orthogonal decomposition to structural vibration analysis. Mechanical Systems and Signal Processing, 17(5):9891001, 2003.Google Scholar
Hansen, Nikolaus, Niederberger, André S. P., Guzzella, Lino, and Koumoutsakos, Petros. A method for handling uncertainty in evolutionary optimization with an application to feedback control of combustion. IEEE Transactions on Evolutionary Computation, 13(1):180197, 2009.Google Scholar
Harrison, David Jr. and Rubinfeld, Daniel L.. Hedonic housing prices and the demand for clean air. Journal of Environmental Economics and Management, 5(1):81102, 1978.Google Scholar
Harshman, Richard A.. Foundations of the PARAFAC procedure: Models and conditions for an “explanatory” multi-modal factor analysis. UCLA working papers in phonetics, 16:184, 1970. Available at www.psychology.uwo.ca/faculty/harshman/wpppfac0.pdf.Google Scholar
Hastie, Trevor, Tibshirani, Robert, Friedman, Jerome, Hastie, T, Friedman, J., and Tibshirani, R.. The Elements of Statistical Learning, volume 2. Springer, 2009.Google Scholar
He, Kaiming, Zhang, Xiangyu, Ren, Shaoqing, and Sun, Jian. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.Google Scholar
Heath, M. T., Laub, A. J., Paige, C. C., and Ward, R. C.. Computing the singular value decomposition of a product of two matrices. SIAM Journal on Scientific and Statistical Computing, 7(4):11471159, 1986.Google Scholar
Heideman, Michael, Johnson, Don, and Burrus, C. Gauss and the history of the fast Fourier transform. IEEE ASSP Magazine, 1(4):1421, 1984.Google Scholar
Heisenberg, Werner. Über den anschaulichen inhalt der quantentheoretischen kinematik und mechanik. In Original Scientific Papers Wissenschaftliche Originalarbeiten, pages 478504. Springer, 1985.Google Scholar
Hemati, Maziar S., Rowley, Clarence W., Deem, Eric A., and Cattafesta, Louis N.. De-biasing the dynamic mode decomposition for applied Koopman spectral analysis. Theoretical and Computational Fluid Dynamics, 31(4):349368, 2017.Google Scholar
Hemati, Maziar S., Williams, Matthew O., and Rowley, Clarence W.. Dynamic mode decomposition for large and streaming datasets. Physics of Fluids (1994-present), 26(11):111701, 2014.Google Scholar
Herrity, Kyle K., Gilbert, Anna C., and Tropp, Joel A.. Sparse approximation via iterative thresholding. In Acoustics, Speech and Signal Processing, 2006. ICASSP 2006 Proceedings. 2006 IEEE International Conference on, volume 3, pages III–III. IEEE, 2006.Google Scholar
Hesthaven, Jan S., Rozza, Gianluigi, and Stamm, Benjamin. Certified reduced basis methods for parametrized partial differential equations. SpringerBriefs in Mathematics, 2015.Google Scholar
Hey, Tony, Tansley, Stewart, Tolle, Kristin M., et al. The Fourth Paradigm: Data-Intensive Scien tific Discovery, volume 1. Microsoft research Redmond, WA, 2009.Google Scholar
Hinton, Geoffrey E. and Sejnowski, Terrence J.. Learning and releaming in boltzmann machines. Parallel Distributed Processing: Explorations in the Microstructure of Cognition, 1(282-317):2, 1986.Google Scholar
Ho, B. L. and Kalman, R. E.. Effective construction of linear state-variable models from input/output data. In Proceedings of the 3rd Annual Allerton Conference on Circuit and System Theory, pages 449–459, 1965.Google Scholar
Hochreiter, Sepp and Schmidhuber, Jürgen. Long short-term memory. Neural Computation, 9(8):17351780, 1997.Google Scholar
Hoerl, Arthur E. and Kennard, Robert W.. Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, 12(1):5567, 1970.Google Scholar
Holland, John H.. Adaptation in natural and artificial systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence.University of Michigan Press, 1975.Google Scholar
Holmes, P., Lumley, J. L., Berkooz, G., and Rowley, C. W.. Turbulence, Coherent Structures, Dynamical Systems and Symmetry. Cambridge University Press, Cambridge, 2nd paperback edition, 2012.Google Scholar
Holmes, Philip and Guckenheimer, John. Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, volume 42 of Applied Mathematical Sciences. Springer-Verlag, Berlin, Heidelberg, 1983.Google Scholar
Hopf, Eberhard. The partial differential equation ut + uux = μuxx. Communications on Pure and Applied Mathematics, 3(3):201230, 1950.Google Scholar
Hopfield, John J.. Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences, 79(8):25542558, 1982.Google Scholar
Hornik, Kurt, Stinchcombe, Maxwell, and White, Halbert. Multilayer feedforward networks are universal approximators. Neural Networks, 2(5):359366, 1989.Google Scholar
Hotelling, H.. Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology, 24:417441, September 1933.Google Scholar
Hotelling, H.. Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology, 24:498520, October 1933.Google Scholar
Huang, C., Anderson, W. E., Harvazinski, M. E., and Sankaran, V.. Analysis of self-excited combustion instabilities using decomposition techniques. In 51st AIAA Aerospace Sciences Meeting, pages 1–18, 2013.Google Scholar
Hubel, D. H. and Wiesel, T. N.. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. Journal of Physiology, 160:106154, 1962.Google Scholar
Huber, Peter J.. Robust statistics. In International Encyclopedia of Statistical Science, pages 12481251. Springer, 2011.Google Scholar
Illingworth, S. J., Morgans, A. S., and Rowley, C. W.. Feedback control of flow resonances using balanced reduced-order models. Journal of Sound and Vibration, 330(8):15671581, 2010.Google Scholar
Jacobsen, Eric and Lyons, Richard. The sliding DFT. IEEE Signal Processing Magazine, 20(2):7480, 2003.Google Scholar
Jaeger, Herbert and Haas, Harald. Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication. Science, 304(5667):7880, 2004.Google Scholar
James, Gareth, Witten, Daniela, Trevor Hastie, and Robert Tibshirani. An Introduction to Statistical Learning. Springer, 2013.Google Scholar
Johnson, M. C., Brunton, S. L., Kundtz, N. B., and Kutz, J. N.. Extremum-seeking control of a beam pattern of a reconfigurable holographic metamaterial antenna. Journal of the Optical Society of America A, 33(1):5968, 2016.Google Scholar
Richard, A. Johnson and Dean Wichern. Multivariate Analysis. Wiley Online Library, 2002.Google Scholar
Johnson, W. B and Lindenstrauss, J.. Extensions of Lipschitz mappings into a Hilbert space. Contemporary Mathematics, 26(189-206):1, 1984.Google Scholar
Jolliffe, Ian. Principal Component Analysis. Wiley Online Library, 2005.Google Scholar
Joshi, Siddharth and Boyd, Stephen. Sensor selection via convex optimization. IEEE Transactions on Signal Processing, 57(2):451462, 2009.Google Scholar
Jovanović, Mihailo R., Schmid, Peter J., and Nichols, Joseph W.. Sparsity-promoting dynamic mode decomposition. Physics of Fluids, 26(2):024103, 2014.Google Scholar
Juang, J. N.. Applied System Identification. Prentice Hall PTR, Upper Saddle River, New Jersey, 1994.Google Scholar
Juang, J. N. and Pappa, R. S.. An eigensystem realization algorithm for modal parameter identification and model reduction. Journal of Guidance, Control, and Dynamics, 8(5):620– 627, 1985.Google Scholar
Juang, J. N., Phan, M., Horta, L. G., and Longman, R. W.. Identification of observer/Kalman filter Markov parameters: Theory and experiments. Technical Memorandum 104069, NASA, 1991.Google Scholar
Julier, Simon J. and Uhlmann, Jeffrey K.. A new extension of the Kalman filter to nonlinear systems. In Int. symp. aerospace/defense sensing, simul. and controls, volume 3, pages 182– 193. Orlando, FL, 1997.Google Scholar
Julier, Simon J. and Uhlmann, Jeffrey K.. Unscented filtering and nonlinear estimation. Proceedings of the IEEE, 92(3):401422, 2004.Google Scholar
Kaiser, E., Kutz, J. N., and Brunton, S. L.. Data-driven discovery of Koopman eigenfunctions for control. arXiv preprint arXiv:1707.01146, 2017.Google Scholar
