Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-28T13:10:02.206Z Has data issue: false hasContentIssue false

19 - Cementochronology to the Rescue: Osteobiography of a Middle Woodland Woman with a Combined Skeletal Dysplasia

from Part III - Applications

Published online by Cambridge University Press:  20 January 2022

Stephan Naji
Affiliation:
New York University
William Rendu
Affiliation:
University of Bordeaux (CNRS)
Lionel Gourichon
Affiliation:
Université de Nice, Sophia Antipolis
Get access

Summary

Accurate age-at-death estimates are essential for inferring health, identity, diversity, and demography within archaeological skeletal samples. Unfortunately, the macroscopic skeletal structures may be compromised by dysplastic, endocrine, and circulatory disorders. Cementochronology provides a reliable alternative approach for evaluating acellular cementum banding. Using cementochronology, we present an age-at-death estimate for a pre-Columbian, adult female with a combined skeletal dysplasia, achondroplasia and Leri-Weill dyschondrosteosis. Cementochronology has re-defined the age-at-death estimate between 30 to 34 years. These results not only assist in developing a more accurate age-at-death estimation and biological profile, but they also facilitate creating nuanced interpretations for a physically challenged, pregnant female in her Middle Woodland social context. Further, this analysis emphasizes the utility of cementochronology in estimating age-at-death of skeletal individuals with pathological conditions that compromise commonly used macroscopic methods and encourages researchers to consider this technique in paleodemography, paleoepidemiology, and forensic anthropology.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Afsharpaiman, S., Saburi, A., & Waters, K. A. (2013). Respiratory difficulties and breathing disorders in achondroplasia. Paediatric Respiratory Reviews 14(4), 250–5.Google Scholar
Allanson, J. E., & Hall, J. G. (1986). Obstetric and gynecologic problems in women with chondrodystrophies. Obstetrics and Gynecology 67(1), 74–8.Google Scholar
Arriaza, B., Allison, M., & Gerszten, E. (1988). Maternal mortality in pre-Columbian Indians of Arica, Chile. American Journal of Physical Anthropology 77(1), 3541.Google Scholar
Berdon, W. E., Grossman, H., & Baker, D. H. (1965). Dyschondrostéose (Léri-Weill Syndrome): Congenital short forearms, Madelung-type wrist deformities, and moderate dwarfism. Radiology 85(4), 677–80.CrossRefGoogle ScholarPubMed
Bertrand, B., Schug, G. R., Polet, C., Naji, S., & Colard, T. (2016). Age-at-death estimation of pathological individuals: A complementary approach using teeth cementum annulations. International Journal of Paleopathology 15, 120–7.Google Scholar
Blakely, R. L. (1971). Comparison of the mortality profiles of Archaic, Middle Woodland, and Middle Mississippian skeletal populations. American Journal of Physical Anthropology 34(1), 4353.Google Scholar
Bland, J. D., & Emery, J. L. (1982). Unexpected death of children with achondroplasia after the perinatal period. Developmental Medicine & Child Neurology 24(5), 489–92.Google Scholar
Bocquet-Appel, J.-P., & Masset, C. (1982). Farewell to paleodemography. Journal of Human Evolution 11(4), 321–33.Google Scholar
Boldsen, J. L., Milner, G. R., Konigsberg, L. W., & Wood, J. W. (2002). Transition analysis: A new method for estimating age from skeletons. Cambridge Studies in Biological and Evolutionary Anthropology, 73106.Google Scholar
