Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T12:10:51.129Z Has data issue: false hasContentIssue false

8 - Model-Based Deep-Learning Algorithms for Inverse Problems

from Part II - Deep-Learning Architecture for Various Imaging Architectures

Published online by Cambridge University Press:  15 September 2023

Jong Chul Ye
Affiliation:
Korea Advanced Institute of Science and Technology (KAIST)
Yonina C. Eldar
Affiliation:
Weizmann Institute of Science, Israel
Michael Unser
Affiliation:
École Polytechnique Fédérale de Lausanne
Get access

Summary

This chapter provides a summary of some popular model-based deep learning methods and their extensions. Section 8.1 briefly describes classical model-based methods and their benefit as well as limitations. Section 8.2 describes how deep learning can help in overcoming some limitations of classical model-based methods. Section 8.3 discusses how to incorporate a pre-trained deep network as a regularizer using the plug-and-play approach. Section 8.4 describes end-to-end training using a model-based deep learning framework. This section also discusses some benefits and limitations of end-to-end training. Section 8.5 and 8.6 describe unsupervised model-based deep learning approaches when a clean training dataset is not available. Section 8.6 considers model mismatch issues as well as the joint design of acquisition and reconstruction frameworks.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×