Kaiser, Eurika, Kutz, J. Nathan, and Brunton, Steven L.. Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. To appear in Proceedings of the Royal Society A. arXiv preprint arXiv:1711.05501, 2017.Google Scholar
Kaiser, Eurika, Noack, Bernd R., Cordier, Laurent, Spohn, Andreas, Segond, Marc, Abel, Markus, Daviller, Guillaume, Östh, Jan, Krajnović, Siniša, and Niven, Robert K. Cluster-based reduced-order modelling of a mixing layer. Journal of Fluid Mechanics, 754:365414, 2014.Google Scholar
Kalman, Rudolph Emil. A new approach to linear filtering and prediction problems. Journal of Fluids Engineering, 82(1):3545, 1960.Google Scholar
Karhunen, K.. Über lineare methoden in der wahrscheinlichkeitsrechnung, vol. 37. Annales AcademiæScientiarum Fennicæ, Ser. A. I, 1947.Google Scholar
Kasper, Kévin, Mathelin, Lionel, and Abou-Kandil, Hisham. A machine learning approach for constrained sensor placement. In American Control Conference (ACC), 2015, pages 4479– 4484. IEEE, 2015.Google Scholar
Kassam, A. K. and Trefethen, L. N.. Fourth-order time-stepping for stiff PDEs. SIAM Journal on Scientific Computing, 26(4):12141233, 2005.Google Scholar
Kearns, Michael and Valiant, Leslie. Cryptographic limitations on learning boolean formulae and finite automata. Journal of the ACM (JACM), 41(1):6795, 1994.Google Scholar
Kellems, Anthony R., Chaturantabut, Saifon, Sorensen, Danny C., and Cox, Steven J.. Morphologically accurate reduced order modeling of spiking neurons. Journal of Computational Neuroscience, 28(3):477494, 2010.Google Scholar
Kepler, J.. Tabulae Rudolphinae, quibus Astronomicae scientiae, temporum longinquitate collapsae Restauratio continetur. Ulm: Jonas Saur, 1627.Google Scholar
Kerschen, Gaëtan and Golinval, Jean-Claude. Physical interpretation of the proper orthogonal modes using the singular value decomposition. Journal of Sound and Vibration, 249(5):849– 865, 2002.Google Scholar
Kerschen, Gaetan, Golinval, Jean-claude, Vakakis, Alexander F., and Bergman, Lawrence A.. The method of proper orthogonal decomposition for dynamical characterization and order reduction of mechanical systems: an overview. Nonlinear Dynamics, 41(1-3):147169, 2005.Google Scholar
Kevrekidis, I. G., Gear, C. W., Hyman, J. M., Kevrekidis, P. G., Runborg, O., and Theodor-opoulos, C.. Equation-free, coarse-grained multiscale computation: Enabling microscopic simulators to perform system-level analysis. Communications in Mathematical Science, 1(4):715– 762, 2003.Google Scholar
Killingsworth, N. J. and Krstc, M.. PID tuning using extremum seeking: online, model-free performance optimization. IEEE Control Systems Magazine, February:70–79, 2006.Google Scholar
Kingma, Diederik P. and Welling, Max. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013.Google Scholar
Kirby, M. and Sirovich, L.. Application of the Karhunen-Loève procedure for the characterization of human faces. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 12(1):103108, 1990.Google Scholar
Klema, V. C. and Laub, A. J.. The singular value decomposition: Its computation and some applications. IEEE Transactions on Automatic Control, 25(2):164176, 1980.Google Scholar
Klus, Stefan, Nüske, Feliks, Koltai, Péter, Wu, Hao, Kevrekidis, Ioannis, Schütte, Christof, and Noé, Frank. Data-driven model reduction and transfer operator approximation. Journal of Nonlinear Science, pages 126, 2018.Google Scholar
Koch, Richard. The 80/20 Principle. Nicholas Brealey Publishing, 1997.Google Scholar
Koch, Richard. Living the 80/20 Way. Audio-Tech Business Book Summaries, Incorporated, 2006.Google Scholar
Koch, Richard. The 80/20 Principle: The Secret to Achieving More with Less. Crown Business, 2011.Google Scholar
Koch, Richard. The 80/20 Principle and 92 other Powerful Laws of Nature: the Science of Success. Nicholas Brealey Publishing, 2013.Google Scholar
Kohonen, Teuvo. The self-organizing map. Neurocomputing, 21(1-3):16, 1998.Google Scholar
Kolda, Tamara G. and Bader, Brett W.. Tensor decompositions and applications. SIAM Review, 51(3):455500, September 2009.Google Scholar
Koopman, B. O.. Hamiltonian systems and transformation in Hilbert space. Proceedings of the National Academy of Sciences, 17(5):315318, 1931.Google Scholar
Koopman, B. O. and Neumann, J.-v.. Dynamical systems of continuous spectra. Proceedings of the National Academy of Sciences of the United States of America, 18(3):255, 1932.Google Scholar
Korda, Milan and Mezić, Igor. Linear predictors for nonlinear dynamical systems: Koopman operator meets model predictive control. Automatica, 93:149160, 2018.Google Scholar
Korda, Milan and Mezić, Igor. On convergence of extended dynamic mode decomposition to the Koopman operator. Journal of Nonlinear Science, 28(2): 687710, 2018.Google Scholar
Koumoutsakos, Petros, Freund, Jonathan, and Parekh, David. Evolution strategies for automatic optimization of jet mixing. AIAA Journal, 39(5):967969, 2001.Google Scholar
Kowalski, Krzysztof, Steeb, Willi-Hans, and Kowalksi, K.. Nonlinear Dynamical Systems and Carleman Linearization. World Scientific, 1991.Google Scholar
Koza, John R.. Genetic Programming: On the Programming of Computers by Means of Natural Selection, volume 1. MIT press, 1992.Google Scholar
Koza, John R., Bennett III, Forrest H., and Stiffelman, Oscar. Genetic programming as a darwinian invention machine. In Genetic Programming, pages 93108. Springer, 1999.Google Scholar
Kramer, Boris, Grover, Piyush, Boufounos, Petros, Benosman, Mouhacine, and Nabi, Saleh. Sparse sensing and dmd based identification of flow regimes and bifurcations in complex flows. SIAM Journal on Applied Dynamical Systems, 16(2):11641196, 2017.Google Scholar
Krieger, J. P. and Krstic, M.. Extremum seeking based on atmospheric turbulence for aircraft endurance. Journal of Guidance, Control, and Dynamics, 34(6):18761885, 2011.Google Scholar
Krizhevsky, Alex, Sutskever, Ilya, and Hinton, Geoffrey E.. Imagenet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems, pages 1097–1105, 2012.Google Scholar
Krstic, M., Krupadanam, A., and Jacobson, C.. Self-tuning control of a nonlinear model of combustion instabilities. IEEE Tr. Contr. Syst. Technol., 7(4):424436, 1999.Google Scholar
Krstić, M. and Wang, H. H.. Stability of extremum seeking feedback for general nonlinear dynamic systems. Automatica, 36:595601, 2000.Google Scholar
Kulkarni, Tejas D, Whitney, William F, Kohli, Pushmeet, and Tenenbaum, Josh. Deep convolutional inverse graphics network. In Advances in Neural Information Processing Systems, pages 2539–2547, 2015.Google Scholar
Kullback, Solomon and Leibler, Richard A. On information and sufficiency. The Annals of Mathematical Statistics, 22(1):7986, 1951.Google Scholar
Kunisch, Karl and Volkwein, Stefan. Optimal snapshot location for computing pod basis functions. ESAIM: Mathematical Modelling and Numerical Analysis, 44(3):509529, 2010.Google Scholar
Kutz, J. N.. Data-Driven Modeling & Scientific Computation: Methods for Complex Systems & Big Data. Oxford University Press, 2013.Google Scholar
Kutz, J. N., Brunton, S. L., Brunton, B. W., and Proctor, J. L.. Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems. SIAM, 2016.Google Scholar
Kutz, J. N., Fu, X., and Brunton, S. L.. Multi-resolution dynamic mode decomposition. SIAM Journal on Applied Dynamical Systems, 15(2):713735, 2016.CrossRefGoogle Scholar
Kutz, J. Nathan, Sargsyan, Syuzanna, and Brunton, Steven L. Leveraging sparsity and compressive sensing for reduced order modeling. In Model Reduction of Parametrized Systems, pages 301–315. Springer, 2017.Google Scholar
Lall, Sanjay, Marsden, Jerrold E., and Glavaški, Sonja. Empirical model reduction of controlled nonlinear systems. In IFAC World Congress, volume F, pages 473–478. International Federation of Automatic Control, 1999.Google Scholar