Boutin, A. T. (2008). Embodying life and death: Osteobiographical narratives from Alalakh. Ph.D. thesis, University of Pennsylvania, United States.Google Scholar
Burton Jones, N. (2016). Demography and Evolutionary Ecology of the Hadza Hunter-Gatherers. Cambridge: Cambridge University Press.Google Scholar
Cesana, D., Benedictow, O. J., & Bianucci, R. (2017). The origin and early spread of the Black Death in Italy: First evidence of plague victims from 14th-century Liguria (northern Italy). Anthropological Science 125(1), 1524.Google Scholar
Charles, D. K., Leigh, S. R., & Buikstra, J. E. (1988). The Archaic and Woodland Cemeteries at the Elizabeth Site in the Lower Illinois Valley, Kampsville, IL: Center for American Archeology.Google Scholar
Chetty, S. P., Shaffer, B. L., & Norton, M. E. (2011). Management of pregnancy in women with genetic disorders, part 1: Disorders of the connective tissue, muscle, vascular, and skeletal systems. Obstetrical & Gynecological Survey 66(11), 699709.Google Scholar
Cohen, M. M. (1998). Achondroplasia, hypochondroplasia and thanatophoric dysplasia: Clinically related skeletal dysplasias that are also related at the molecular level. International Journal of Oral and Maxillofacial Surgery 27(6), 451–5.CrossRefGoogle ScholarPubMed
Colard, T., Bertrand, B., Naji, S., Delannoy, Y., & Bécart, A. (2015). Toward the adoption of cementochronology in forensic context. International Journal of Legal Medicine 129, 18.Google Scholar
Cormier, A. A., & Buikstra, J. E. (2016). A case study of skeletal dysplasia inheritance and maternal/fetal health from a Middle Woodland context at the Elizabeth Site (11PK512), Illinois. 85th Annual Meeting of the American Association of Physical Anthropologists, San Francisco, CA.Google Scholar
Cormier, A. A., & Buikstra, J. E. (2017). Impairment, disability, and identity in the Middle Woodland Period: Life at the juncture of achondroplasia, pregnancy, and infection. In Byrnes, J. & Muller, J. (eds.), Bioarchaeology of Impairment and Disability: Theoretical, Ethnohistorical, and Methodological Perspectives. Cham, Switzerland: Springer International Publishing, 225–48.Google Scholar
Cormier, A. A., Buikstra, J. E., & Osterholtz, A. (2017). Overlapping genetic pathways in the skeletal dysplasias of a Middle Woodland individual: A case study. International Journal of Paleopathology 18, 98107.Google Scholar
Cormier-Daire, V., Belin, V., Cusin, V., … Munnich, A. (1999). SHOX gene mutations and deletions in dyschondrosteosis or Leri-Weill syndrome. Acta Pædiatrica 88, 5559.CrossRefGoogle ScholarPubMed
Cruz, C. B., & Codinha, S. (2010). Death of mother and child due to dystocia in 19th century Portugal. International Journal of Osteoarchaeology 20(4), 491–6.CrossRefGoogle Scholar
DeWitte, S. N., & Stojanowski, C. M. (2015). The osteological paradox 20 years later: Past perspectives, future directions. Journal of Archaeological Research 23(4), 397450.Google Scholar
Filer, J. (1995). Disease. Egyptian Bookshelf. London: British Museum.Google Scholar
Finch, C. E. (2007). The Biology of Human Longevity: Inflammation, Nutrition, and Aging in the Evolution of Lifespans. Cambridge, MA: Elsevier.Google Scholar
Finkenstaedt, E. (1984). Age at first pregnancy among females at the Indian Knoll Oh-2 Site. Transactions of the Kentucky Academy of Science 45, 51–4.Google Scholar
Ghumman, S., Goel, N., Rajaram, S., Singh, K. C., Kansal, B., & Dewan, P. (2005). Pregnancy in an achondroplastic dwarf: A case report. Journal of the Indian Medical Association 103(10), 536–8.Google Scholar
