Book contents
- Frontmatter
- Contents
- List of Contributors
- Preface
- 1 How optical computers, architectures, and algorithms impact system design
- 2 Noise issues in optical linear algebra processor design
- 3 Effects of diffraction, scatter, and design on the performances of optical information processors
- 4 Comparison between holographic and guided wave interconnects for VLSI multiprocessor systems
- 5 High speed compact optical correlator design and implementation
- 6 Optical and mechanical issues in free-space digital optical logic systems
- Index
3 - Effects of diffraction, scatter, and design on the performances of optical information processors
Published online by Cambridge University Press: 20 October 2009
- Frontmatter
- Contents
- List of Contributors
- Preface
- 1 How optical computers, architectures, and algorithms impact system design
- 2 Noise issues in optical linear algebra processor design
- 3 Effects of diffraction, scatter, and design on the performances of optical information processors
- 4 Comparison between holographic and guided wave interconnects for VLSI multiprocessor systems
- 5 High speed compact optical correlator design and implementation
- 6 Optical and mechanical issues in free-space digital optical logic systems
- Index
Summary
Introduction
Optical processors hold tremendous potential for processing many information channels in parallel, each at very high bandwidth, and in small volumes with low power consumption (VanderLugt, 1992). Major classes of operations that optics can perform include integral transformations such as Fourier transforms and correlations, and matrix operations, e.g. vector–matrix multiplication (Lee, 1987). Many, but not all, of these are made possible by the remarkable property that a ‘Fourier transform lens’ generates, at the back focal plane, the two-dimensional (2-D) Fourier transform of phase and amplitude information input at the front focal plane.
Initial feasibility demonstrations of optical signal processors are usually performed in the laboratory using existing components, but these often do not come close to fully exploiting the potential of the optical processor, and often disregard practical implementation issues such as: how much phase distortion is permissible in a critical lens, or what will be the effect of vibration or temperature changes in the field, and is it feasible to have a given dynamic range and information capacity in the same processor? Therefore the aim of most subsequent optical hardware development is to answer these questions and overcome any deficiencies.
Much effort has gone into the development of the critical active optical devices, such as infrared laser diodes, spatial light modulators (SLMs) and photodetector arrays, and new device concepts and improvements on existing devices continue to occur (Lee & VanderLugt, 1989).
- Type
- Chapter
- Information
- Design Issues in Optical Processing , pp. 78 - 136Publisher: Cambridge University PressPrint publication year: 1995