Lall, Sanjay, Marsden, Jerrold E., and Glavaški, Sonja. A subspace approach to balanced truncation for model reduction of nonlinear control systems. International Journal of Robust and Nonlinear Control, 12(6):519535, 2002.Google Scholar
Lan, Yueheng and Mezić, Igor. Linearization in the large of nonlinear systems and Koopman operator spectrum. Physica D: Nonlinear Phenomena, 242(1):4253, 2013.Google Scholar
Laub, Alan. A Schur method for solving algebraic Riccati equations. IEEE Transactions on automatic control, 24(6):913921, 1979.Google Scholar
LeCun, Yann, Bengio, Yoshua, and Hinton, Geoffrey. Deep learning. Nature, 521(7553):436, 2015.Google Scholar
LeCun, Yann, Bottou, Léon, Bengio, Yoshua, and Haffner, Patrick. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):22782324, 1998.Google Scholar
Lee, Jay H.. Model predictive control: Review of the three decades of development. International Journal of Control, Automation and Systems, 9(3):415424, 2011.Google Scholar
Lee, K.C., Ho, J., and Kriegman, D.. Acquiring linear subspaces for face recognition under variable lighting. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 27(5):684698, 2005.Google Scholar
Legendre, Adrien Marie. Nouvelles méthodes pour la détermination des orbites des comètes. F. Didot, 1805.Google Scholar
Lenaerts, V., Kerschen, Gaëtan, and Golinval, Jean-Claude. Proper orthogonal decomposition for model updating of non-linear mechanical systems. Mechanical Systems and Signal Processing, 15(1):3143, 2001.Google Scholar
Lenz, Ian, Knepper, Ross A., and Saxena, Ashutosh. Deepmpc: Learning deep latent features for model predictive control. In Robotics: Science and Systems, 2015.Google Scholar
Leyva, R., Alonso, C., Queinnec, I., Cid-Pastor, A., Lagrange, D., and Martinez-Salamero, L.. MPPT of photovoltaic systems using extremum-seeking control. Ieee Transactions On Aerospace and Electronic Systems, 42(1):249258, January 2006.Google Scholar
Li, Qianxiao, Dietrich, Felix, Bollt, Erik M., and Kevrekidis, Ioannis G.. Extended dynamic mode decomposition with dictionary learning: A data-driven adaptive spectral decomposition of the Koopman operator. Chaos: An Interdisciplinary Journal of Nonlinear Science, 27(10):103111, 2017.Google Scholar
Liang, Y. C., Lee, H. P., Lim, S. P., Lin, W. Z., Lee, K. H., and Wu, C. G.. Proper orthogonal decomposition and its applications- part i: Theory. Journal of Sound and vibration, 252(3):527544, 2002.Google Scholar
Liberty, Edo. Simple and deterministic matrix sketching. In Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 581– 588. ACM, 2013.Google Scholar
Liberty, Edo, Woolfe, Franco, Martinsson, Per-Gunnar, Rokhlin, Vladimir, and Tygert, Mark. Randomized algorithms for the low-rank approximation of matrices. Proceedings of the National Academy of Sciences, 104:2016720172, 2007.Google Scholar
Lillicrap, Timothy P., Hunt, Jonathan J., Pritzel, Alexander, Heess, Nicolas, Erez, Tom, Tassa, Yuval, Silver, David, and Wierstra, Daan. Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971, 2015.Google Scholar
Lin, Zhouchen, Chen, Minming, and Ma, Yi. The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices. arXiv preprint arXiv:1009.5055, 2010.Google Scholar
Ljung, L.. System Identification: Theory for the User. Prentice Hall, 1999.Google Scholar
Lloyd, Stuart. Least squares quantization in PCM. IEEE Transactions on Information Theory, 28(2):129137, 1982.Google Scholar
Loeve, M.. Probability Theory. Van Nostrand, Princeton, NJ, 1955.Google Scholar
Loiseau, J.-C. and Brunton, S. L.. Constrained sparse Galerkin regression. Journal of Fluid Mechanics, 838:4267, 2018.Google Scholar
Loiseau, J.-C., Noack, B. R., and Brunton, S. L.. Sparse reduced-order modeling: sensor-based dynamics to full-state estimation. Journal of Fluid Mechanics, 844:459490, 2018.Google Scholar
Longman, Richard W.. Iterative learning control and repetitive control for engineering practice. International Journal of Control, 73(10):930954, 2000.Google Scholar
Lorenz, E. N.. Empirical orthogonal functions and statistical weather prediction. Technical report, Massachusetts Institute of Technology, December 1956.Google Scholar
Lorenz, Edward N.. Deterministic nonperiodic flow. Journal of the Atmospheric Sciences, 20(2):130141, 1963.Google Scholar
Luchtenburg, D. M. and Rowley, C. W.. Model reduction using snapshot-based realizations. Bulletin of the American Physical Society, 56, 2011.Google Scholar
Lumley, J. L.. Toward a turbulent constitutive relation. Journal of Fluid Mechanics, 41(02):413434, 1970.Google Scholar
Lusch, Bethany, Chi, Eric C., and Kutz, J. Nathan. Shape constrained tensor decompositions using sparse representations in over-complete libraries. arXiv preprint arXiv:1608.04674, 2016.Google Scholar
Bethany Lusch, J. Nathan Kutz, and Steven L. Brunton. Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications. arXiv preprint arXiv:1712.09707, 2018.Google Scholar
Lusseyran, F., Gueniat, F., Basley, J., Douay, C. L., Pastur, L. R., Faure, T. M., and Schmid, P. J.. Flow coherent structures and frequency signature: application of the dynamic modes decomposition to open cavity flow. In Journal of Physics: Conference Series, volume 318, page 042036. IOP Publishing, 2011.Google Scholar
Ma, Z., Ahuja, S., and Rowley, C. W.. Reduced order models for control of fluids using the eigensystem realization algorithm. Theor. Comput. Fluid Dyn., 25(1):233247, 2011.Google Scholar
Maass, Wolfgang, Natschläger, Thomas, and Markram, Henry. Real-time computing without stable states: A new framework for neural computation based on perturbations. Neural Computation, 14(11):25312560, 2002.Google Scholar
Mackey, Alan, Schaeffer, Hayden, and Osher, Stanley. On the compressive spectral method. Multiscale Modeling & Simulation, 12(4):18001827, 2014.Google Scholar
Mahoney, Michael W.. Randomized algorithms for matrices and data. Foundations and Trends in Machine Learning, 3:123224, 2011.Google Scholar
Majda, Andrew J. and Harlim, John. Physics constrained nonlinear regression models for time series. Nonlinearity, 26(1):201, 2012.Google Scholar
Majda, Andrew J. and Lee, Yoonsang. Conceptual dynamical models for turbulence. Proceedings of the National Academy of Sciences, 111(18):65486553, 2014.Google Scholar
Mallat, Stéphane. A Wavelet Tour of Signal Processing. Academic Press, 1999.Google Scholar
Mallat, Stéphane. Understanding deep convolutional networks. Phil. Trans. R. Soc. A, 374(2065):20150203, 2016.Google Scholar
Mallat, Stephane G.. A theory for multiresolution signal decomposition: the wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(7):674– 693, 1989.Google Scholar
Mandel, John. Use of the singular value decomposition in regression analysis. The American Statistician, 36(1):1524, 1982.Google Scholar
Mangan, Niall M., Brunton, Steven L., Proctor, Joshua L., and Kutz, J. Nathan. Inferring biological networks by sparse identification of nonlinear dynamics. IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, 2(1):5263, 2016.Google Scholar
Mangan, Niall M., Kutz, J. Nathan, Brunton, Steven L., and Proctor, Joshua L.. Model selection for dynamical systems via sparse regression and information criteria. Proceedings of the Royal Society A, 473(2204):116, 2017.Google Scholar
Mann, Jordan and Kutz, J. Nathan. Dynamic mode decomposition for financial trading strategies. Quantitative Finance, pages 1–13, 2016.Google Scholar
Manohar, K., Brunton, S. L., and Kutz, J. N.. Environmental identification in flight using sparse approximation of wing strain. Journal of Fluids and Structures, 70:162180, 2017.Google Scholar
Manohar, K., Kutz, J. N., and Brunton, S. L.. Greedy Sensor and Actuator Placement Using Balanced Model Reduction. Bulletin of the American Physical Society, 2018.Google Scholar