Haavikko, K. (1970). The formation and the alveolar and clinical eruption of the permanent teeth. An orthopantographic study. Proceedings of the Finnish Dental Society 66, 101–70.Google Scholar
Halcrow, S. E., & Tayles, N. (2008). The bioarchaeological investigation of childhood and social age: Problems and prospects. Journal of Archaeological Method and Theory 15(2), 190215.CrossRefGoogle Scholar
Hamosh, A. (2013). OMIM Entry – # 127300 – Leri-Weill Dyschondrosteosis; LWD. www.omim.org/entry/127300 (January 14, 2015).Google Scholar
Hecht, J. T., Francomano, C. A., Horton, W. A., & Annegers, J. F. (1987). Mortality in achondroplasia. American Journal of Human Genetics 41(3), 454.Google ScholarPubMed
Hecht, J. T., Horton, W. A., Reid, C. S., Pyeritz, R. E., & Chakraborty, R. (1989). Growth of the foramen magnum in achondroplasia. American Journal of Medical Genetics 32(4), 528–35.CrossRefGoogle ScholarPubMed
Henderson, J. E., Naski, M. C., Aarts, M. M., … Ornitz, D. M. (2000). Expression of FGFR3 with the G380R: Achondroplasia mutation inhibits proliferation and maturation of CFK2 chondrocytic cells. Journal of Bone and Mineral Research 15(1), 155–65.CrossRefGoogle ScholarPubMed
Hillson, S. (2005). Teeth. Cambridge: Cambridge University Press.Google Scholar
Hoppa, R., & Saunders, S. (1998). The MAD legacy: How meaningful is mean age-at-death in skeletal samples. Human Evolution 13(1), 114.Google Scholar
Howell, N. (2017). Demography of the Dobe !Kung. London: Routledge.Google Scholar
Hunter, A. G., Bankier, A., Rogers, J. G., Sillence, D., & Scott, C. I. (1998). Medical complications of achondroplasia: A multicentre patient review. Journal of Medical Genetics 35(9), 705–12.Google Scholar
Jelínek, J. (1992). Two early neolithic female burials with foetal remains. Anthropologie (1962–) 30(2), 165–8.Google Scholar
Keiper Jr, G. L., Koch, B., & Crone, K. R. (1999). Achondroplasia and cervicomedullary compression: Prospective evaluation and surgical treatment. Pediatric Neurosurgery 31(2), 7883.Google Scholar
King, J., Buikstra, J., & Charles, D. (2011). Time and archaeological traditions in the Lower Illinois Valley. American Antiquity 76(3), 500–28.Google Scholar
Knudson, K. J., & Stojanowski, C. M. (2008). New directions in bioarchaeology: Recent contributions to the study of human social identities. Journal of Archaeological Research 16(4), 397432.Google Scholar
Knüsel, C. J., Batt, C. M., Cook, G., … Wilson, A. S. (2010). The identity of the St Bees Lady, Cumbria: An osteobiographical approach. Medieval Archaeology 54(1), 271311.Google Scholar
Lattanzi, D. R., & Harger, J. H. (1982). Achondroplasia and pregnancy. The Journal of Reproductive Medicine 27(6), 363–6.Google Scholar
Leri, A., & Weill, J. (1929). Une affection congénitale et symétrique du développement osseux: la dyschondrostéose. Bulletins et Mémoires de la Société Médicale des Hôpitaux de Paris, 1491–4.Google Scholar
Lieverse, A. R., Bazaliiskii, V. I., & Weber, A. W. (2015). Death by twins: A remarkable case of dystocic childbirth in Early Neolithic Siberia. Antiquity 89(343), 2338.CrossRefGoogle Scholar
Liversidge, H. M., Herdeg, B., & Rösing, F. W. (1998). Dental age estimation of non-adults. A review of methods and principles. In Priv-Doz, K. W. A, Rösing, F. W., & Teschler-Nicola, M (eds.), Dental Anthropology. Vienna: Springer, 419–42.Google Scholar
Lovejoy, C. O. (1985). Dental wear in the Libben population: Its functional pattern and role in the determination of adult skeletal age at death. American Journal of Physical Anthropology 68(1), 4756.CrossRefGoogle ScholarPubMed
