Published online by Cambridge University Press: 18 January 2024
This chapter discusses the truncation criteria in the RG treatment of a non-Hermitian matrix, starting with a modified definition of the reduced density matrix using the leading left and right eigenvectors. As the reduced density matrix so defined is not Hermitian, there is no theorem to protect or guarantee that its eigenvalues are semi-positive definite. This non-Hermitian problem causes trouble in the determination of an optimized truncation scheme. Three truncation schemes for determining the RG transformation matrices are introduced, relying on the canonical diagonalization of the reduced density matrix, biorthonormalization, and lower-rank approximation of the environment density matrix, respectively. The canonical diagonalization scheme is optimal if the reduced density matrix is semi-positive definite. The scheme of biorthonormalization may not be optimal, but it is mathematically more stable.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.