Manohar, Krithika, Brunton, Bingni W., Kutz, J. Nathan, and Brunton, Steven L.. Data-driven sparse sensor placement. IEEE Control Systems Magazine, 38:6386, 2018Google Scholar
Manohar, Krithika, Kaiser, Eurika, Brunton, S. L., and Kutz, J. N.. Optimized sampling for multiscale dynamics. SIAM Multiscale Modeling and Simulation. arXiv preprint arXiv:1712.05085, 2017.Google Scholar
Mardt, Andreas, Pasquali, Luca, Wu, Hao, and Noé, Frank. VAMPnets: Deep learning of molecular kinetics. Nature Communications, 9(1), 2018.Google Scholar
Marsden, J. E. and Ratiu, T. S.. Introduction to Mechanics and Symmetry. Springer-Verlag, 2nd edition, 1999.Google Scholar
Per-Gunnar, Martinsson. Randomized methods for matrix computations and analysis of high dimensional data. arXiv preprint arXiv:1607.01649, 2016.Google Scholar
Martinsson, Per-Gunnar, Rokhlin, Vladimir, and Tygert, Mark. A randomized algorithm for the decomposition of matrices. Applied and Computational Harmonic Analysis, 30:4768, 2011.Google Scholar
Maryak, John L., Spall, James C., and Heydon, Bryan D.. Use of the Kalman filter for inference in state-space models with unknown noise distributions. IEEE Transactions on Automatic Control, 49(1):8790, 2004.Google Scholar
Massa, L., Kumar, R., and Ravindran, P.. Dynamic mode decomposition analysis of detonation waves. Physics of Fluids (1994-present), 24(6):066101, 2012.Google Scholar
Mathelin, Lionel, Kasper, Kévin, and Abou-Kandil, Hisham. Observable dictionary learning for high-dimensional statistical inference. Archives of Computational Methods in Engineering, 25(1):103120, 2018.Google Scholar
Maury, R., Keonig, M., Cattafesta, L., Jordan, P., and Delville, J.. Extremum-seeking control of jet noise. Aeroacoustics, 11(3&4):459474, 2012.Google Scholar
Mezić, I.. Spectral properties of dynamical systems, model reduction and decompositions. Nonlinear Dynamics, 41(1-3):309325, 2005.Google Scholar
Mezić, I.. Analysis of fluid flows via spectral properties of the Koopman operator. Ann. Rev. Fluid Mech., 45:357378, 2013.Google Scholar
Mezić, I.. Spectral Operator Methods in Dynamical Systems: Theory and Applications. Springer, 2017.Google Scholar
Mezić, Igor and Banaszuk, Andrzej. Comparison of systems with complex behavior. Physica D: Nonlinear Phenomena, 197(1):101133, 2004.Google Scholar
Mezić, Igor and Wiggins, Stephen. A method for visualization of invariant sets of dynamical systems based on the ergodic partition. Chaos: An Interdisciplinary Journal of Nonlinear Science, 9(1):213218, 1999.Google Scholar
Milano, Michele and Koumoutsakos, Petros. Neural network modeling for near wall turbulent flow. Journal of Computational Physics, 182(1):126, 2002.Google Scholar
Mitchell, T. M.. Machine Learning. McGraw Hill, 1997.Google Scholar
Mizuno, Y., Duke, D., Atkinson, C., and Soria, J.. Investigation of wall-bounded turbulent flow using dynamic mode decomposition. In Journal of Physics: Conference Series, volume 318, page 042040. IOP Publishing, 2011.Google Scholar
Mnih, Volodymyr, Badia, Adria Puigdomenech, Mirza, Mehdi, Graves, Alex, Lillicrap, Timothy, Harley, Tim, Silver, David, and Kavukcuoglu, Koray. Asynchronous methods for deep reinforcement learning. In International Conference on Machine Learning, pages 1928–1937, 2016.Google Scholar
Mnih, Volodymyr, Kavukcuoglu, Koray, Silver, David, Graves, Alex, Antonoglou, Ioannis, Wierstra, Daan, and Riedmiller, Martin. Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.Google Scholar
Mnih, Volodymyr, Kavukcuoglu, Koray, Silver, David, Rusu, Andrei A., Veness, Joel, Bellemare, Marc G., Graves, Alex, Riedmiller, Martin, Fidjeland, Andreas K., Georg Ostrovski, et al. Human-level control through deep reinforcement learning. Nature, 518(7540):529, 2015.Google Scholar
Moeck, J. P., Bourgouin, J.-F., Durox, D., Schuller, T., and Candel, S.. Tomographic reconstruction of heat release rate perturbations induced by helical modes in turbulent swirl flames. Experiments in Fluids, 54(4):117, 2013.Google Scholar
Moore, B. C.. Principal component analysis in linear systems: Controllability, observability, and model reduction. IEEE Transactions on Automatic Control, AC-26(1):1732, 1981.Google Scholar
Moore, Calvin C.. Ergodic theorem, ergodic theory, and statistical mechanics. Proceedings of the National Academy of Sciences, 112(7):19071911, 2015.Google Scholar
Moore, Kevin L.. Iterative Learning Control for Deterministic Systems. Springer Science & Business Media, 2012.Google Scholar
Morari, Manfred and Lee, Jay H.. Model predictive control: past, present and future. Computers & Chemical Engineering, 23(4):667682, 1999.Google Scholar
Muld, T. W., Efraimsson, G., and Henningson, D. S.. Flow structures around a high-speed train extracted using proper orthogonal decomposition and dynamic mode decomposition. Computers & Fluids, 57:8797, 2012.Google Scholar
Muld, T. W., Efraimsson, G., and Henningson, D. S.. Mode decomposition on surface-mounted cube. Flow, Turbulence and Combustion, 88(3):279310, 2012.Google Scholar
Müller, S. D., Milano, M, and Koumoutsakos, P.. Application of machine learning algorithms to flow modeling and optimization. Annual Research Briefs, pages 169–178, 1999.Google Scholar
Munteanu, Iulian, Bratcu, Antoneta Iuliana, and Ceanga, Emil. Wind turbulence used as searching signal for MPPT in variable-speed wind energy conversion systems. Renewable Energy, 34(1):322327, January 2009.Google Scholar
Kevin, P. Murphy. Machine Learning: A Probabilistic Perspective. MIT press, 2012.Google Scholar
Nair, Vinod and Hinton, Geoffrey E.. Rectified linear units improve restricted boltzmann machines. In Proceedings of the 27th international conference on machine learning (ICML-10), pages 807–814, 2010.Google Scholar
Needell, D. and Tropp, J. A.. CoSaMP: iterative signal recovery from incomplete and inaccurate samples. Communications of the ACM, 53(12):93100, 2010.Google Scholar
Neumann, J. v. Proof of the quasi-ergodic hypothesis. Proceedings of the National Academy of Sciences, 18(1):7082, 1932.Google Scholar
Nguyen, N. C., Patera, A. T., and Peraire, J.. A best points interpolation method for efficient approximation of parametrized functions. International Journal for Numerical Methods in Engineering, 73(4):521543, 2008.Google Scholar
Nievergelt, Yves and Nievergelt, Y.. Wavelets Made Easy, volume 174. Springer, 1999.Google Scholar
Noack, B. R., Afanasiev, K., Morzynski, M., Tadmor, G., and Thiele, F.. A hierarchy of low-dimensional models for the transient and post-transient cylinder wake. Journal of Fluid Mechanics, 497:335363, 2003.Google Scholar
Noack, B. R., Duriez, T., Cordier, L., Segond, M., Abel, M., Brunton, S. L., Morzyński, M., Laurentie, J.-C., Parezanovic, V., and Bonnet, J.-P.. Closed-loop turbulence control with machine learning methods. Bulletin Am. Phys. Soc., 58(18):M25.0009, p. 418, 2013.Google Scholar
Noack, Bernd R., Morzynski, Marek, and Tadmor, Gilead. Reduced-Order Modelling for Flow Control, volume 528. Springer Science & Business Media, 2011.Google Scholar
Noé, Frank and Nuske, Feliks. A variational approach to modeling slow processes in stochastic dynamical systems. Multiscale Modeling & Simulation, 11(2):635655, 2013.Google Scholar
Noether, E.. Invariante variationsprobleme nachr. d. könig. gesellsch. d. wiss. zu göttingen, math-phys. klasse 1918: 235-257. English Reprint: physics/0503066, http://dx.doi.org/10.1080/00411457108231446, page 57, 1918.Google Scholar
Nüske, Feliks, Keller, Bettina G., Pérez-Hernández, Guillermo, Mey, Antonia S. J. S., and Noé, Frank. Variational approach to molecular kinetics. Journal of Chemical Theory and Computation, 10(4):17391752, 2014.Google Scholar