Lucy, S. (2005). The archaeology of age. In García, M. D.-A., Lucy, S., Babic´, S., & Edwards, D. (eds.), The Archaeology of Identity: Approaches to Gender, Age, Status, Ethnicity and Religion. London: Routledge, 4366.Google Scholar
Mackie, E. J., Ahmed, Y. A., Tatarczuch, L., Chen, K.-S., & Mirams, M. (2008). Endochondral ossification: How cartilage is converted into bone in the developing skeleton. The International Journal of Biochemistry & Cell Biology 40(1), 4662.CrossRefGoogle ScholarPubMed
Maharaj, D. (2010). Assessing cephalopelvic disproportion: Back to the basics. Obstetrical & Gynecological Survey 65(6), 387–95.CrossRefGoogle Scholar
Malgosa, A., Alesan, A., Safont, S., Ballbé, M., & Ayala, M. M. (2004). A dystocic childbirth in the Spanish Bronze Age. International Journal of Osteoarchaeology 14(2), 98103.Google Scholar
Mayes, A. T., & Barber, S. B. (2008). Osteobiography of a high-status burial from the lower Río Verde Valley of Oaxaca, Mexico. International Journal of Osteoarchaeology 18(6), 573–88.Google Scholar
Meskell, L. (2001). Archaeologies of identity. In Hodder, I. (ed.), Archaeological Theory Today, Cambridge: Polity, 187213.Google Scholar
Miller, H. A. (1937). Dental abnormalities in a patient with achondroplasia. International Journal of Orthodontia and Oral Surgery 23(3), 296–9.CrossRefGoogle Scholar
Milner, G. R., & Boldsen, J. L. (2012). Transition analysis: A validation study with known-age modern American skeletons. American Journal of Physical Anthropology 148(1), 98110.Google Scholar
Munns, C., & Glass, I. (2008). SHOX-related haploinsufficiency disorders. In Pagon, R. A., Adam, M. P., Ardinger, H. H., … Stephens, K. (eds.), GeneReviews(®) [Internet], Seattle: University of Washington.Google Scholar
Naji, S., Colard, T., Blondiaux, J., Bertrand, B., d’Incau, E., & Bocquet-Appel, J.-P. (2016). Cementochronology, to cut or not to cut? International Journal of Paleopathology 15, 113–19.Google Scholar
Nava, A., Coppa, A., Coppola, D., … Bondioli, L. (2017). Virtual histological assessment of the prenatal life history and age at death of the Upper Paleolithic fetus from Ostuni (Italy). Scientific Reports 7(1), 9427.Google Scholar
Oberklaid, F., Danks, D. M., Jensen, F., Stace, L., & Rosshandler, S. (1979). Achondroplasia and hypochondroplasia. Comments on frequency, mutation rate, and radiological features in skull and spine. Journal of Medical Genetics 16(2), 140–6.CrossRefGoogle ScholarPubMed
Onodera, K., Sakata, H., Niikuni, N., Nonaka, T., Kobayashi, K., & Nakazima, I. (2005). Survey of the present status of sleep-disordered breathing in children with achondroplasia: Part I. A questionnaire survey. International Journal of Pediatric Otorhinolaryngology 69(4), 457–61.Google Scholar
Owsley, D. W., & Bradtmiller, B. (1983). Mortality of pregnant females in Arikara villages: Osteological evidence. American Journal of Physical Anthropology 61(3), 331–6.Google Scholar
Pàlfi, G., Dutour, O., Borreani, M., Brun, J.-P., & Berato, J. (1992). Pre-Columbian congenital syphilis from the late antiquity in France. International Journal of Osteoarchaeology 2(3), 245–61.Google Scholar
Pauli, R. M., Horton, V. K., Glinski, L. P., & Reiser, C. A. (1995). Prospective assessment of risks for cervicomedullary-junction compression in infants with achondroplasia. American Journal of Human Genetics 56(3), 732–44.Google Scholar
Pauli, R. M., Scott, C. I., Wassman, E. R., … Lebovitz, R. (1984). Apnea and sudden unexpected death in infants with achondroplasia. The Journal of Pediatrics 104(3), 342–8.Google Scholar
Rascón Pérez, J., Cambra Moo, Ó., & González Martín, A. (2007). A multidisciplinary approach reveals an extraordinary double inhumation in the osteoarchaeological record. Journal of Taphonomy 5(2), 91101.Google Scholar
Renschler, E. S. (2007). An osteobiography of an African diasporic skeletal sample: Integrating skeletal and historical information. Ph.D. thesis, University of Pennsylvania, United States.Google Scholar
Robb, J. (2002). Time and biography. In Hamilakis, Y., Pluciennik, M., & Tarlow, S. (eds.), Thinking through the Body. New York: Springer, 153–71.Google Scholar
Roopnarinesingh, S. S., Naraynsingh, V., & Woo, J. (1983). Achondroplasia and pregnancy. West Indian Medical Journal 32(2), 112–13.Google ScholarPubMed
Ross, J. L., Bellus, G., Scott, C. I., Abboudi, J., Grigelioniene, G., & Zinn, A. R. (2003). Mesomelic and rhizomelic short stature: The phenotype of combined Leri-Weill dyschondrosteosis and achondroplasia or hypochondroplasia. American Journal of Medical Genetics Part A 116A(1), 6165.Google Scholar
Saul, F. P., & Saul, J. M. (1989). Osteobiography: A Maya example. In Iscan, M. Y. & Kennedy, K. A. R. (eds.), Reconstruction of Life from the Skeleton. New York: Liss, 287302.Google Scholar
Sayer, D., & Dickinson, S. D. (2013). Reconsidering obstetric death and female fertility in Anglo-Saxon England. World Archaeology 45(2), 285–97.Google Scholar
Sgheiza, V., Cox, M., & Hart, K. (2016). A comparison of two Late Woodland features: Helton 20-36 and Carter 2-15. Presented at the 81st annual meeting of the Society for American Archaeology. Orlando, FL.Google Scholar
Sharma, R., & Kumar, A. (2014). Achondroplasia and pregnancy. Journal of Evolution of Medical and Dental Sciences 3(16), 4237–41.CrossRefGoogle Scholar
Sherry, J. S., & Aponte, S. (2015, August 26). Achondroplasia: Oral health concerns associated with genetic disorder commonly referred to as dwarfism. Registered Dental Hygienist. www.rdhmag.com/career-profession/students/article/16405429/achondroplasia-oral-health-concerns-associated-with-genetic-disorder-commonly-referred-to-as-dwarfismGoogle Scholar
Shimony, N., Ben-Sira, L., Sivan, Y., Constantini, S., & Roth, J. (2015). Surgical treatment for cervicomedullary compression among infants with achondroplasia. Child’s Nervous System 31(5), 743–50.Google Scholar
Simmons, K., Hashmi, S. S., Scheuerle, A., Canfield, M., & Hecht, J. T. (2014). Mortality in babies with achondroplasia: Revisited. Birth Defects Research Part A: Clinical and Molecular Teratology 100(4), 247–9.Google Scholar
Sisk, E. A., Heatley, D. G., Borowski, B. J., Leverson, G. E., & Pauli, R. M. (1999). Obstructive sleep apnea in children with achondroplasia: Surgical and anesthetic considerations. Otolaryngology–Head and Neck Surgery 120(2), 248–54.Google Scholar
Sofaer, J. R. (2006). The Body as Material Culture: A Theoretical Osteoarchaeology. Cambridge: Cambridge University Press.Google Scholar
Stodder, A. L. W., & Palkovich, A. M. (2012). Bioarchaeology of Individuals. Gainsville, FL: University Press of Florida.Google Scholar
Stokes, D. C., Phillips, J. A., Leonard, C. O., … Brown, D. L. (1983). Respiratory complications of achondroplasia. The Journal of Pediatrics 102(4), 534–41.Google Scholar
Tague, R. G. (1994). Maternal mortality or prolonged growth: Age at death and pelvic size in three prehistoric Amerindian populations. American Journal of Physical Anthropology 95(1), 2740.Google Scholar