Nüske, Feliks, Schneider, Reinhold, Vitalini, Francesca, and Noé, Frank. Variational tensor approach for approximating the rare-event kinetics of macromolecular systems. J. Chem. Phys., 144(5):054105, 2016.Google Scholar
Nyquist, H.. Certain topics in telegraph transmission theory. Transactions of the A. I. E. E., pages 617–644, FEB 1928.Google Scholar
Obinata, Goro and Anderson, Brian D. O.. Model reduction for control system design. Springer Science & Business Media, 2012.Google Scholar
Ostoich, C. M., Bodony, D. J., and Geubelle, P. H.. Interaction of a Mach 2.25 turbulent boundary layer with a fluttering panel using direct numerical simulation. Physics of Fluids (1994-present), 25(11):110806, 2013.Google Scholar
Otto, Samuel E. and Rowley, Clarence W.. Linearly-recurrent autoencoder networks for learning dynamics. arXiv preprint arXiv:1712.01378, 2017.Google Scholar
Ou, Y., Xu, C., Schuster, E., Luce, T. C., Ferron, J. R., Walker, M. L., and Humphreys, D. A.. Design and simulation of extremum-seeking open-loop optimal control of current profile in the DIII-D tokamak. Plasma Physics and Controlled Fusion, 50:115001–1–115001–24, 2008.Google Scholar
Ozolin, š, Vidvuds, Lai, Rongjie, Caflisch, Russel, and Osher, Stanley. Compressed modes for variational problems in mathematics and physics. Proceedings of the National Academy of Sciences, 110(46):1836818373, 2013.Google Scholar
Pan, C., Yu, D., and Wang, J.. Dynamical mode decomposition of Gurney flap wake flow. Theoretical and Applied Mechanics Letters, 1(1):012002, 2011.Google Scholar
Parezanovic, V., Laurentie, J.-C., Duriez, T., Fourment, C., Delville, J., Bonnet, J.-P., Cordier, L., Noack, B. R., Segond, M., Abel, M., Shaqarin, T., and Brunton, S. L.. Mixing layer manipulation experiment – from periodic forcing to machine learning closed-loop control. Journal Flow Turbulence and Combustion, 94(1):155173, 2015.Google Scholar
Parezanović, Vladimir, Duriez, Thomas, Cordier, Laurent, Noack, Bernd R., Delville, Joël, Bonnet, Jean-Paul, Segond, Marc, Abel, Markus, and Brunton, Steven L.. Closed-loop control of an experimental mixing layer using machine learning control. arXiv preprint arXiv:1408.3259, 2014.Google Scholar
Pearson, K.. On lines and planes of closest fit to systems of points in space. Philosophical Magazine, 2(7–12):559572, 1901.Google Scholar
Peherstorfer, B., Butnaru, D., Willcox, K., and Bungartz, H.-J.. Localized discrete empirical interpolation method. SIAM Journal on Scientific Computing, 36(1):A168A192, 2014.Google Scholar
Peherstorfer, Benjamin and Willcox, Karen. Detecting and adapting to parameter changes for reduced models of dynamic data-driven application systems. Procedia Computer Science, 51:25532562, 2015.Google Scholar
Peherstorfer, Benjamin and Willcox, Karen. Dynamic data-driven reduced-order models. Computer Methods in Applied Mechanics and Engineering, 291:2141, 2015.Google Scholar
Peherstorfer, Benjamin and Willcox, Karen. Online adaptive model reduction for nonlinear systems via low-rank updates. SIAM Journal on Scientific Computing, 37(4):A2123A2150, 2015.Google Scholar
Peitz, Sebastian and Klus, Stefan. Koopman operator-based model reduction for switched-system control of PDEs. arXiv preprint arXiv:1710.06759, 2017.Google Scholar
Pendergrass, S. D., Kutz, J. N., and Brunton, S. L.. Streaming GPU singular value and dynamic mode decompositions. arXiv preprint arXiv:1612.07875, 2016.Google Scholar
Penrose, Roger. A generalized inverse for matrices. In Mathematical proceedings of the Cambridge philosophical society, volume 51, pages 406413. Cambridge University Press, 1955.Google Scholar
Penrose, Roger and Todd, John Arthur. On best approximate solutions of linear matrix equations. In Mathematical Proceedings of the Cambridge Philosophical Society, volume 52, pages 1719. Cambridge Univ Press, 1956.Google Scholar
Perko, Lawrence. Differential Equations and Dynamical Systems, volume 7. Springer Science & Business Media, 2013.Google Scholar
Phan, M., Horta, L. G., Juang, J. N., and Longman, R. W.. Linear system identification via an asymptotically stable observer. Journal of Optimization Theory and Applications, 79:5986, 1993.Google Scholar
Pinsky, Mark A.. Introduction to Fourier analysis and wavelets, volume 102. American Mathematical Soc., 2002.Google Scholar
Poggio, T.. Deep learning: mathematics and neuroscience. Views & Reviews, McGovern Center for Brains, Minds and Machines, pages 1–7, 2016.Google Scholar
Poncet, Philippe, Cottet, Georges-Henri, and Koumoutsakos, Petros. Control of three-dimensional wakes using evolution strategies. Comptes Rendus Mecanique, 333(1):6577, 2005.Google Scholar
Poultney, Christopher, Chopra, Sumit, Cun, Yann L, et al. Efficient learning of sparse representations with an energy-based model. In Advances in Neural Information Processing systems, pages 1137–1144, 2007.Google Scholar
Proctor, J. L., Brunton, S. L., Brunton, B. W., and Kutz, J. N.. Exploiting sparsity and equation-free architectures in complex systems (invited review). The European Physical Journal Special Topics, 223(13):26652684, 2014.Google Scholar
Proctor, Joshua L., Brunton, Steven L., and Kutz, J. Nathan. Dynamic mode decomposition with control. SIAM Journal on Applied Dynamical Systems, 15(1):142161, 2016.Google Scholar
Proctor, Joshua L. and Eckhoff, Philip A.. Discovering dynamic patterns from infectious disease data using dynamic mode decomposition. International Health, 7(2):139145, 2015.Google Scholar
Qi, H. and Hughes, S. M.. Invariance of principal components under low-dimensional random projection of the data. IEEE International Conference on Image Processing, October 2012.Google Scholar
Qian, Shie and Chen, Dapang. Discrete Gabor transform. IEEE Transactions on Signal Processing, 41(7):24292438, 1993.Google Scholar
Qin, S. J. and Badgwell, T. A.. An overview of industrial model predictive control technology. In AIChE Symposium Series, volume 93, pages 232256, 1997.Google Scholar
Qin, S. Joe and Badgwell, Thomas A.. A survey of industrial model predictive control technology. Control Engineering Practice, 11(7):733764, 2003.Google Scholar
Qu, Qing, Sun, Ju, and Wright, John. Finding a sparse vector in a subspace: Linear sparsity using alternating directions. In Advances in Neural Information Processing Systems 27, pages 3401–3409, 2014.Google Scholar
Quarteroni, A. and Rozza, G.. Reduced Order Methods for Modeling and Computational Reduction, volume 9 of MS&A – Modeling, Simulation & Appplications. Springer, 2013.Google Scholar
Quarteroni, Alfio, Manzoni, Andrea, and Negri, Federico. Reduced Basis Methods for Partial Differential Equations: An Introduction, volume 92. Springer, 2015.Google Scholar
Quinlan, J. Ross. Induction of decision trees. Machine Learning, 1(1):81106, 1986.Google Scholar
Quinlan, J Ross. C4. 5: Programs for Machine Learning. Elsevier, 2014.Google Scholar
Raissi, Maziar and Karniadakis, George Em. Hidden physics models: Machine learning of nonlinear partial differential equations. Journal of Computational Physics, 357:125141, 2018.Google Scholar
Rao, C. Radhakrishna. The utilization of multiple measurements in problems of biological classification. Journal of the Royal Statistical Society. Series B (Methodological), 10(2):159– 203, 1948.Google Scholar
Rawlings, James B.. Tutorial overview of model predictive control. IEEE Control Systems, 20(3):3852, 2000.Google Scholar
Raychaudhuri, Soumya, Stuart, Joshua M., and Altman, Russ B.. Principal components analysis to summarize microarray experiments: application to sporulation time series. In Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing, page 455. NIH Public Access, 2000.Google Scholar
Reichle, Rolf H., McLaughlin, Dennis B., and Entekhabi, Dara. Hydrologic data assimilation with the ensemble Kalman filter. Monthly Weather Review, 130(1):103114, 2002.Google Scholar