Tenconi, R., Khirani, S., Amaddeo, A., … Fauroux, B. (2017). Sleep-disordered breathing and its management in children with achondroplasia. American Journal of Medical Genetics Part A 173(4), 868–78.Google Scholar
Unger, S., Bonafé, L., & Gouze, E. (2017). Current care and investigational therapies in achondroplasia. Current Osteoporosis Reports 15(2), 5360.Google Scholar
Waller, D. K., Correa, A., Vo, T. M., … Hecht, J. T. (2008). The population-based prevalence of achondroplasia and thanatophoric dysplasia in selected regions of the US. American Journal of Medical Genetics Part A 146A(18), 2385–9.Google Scholar
Waters, K. A., Everett, F., Sillence, D. O., Fagan, E. R., & Sullivan, C. E. (1995). Treatment of obstructive sleep apnea in achondroplasia: Evaluation of sleep, breathing, and somatosensory-evoked potentials. American Journal of Medical Genetics 59(4), 460–6.CrossRefGoogle ScholarPubMed
Wedel, V. L. (2007). Determination of season at death using dental cementum increment analysis*†. Journal of Forensic Sciences 52(6), 1334–7.Google Scholar
Weiss, K. (1973). Demographic models for archaeology. Memoirs of the Society for American Archaeology. Washington, D.C.: Society for American Archaeology, 27.Google Scholar
White, C., Longstaffe, F., Pendergast, D., & Maxwell, J. (2009). Cultural embodiment and the enigmatic identity of the lovers from Lamani. In Knudson, K. J. & Stojanowski, C. M. (eds.), Bioarchaeology and Identity in the Americas. Gainesville, FL: University Press of Florida, 155–76.Google Scholar
White, K. K., Bompadre, V., Goldberg, M. J., … Savarirayan, R. (2016). Best practices in the evaluation and treatment of foramen magnum stenosis in achondroplasia during infancy. American Journal of Medical Genetics Part A 170(1), 4251.CrossRefGoogle Scholar
Willis, A., & Oxenham, M. F. (2013). A case of maternal and perinatal death in Neolithic Southern Vietnam, c. 2100–1050 BCE. International Journal of Osteoarchaeology 23(6), 676–84.Google Scholar
Wilson, J. J. (2014). Paradox and promise: Research on the role of recent advances in paleodemography and paleoepidemiology to the study of “health” in Precolumbian societies. American Journal of Physical Anthropology 155(2), 268–80.Google Scholar
Wittwer-Backofen, U., Gampe, J., & Vaupel, J. W. (2004). Tooth cementum annulation for age estimation: Results from a large known-age validation study. American Journal of Physical Anthropology 123(2), 119–29.CrossRefGoogle ScholarPubMed
Wood, J. W., Milner, G. R., Harpending, H. C., … et al. (1992). The osteological paradox: Problems of inferring prehistoric health from skeletal samples [and comments and reply]. Current Anthropology 33(4), 343–70.Google Scholar
Wright, L. E., & Yoder, C. J. (2003). Recent progress in bioarchaeology: Approaches to the osteological paradox. Journal of Archaeological Research 11(1), 4370.Google Scholar
Wynn, J., King, T. M., Gambello, M. J., Waller, D. K., & Hecht, J. T. (2007). Mortality in achondroplasia study: A 42-year follow-up. American Journal of Medical Genetics Part A 143(21), 2502–11.Google Scholar
Wynne-Davies, R., Walsh, W. K., & Gormley, J. (1981). Achondroplasia and hypochondroplasia. Clinical variation and spinal stenosis. The Journal of Bone and Joint Surgery 63B(4), 508–15.Google Scholar
Zvelebil, M., & Weber, A. W. (2013). Human bioarchaeology: Group identity and individual life histories – Introduction. Journal of Anthropological Archaeology 32(3), 275–9.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×