Ren, B., Frihauf, P., Rafac, R. J., and Krstić, M.. Laser pulse shaping via extremum seeking. Control Engineering Practice, 20:674683, 2012.Google Scholar
Ristic, Branko, Arulampalam, Sanjeev, and Gordon, Neil James. Beyond the Kalman Filter: Particle Filters for Tracking Applications. Artech house, 2004.Google Scholar
Roberts, Anthony John. Model Emergent Dynamics in Complex Systems. SIAM, 2014.Google Scholar
Rohde, Charles A.. Generalized inverses of partitioned matrices. Journal of the Society for Industrial & Applied Mathematics, 13(4):10331035, 1965.Google Scholar
Rokhlin, Vladimir, Szlam, Arthur, and Tygert, Mark. A randomized algorithm for principal component analysis. SIAM Journal on Matrix Analysis and Applications, 31:11001124, 2009.Google Scholar
Rowley, C. W., Colonius, T., and Murray, R. M.. Model reduction for compressible flows using POD and Galerkin projection. Physica D, 189:115129, 2004.Google Scholar
Rowley, C. W., Mezić, I., Bagheri, S., Schlatter, P., and Henningson, D. S.. Spectral analysis of nonlinear flows. J. Fluid Mech., 645:115127, 2009.Google Scholar
Rowley, Clarence W. and Marsden, Jerrold E.. Reconstruction equations and the Karhunen– Loève expansion for systems with symmetry. Physica D: Nonlinear Phenomena, 142(1):119, 2000.Google Scholar
Rowley, C.W.. Model reduction for fluids using balanced proper orthogonal decomposition. Int. J. Bifurcation and Chaos, 15(3):9971013, 2005.Google Scholar
Roy, S., Hua, J.-C., Barnhill, W., Gunaratne, G. H., and Gord, J. R.. Deconvolution of reacting-flow dynamics using proper orthogonal and dynamic mode decompositions. Physical Review E, 91(1):013001, 2015.Google Scholar
Rudy, S. H., Brunton, S. L., Proctor, J. L., and Kutz, J. N.. Data-driven discovery of partial differential equations. Science Advances, 3(e1602614), 2017.Google Scholar
Sapsis, Themistoklis P. and Majda, Andrew J.. Statistically accurate low-order models for uncertainty quantification in turbulent dynamical systems. Proceedings of the National Academy of Sciences, 110(34):1370513710, 2013.Google Scholar
Sargsyan, S., Brunton, S. L., and Kutz, J. N.. Nonlinear model reduction for dynamical systems using sparse sensor locations from learned libraries. Physical Review E, 92(033304), 2015.Google Scholar
Sarkar, S., Ganguly, S., Dalal, A., Saha, P., and Chakraborty, S.. Mixed convective flow stability of nanofluids past a square cylinder by dynamic mode decomposition. International Journal of Heat and Fluid Flow, 44:624634, 2013.Google Scholar
Sarlos, Tamas. Improved approximation algorithms for large matrices via random projections. In Foundations of Computer Science. 47th Annual IEEE Symposium on, pages 143–152, 2006.Google Scholar
Sayadi, T., Schmid, P. J., Nichols, J. W., and Moin, P.. Reduced-order representation of near-wall structures in the late transitional boundary layer. Journal of Fluid Mechanics, 748:278301, 2014.Google Scholar
Sayadi, Taraneh and Schmid, Peter J.. Parallel data-driven decomposition algorithm for large-scale datasets: with application to transitional boundary layers. Theoretical and Computational Fluid Dynamics, pages 114, 2016.Google Scholar
Schaeffer, H., Caflisch, R., Hauck, C. D., and Osher, S.. Sparse dynamics for partial differential equations. Proceedings of the National Academy of Sciences USA, 110(17):66346639, 2013.Google Scholar
Schaeffer, Hayden. Learning partial differential equations via data discovery and sparse optimization. In Proc. R. Soc. A, volume 473, page 20160446. The Royal Society, 2017.Google Scholar
Schaeffer, Hayden and McCalla, Scott G.. Sparse model selection via integral terms. Physical Review E, 96(2):023302, 2017.Google Scholar
Schapire, Robert E.. The strength of weak learnability. Machine learning, 5(2):197227, 1990.Google Scholar
Schlegel, M., Noack, B. R., and Tadmor, G.. Low-dimensional Galerkin models and control of transitional channel flow. Technical Report 01/2004, Hermann-Föttinger-Institut für Strömungsmechanik, Technische Universität Berlin, Germany, 2004.Google Scholar
Schmid, P. J.. Dynamic mode decomposition for numerical and experimental data. J. Fluid. Mech, 656:528, 2010.Google Scholar
Schmid, P. J., Li, L., Juniper, M. P., and Pust, O.. Applications of the dynamic mode decomposition. Theoretical and Computational Fluid Dynamics, 25(1-4):249259, 2011.Google Scholar
Schmid, P. J. and Sesterhenn, J.. Dynamic mode decomposition of numerical and experimental data. In 61st Annual Meeting of the APS Division of Fluid Dynamics. American Physical Society, November 2008.Google Scholar
Schmid, P. J., Violato, D., and Scarano, F.. Decomposition of time-resolved tomographic PIV. Experiments in Fluids, 52:15671579, 2012.Google Scholar
Schmidt, E.. Zur theorie der linearen und nichtlinearen integralgleichungen. i teil. entwicklung willkürlichen funktionen nach system vorgeschriebener. Math. Ann., 3:433476, 1907.Google Scholar
Schmidt, Michael and Lipson, Hod. Distilling free-form natural laws from experimental data. Science, 324(5923):8185, 2009.Google Scholar
Schmidt, Michael D., Vallabhajosyula, Ravishankar R., Jenkins, Jerry W., Hood, Jonathan E., Soni, Abhishek S., Wikswo, John P., and Lipson, Hod. Automated refinement and inference of analytical models for metabolic networks. Physical Biology, 8(5):055011, 2011.Google Scholar
Schölkopf, Bernhard and Smola, Alexander J.. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and beyond. MIT press, 2002.Google Scholar
Schwarz, Gideon et al. Estimating the dimension of a model. The Annals of Statistics, 6(2):461464, 1978.Google Scholar
Seena, A. and Sung, H. J.. Dynamic mode decomposition of turbulent cavity flows for self-sustained oscillations. International Journal of Heat and Fluid Flow, 32(6):10981110, 2011.Google Scholar
Sejdić, Ervin, Djurović, Igor, and Jiang, Jin. Time–frequency feature representation using energy concentration: An overview of recent advances. Digital Signal Processing, 19(1):153– 183, 2009.Google Scholar
Semeraro, O., Bellani, G., and Lundell, F.. Analysis of time-resolved PIV measurements of a confined turbulent jet using POD and Koopman modes. Experiments in Fluids, 53(5):1203– 1220, 2012.Google Scholar
Semeraro, Onofrio, Lusseyran, Francois, Pastur, Luc, and Jordan, Peter. Qualitative dynamics of wavepackets in turbulent jets. Physical Review Fluids, 2(9):094605, 2017.Google Scholar
Shabat, Gil, Shmueli, Yaniv, Aizenbud, Yariv, and Averbuch, Amir. Randomized LU decomposition. Applied and Computational Harmonic Analysis, 2016.Google Scholar
Shannon, C. E.. A mathematical theory of communication. Bell System Technical Journal, 27(3):379423, 1948.Google Scholar
Sharma, Ati S., Mezić, Igor, and McKeon, Beverley J.. Correspondence between Koopman mode decomposition, resolvent mode decomposition, and invariant solutions of the Navier-Stokes equations. Physical Review Fluids, 1(3):032402, 2016.Google Scholar
Shlizerman, Eli, Ding, Edwin, Williams, Matthew O., and Kutz, J. Nathan. The proper orthogonal decomposition for dimensionality reduction in mode-locked lasers and optical systems. International Journal of Optics, 2012, 2011.Google Scholar
Simoncini, Valeria. A new iterative method for solving large-scale Lyapunov matrix equations. SIAM Journal on Scientific Computing, 29(3):12681288, 2007.Google Scholar
Sirovich, L.. Turbulence and the dynamics of coherent structures, parts I-III. Q. Appl. Math., XLV(3):561590, 1987.Google Scholar
Sirovich, L. and Kirby, M.. A low-dimensional procedure for the characterization of human faces. Journal of the Optical Society of America A, 4(3):519524, 1987.Google Scholar
Skogestad, S. and Postlethwaite, I.. Multivariable Feedback Control. Wiley, Chichester, 1996.Google Scholar
Smolensky, Paul. Information processing in dynamical systems: Foundations of harmony theory. Technical report, Colorado Univ at Boulder Dept of Computer Science, 1986.Google Scholar
Solari, Giovanni, Carassale, Luigi, and Tubino, Federica. Proper orthogonal decomposition in wind engineering. part 1: A state-of-the-art and some prospects. Wind and Structures, 10(2):153176, 2007.Google Scholar
Song, G., Alizard, F., Robinet, J.-C., and Gloerfelt, X.. Global and Koopman modes analysis of sound generation in mixing layers. Physics of Fluids (1994-present), 25(12):124101, 2013.Google Scholar
Sorensen, Danny C. and Zhou, Yunkai. Direct methods for matrix Sylvester and Lyapunov equations. Journal of Applied Mathematics, 2003(6):277303, 2003.Google Scholar
Sorokina, Mariia, Sygletos, Stylianos, and Turitsyn, Sergei. Sparse identification for nonlinear optical communication systems: SINO method. Optics Express, 24(26):3043330443, 2016.Google Scholar
Spall, James C.. The Kantorovich inequality for error analysis of the Kalman filter with unknown noise distributions. Automatica, 31(10):15131517, 1995.Google Scholar
Srivastava, Nitish, Hinton, Geoffrey, Krizhevsky, Alex, Sutskever, Ilya, and Salakhutdinov, Ruslan. Dropout: A simple way to prevent neural networks from overfitting. The Journal of Machine Learning Research, 15(1):19291958, 2014.Google Scholar
Steeb, W-H. and Wilhelm, F.. Non-linear autonomous systems of differential equations and Carleman linearization procedure. Journal of Mathematical Analysis and Applications, 77(2):601611, 1980.Google Scholar
Stengel, Robert F.. Optimal Control and Estimation. Courier Corporation, 2012.Google Scholar
Stewart, Gilbert W.. On the early history of the singular value decomposition. SIAM Review, 35(4):551566, 1993.Google Scholar
Sugihara, George, May, Robert, Ye, Hao, Hsieh, Chih-hao, Deyle, Ethan, Fogarty, Michael, and Munch, Stephan. Detecting causality in complex ecosystems. Science, 338(6106):496500, 2012.Google Scholar
Surana, A.. Koopman operator based observer synthesis for control-affine nonlinear systems. In 55th IEEE Conference on Decision and Control (CDC, pages 6492–6499, 2016.Google Scholar
Surana, Amit and Banaszuk, Andrzej. Linear observer synthesis for nonlinear systems using Koopman operator framework. IFAC-PapersOnLine, 49(18):716723, 2016.Google Scholar
Susuki, Yoshihiko and Mezić, Igor. A prony approximation of Koopman mode decomposition. In Decision and Control (CDC), 2015 IEEE 54th Annual Conference on, pages 70227027. IEEE, 2015.Google Scholar
Sutton, Richard S. and Barto, Andrew G.. Reinforcement Learning: An Introduction, volume 1. MIT press Cambridge, 1998.Google Scholar
Svenkeson, Adam, Glaz, Bryan, Stanton, Samuel, and West, Bruce J.. Spectral decomposition of nonlinear systems with memory. Phys. Rev. E, 93:022211, Feb 2016.Google Scholar
Svoronos, S. A., Papageorgiou, D., and Tsiligiannis, C.. Discretization of nonlinear control systems via the Carleman linearization. Chemical Engineering Science, 49(19):32633267, 1994.Google Scholar
Swets, D. L. and Weng, J.. Using discriminant eigenfeatures for image retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 18(8):831836, 1996.Google Scholar
Taira, K. and Colonius, T.. The immersed boundary method: a projection approach. Journal of Computational Physics, 225(2):21182137, 2007.Google Scholar
Takeishi, Naoya, Kawahara, Yoshinobu, Tabei, Yasuo, and Yairi, Takehisa. Bayesian dynamic mode decomposition. Twenty-Sixth International Joint Conference on Artificial Intelligence, 2017.Google Scholar
Takeishi, Naoya, Kawahara, Yoshinobu, and Yairi, Takehisa. Learning Koopman invariant subspaces for dynamic mode decomposition. In Advances in Neural Information Processing Systems, pages 1130–1140, 2017.Google Scholar
Takeishi, Naoya, Kawahara, Yoshinobu, and Yairi, Takehisa. Subspace dynamic mode decomposition for stochastic Koopman analysis. Physical Review, E 96.3:033310, 2017.Google Scholar
Takens, F.. Detecting strange attractors in turbulence. Lecture Notes in Mathematics, 898:366– 381, 1981.Google Scholar
Tang, Z. Q. and Jiang, N.. Dynamic mode decomposition of hairpin vortices generated by a hemisphere protuberance. Science China Physics, Mechanics and Astronomy, 55(1):118124, 2012.Google Scholar
Roy Taylor, J. Nathan Kutz, Kyle Morgan, , and Nelson, Brian. Dynamic mode decomposition for plasma diagnostics and validation. Review of Scientific Instruments, 89 (5):053501, 2018.Google Scholar
Tibshirani, Robert. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological), pages 267–288, 1996.Google Scholar
Ting, Zhou and Hui, Jiang. Eeg signal processing based on proper orthogonal decomposition. In Audio, Language and Image Processing (ICALIP), 2012 International Conference on, pages 636640. IEEE, 2012.Google Scholar
Tirunagari, Santosh, Poh, Norman, Wells, Kevin, Bober, Miroslaw, Gorden, Isky, and Windridge, David. Movement correction in DCE-MRI through windowed and reconstruction dynamic mode decomposition. Machine Vision and Applications, 28(3-4):393407, 2017.Google Scholar
Torrence, Christopher and Compo, Gilbert P.. A practical guide to wavelet analysis. Bulletin of the American Meteorological Society, 79(1):6178, 1998.Google Scholar
Tran, Giang and Ward, Rachel. Exact recovery of chaotic systems from highly corrupted data. Multiscale Modeling & Simulation, 15 (3):11081129, 2017.Google Scholar
Trefethen, Lloyd N.. Spectral methods in MATLAB. SIAM, 2000.Google Scholar
Trefethen, Lloyd N. and Bau III, David. Numerical linear algebra, volume 50. SIAM, 1997.Google Scholar
Tropp, J. A.. Greed is good: Algorithmic results for sparse approximation. IEEE Transactions on Information Theory, 50(10):22312242, 2004.Google Scholar
Tropp, J. A.. Recovery of short, complex linear combinations via l1 minimization. IEEE Transactions on Information Theory, 51(4):15681570, 2005.Google Scholar
Tropp, J. A.. Algorithms for simultaneous sparse approximation. part ii: Convex relaxation. Signal Processing, 86(3):589602, 2006.Google Scholar
Tropp, J. A.. Just relax: Convex programming methods for identifying sparse signals in noise. IEEE Transactions on Information Theory, 52(3):10301051, 2006.Google Scholar
Tropp, J. A. and Gilbert, A. C.. Signal recovery from random measurements via orthogonal matching pursuit. IEEE Transactions on Information Theory, 53(12):46554666, 2007.Google Scholar
Tropp, J. A., Gilbert, A. C., and Strauss, M. J.. Algorithms for simultaneous sparse approximation. part i: Greedy pursuit. Signal Processing, 86(3):572588, 2006.Google Scholar
Tropp, J. A., Laska, J. N., Duarte, M. F., Romberg, J. K., and Baraniuk, R. G.. Beyond Nyquist: Efficient sampling of sparse bandlimited signals. IEEE Transactions on Information Theory, 56(1):520544, 2010.Google Scholar
Tropp, Joel A., Yurtsever, Alp, Udell, Madeleine, and Cevher, Volkan. Randomized single-view algorithms for low-rank matrix approximation. arXiv preprint arXiv:1609.00048, 2016.Google Scholar
Tu, J. H. and Rowley, C. W.. An improved algorithm for balanced POD through an analytic treatment of impulse response tails. J. Comp. Phys., 231(16):53175333, 2012.Google Scholar
Tu, J. H., Rowley, C. W., Aram, E., and Mittal, R.. Koopman spectral analysis of separated flow over a finite-thickness flat plate with elliptical leading edge. AIAA Paper 2011, 2864, 2011.Google Scholar
Tu, J. H., Rowley, C. W., Luchtenburg, D. M., Brunton, S. L., and Kutz, J. N.. On dynamic mode decomposition: theory and applications. J. Comp. Dyn., 1(2):391421, 2014.Google Scholar
Tu, Jonathan H., Rowley, Clarence W., Kutz, J. Nathan, and Shang, Jessica K.. Spectral analysis of fluid flows using sub-Nyquist-rate PIV data. Experiments in Fluids, 55(9):113, 2014.Google Scholar
Turk, M. and Pentland, A.. Eigenfaces for recognition. Journal of Cognitive Neuroscience, 3(1):7186, 1991.Google Scholar
Merwe, Rudolph Van Der. Sigma-point Kalman Filters for Probabilistic Inference in Dynamic State-Space Models. 2004.Google Scholar
Loan, Charles Van. Computational Frameworks for the Fast Fourier Transform. SIAM, 1992.Google Scholar
Venturi, Daniele and Karniadakis, George Em. Gappy data and reconstruction procedures for flow past a cylinder. Journal of Fluid Mechanics, 519:315336, 2004.Google Scholar
Vincent, Pascal, Larochelle, Hugo, Bengio, Yoshua, and Manzagol, Pierre-Antoine. Extracting and composing robust features with denoising autoencoders. In Proceedings of the 25th international conference on Machine learning, pages 10961103. ACM, 2008.Google Scholar
Volkwein, Stefan. Model reduction using proper orthogonal decomposition. Lecture Notes, Institute of Mathematics and Scientific Computing, University of Graz. see http://www.uni-graz.at/imawww/volkwein/POD.pdf, 1025, 2011.Google Scholar
Volkwein, Stefan. Proper orthogonal decomposition: Theory and reduced-order modelling. Lecture Notes, University of Konstanz, 4:4, 2013.Google Scholar
Voronin, Sergey and Martinsson, Per-Gunnar. RSVDPACK: Subroutines for computing partial singular value decompositions via randomized sampling on single core, multi core, and GPU architectures. arXiv preprint arXiv:1502.05366, 2015.Google Scholar
Wang, Avery et al. An industrial strength audio search algorithm. In Ismir, volume 2003, pages 713. Washington, DC, 2003.Google Scholar
Wang, H. H., Krstić, M., and Bastin, G.. Optimizing bioreactors by extremum seeking. Adaptive Control and Signal Processing, 13(8):651669, 1999.Google Scholar
Wang, H. H., Yeung, S., and Krstić, M.. Experimental application of extremum seeking on an axial-flow compressor. IEEE Transactions on Control Systems Technology, 8(2):300309, 2000.Google Scholar
Wang, W. X., Yang, R., Lai, Y. C., Kovanis, V., and Grebogi, C.. Predicting catastrophes in nonlinear dynamical systems by compressive sensing. Physical Review Letters, 106:154101– 1–154101–4, 2011.Google Scholar
Zhu, Wang, Akhtar, Imran, Borggaard, Jeff, and Iliescu, Traian. Proper orthogonal decomposition closure models for turbulent flows: a numerical comparison. Computer Methods in Applied Mechanics and Engineering, 237:1026, 2012.Google Scholar
Wehmeyer, Christoph and Noé, Frank. Time-lagged autoencoders: Deep learning of slow collective variables for molecular kinetics. The Journal of Chemical Physics, 148(24):241703, 2018.Google Scholar
Welch, Greg and Bishop, Gary. An introduction to the Kalman filter, 1995.Google Scholar
Whitle, Peter. Hypothesis Testing in Time Series Analysis, volume 4. Almqvist & Wiksells, 1951.Google Scholar
Wiederhold, O., King, R., Noack, B. R., Neuhaus, L., Neise, L., an Enghard, W., and Swoboda, M.. Extensions of extremum-seeking control to improve the aerodynamic performance of axial turbomachines. In 39th AIAA Fluid Dynamics Conference, pages 1–19, San Antonio, TX, USA, 2009. AIAA-Paper 092407.Google Scholar
Willcox, K. and Peraire, J.. Balanced model reduction via the proper orthogonal decomposition. AIAA Journal, 40(11):23232330, 2002.Google Scholar
Willcox, Karen. Unsteady flow sensing and estimation via the gappy proper orthogonal decomposition. Computers & Fluids, 35(2):208226, 2006.Google Scholar
Williams, Matthew O., Kevrekidis, Ioannis G., and Rowley, Clarence W.. A data-driven approximation of the Koopman operator: extending dynamic mode decomposition. Journal of Nonlinear Science, 6:13071346, 2015.Google Scholar
Williams, Matthew O., Rowley, Clarence W., and Kevrekidis, Ioannis G.. A kernel approach to data-driven Koopman spectral analysis. Journal of Computational Dynamics, 2(2):247265, 2015.Google Scholar
Witten, Daniela M. and Tibshirani, Robert. Penalized classification using Fisher’s linear discriminant. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 73(5):753772, 2011.Google Scholar
Woolfe, Franco, Liberty, Edo, Rokhlin, Vladimir, and Tygert, Mark. A fast randomized algorithm for the approximation of matrices. Journal of Applied and Computational Harmonic Analysis, 25:335366, 2008.Google Scholar
Wright, J., Yang, A., Ganesh, A., Sastry, S., and Ma, Y.. Robust face recognition via sparse representation. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 31(2):210227, 2009.Google Scholar
Jeff Wu, C. F.. On the convergence properties of the EM algorithm. The Annals of Statistics, pages 95–103, 1983.Google Scholar
Wu, Xindong, Kumar, Vipin, Quinlan, J. Ross, Ghosh, Joydeep, Yang, Qiang, Motoda, Hiroshi, McLachlan, Geoffrey J., Ng, Angus, Liu, Bing, Philip, S. Yu et al. Top 10 algorithms in data mining. Knowledge and Information Systems, 14(1):137, 2008.Google Scholar
Ye, Hao, Beamish, Richard J., Glaser, Sarah M., Grant, Sue C. H., Hsieh, Chih-hao, Richards, Laura J., Schnute, Jon T., and Sugihara, George. Equation-free mechanistic ecosystem forecasting using empirical dynamic modeling. Proceedings of the National Academy of Sciences, 112(13):E1569E1576, 2015.Google Scholar
Yeung, Enoch, Kundu, Soumya, and Hodas, Nathan. Learning deep neural network representations for Koopman operators of nonlinear dynamical systems. arXiv preprint arXiv:1708.06850, 2017.Google Scholar
Yildirim, B., Chryssostomidis, C., and Karniadakis, G. E.. Efficient sensor placement for ocean measurements using low-dimensional concepts. Ocean Modelling, 27(3):160173, 2009.Google Scholar
Yuan, Xiaoming and Yang, Junfeng. Sparse and low-rank matrix decomposition via alternating direction methods. preprint, 12, 2009.Google Scholar
Zeiler, M. D., Krishnan, D., Taylor, G. W., and Fergus, R.. Deconvolutional networks. In IEEE Computer Vision and Pattern Recognition (CVPR), pages 2528–2535, 2010.Google Scholar
Zhang, C. and nez, R. Ordó. Numerical optimization-based extremum seeking control with application to ABS design. IEEE Transactions on Automatic Control, 52(3):454467, 2007.Google Scholar
Zhang, Hao, Rowley, Clarence W., Deem, Eric A., and Cattafesta, Louis N.. Online dynamic mode decomposition for time-varying systems. arXiv preprint arXiv:1707.02876, 2017.Google Scholar
Zhang, T., Kahn, G., Levine, S., and Abbeel, P.. Learning deep control policies for autonomous aerial vehicles with MPC-guided policy search. In IEEE Robotics and Automation (ICRA), pages 528–535, 2016.Google Scholar
Zhang, Weiwei, Wang, Bobin, Ye, Zhengyin, and Quan, Jingge. Efficient method for limit cycle flutter analysis based on nonlinear aerodynamic reduced-order models. AIAA Journal, 50(5):10191028, 2012.Google Scholar
Zlobec, Sanjo. An explicit form of the moore-penrose inverse of an arbitrary complex matrix. SIAM Review, 12(1):132134, 1970.Google Scholar
Zou, Hui and Hastie, Trevor. Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67(2):301320, 2005.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Bibliography
  • Steven L. Brunton, University of Washington, J. Nathan Kutz, University of Washington
  • Book: Data-Driven Science and Engineering
  • Online publication: 15 February 2019
  • Chapter DOI: https://doi.org/10.1017/9781108380690.015
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Bibliography
  • Steven L. Brunton, University of Washington, J. Nathan Kutz, University of Washington
  • Book: Data-Driven Science and Engineering
  • Online publication: 15 February 2019
  • Chapter DOI: https://doi.org/10.1017/9781108380690.015
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Bibliography
  • Steven L. Brunton, University of Washington, J. Nathan Kutz, University of Washington
  • Book: Data-Driven Science and Engineering
  • Online publication: 15 February 2019
  • Chapter DOI: https://doi.org/10.1017/9781108380690.015
Available formats
×