Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-13T05:16:26.587Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  02 December 2020

Laird A. Thompson
Affiliation:
University of Illinois, Urbana-Champaign
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aarseth, S., Gott, J., III, & Turner, E. (1979). N-Body Simulation of Galaxy Clustering. I. Initial Conditions and Galaxy Collapse Times. Astrophys. J., 228, pp. 664–83.Google Scholar
Abbott, T. et al. (2018). Dark Energy Survey Year 1 Results: Cosmological Constraints from Galaxy Clustering and Weak Lensing. Phys. Rev. D, 98, Article 043526.Google Scholar
Abell, G. (1958). The Distribution of Rich Clusters of Galaxies. Astrophys. J. Suppl., 3, pp. 211–88.Google Scholar
Abell, G. (1961). Evidence Regarding Second-Order Clustering of Galaxies and Interactions Between Clusters of Galaxies. Astron. J., 65, pp. 607–13.Google Scholar
Abell, G. (1977). Interview of George Abell by Spenser Weart on November 14, 1977, Niels Bohr Library & Archives, American Institute of Physics, College Park, MD USA, www.aip.org/history-programs/niels-bohr-library/oral-histories/4475Google Scholar
Abell, G. & Chincarini, G. (1983). Early Evolution of the Universe and Its Present Structure (Dordrecht, Netherlands: D. Reidel Publishing).Google Scholar
Abell, G., Morrison, D., & Wolff, S. (1994). Realm of the Universe, Fifth Edition (Ft. Worth, TX: Saunders College Publishing).Google Scholar
Ade, P. A. R., Aghanim, N., Arnaud, M., et al. (2016). Planck 2015 Results. XIII. Cosmological Parameters. Astron. & Astrophys., 594, A13, pp. 163.Google Scholar
Alcock, C. & Paczynski, B. (1979). An Evolution Free Test for Non-zero Cosmological Constant. Nature, 281, pp. 358–9.Google Scholar
Alpher, R., Bethe, H., & Gamow, G. (1948). The Origin of Chemical Elements. Phys. Rev., 73, pp. 803–4.Google Scholar
Alpher, R. & Herman, R. (1948). Evolution of the Universe. Nature, 162, pp. 774–5.Google Scholar
Alpher, R. & Herman, R. (2001). Genesis of the Big Bang (New York, NY: Oxford University Press, Inc.).Google Scholar
Aragon-Calvo, M. & Szalay, A. (2013). The Hierarchical Structure and Dynamics of Voids. Mon. Not. Royal Astron. Soc., 428, pp. 3409–24.Google Scholar
Arp, H. (1973). Neighborhoods of Spiral Galaxies. I. Multiple Interacting Galaxies.Astrophys. J., 185, pp. 797808.Google Scholar
Baade, W. (1951). Galaxies – Present Day Problems. Publ. of the Observatory of Michigan, 10, pp. 10–7.Google Scholar
Babcock, H. (1939). The Rotation of the Andromeda Nebula. Lick Obs. Bull. (No. 498), 19, pp. 4151.Google Scholar
Bahcall, J. & Joss, P. (1976). Is the Local Supercluster a Physical Association? Astrophys. J., 203, pp. 2332.Google Scholar
Baldry, I. (2008). What Hubble Really Meant by Late and Early Type: Simply More or Less Complex in Appearance. Astron. & Geophys., 49, pp. 25–6.Google Scholar
Balzano, V. & Weedman, D. (1982). Filling the Void in Bootes. Astrophys. J. Lett., 255, pp. L1L4.Google Scholar
Bahcall, N. & Soneira, R. (1982). An Approximately 300 Mpc Void of Rich Clusters of Galaxies. Astrophys. J., 262, pp. 419–23.Google Scholar
Bahcall, N. & Soneira, R. (1984). A Supercluster Catalog. Astrophys. J., 277, pp. 2737.Google Scholar
Batuski, D. & Burns, J. (1985). Finding Lists of Candidate Superclusters and Voids of Abell Clusters. Astron. J., 90, pp. 1413–24.Google Scholar
Beacom, J., Dominik, K., Melott, A., Perkins, S., & Shandarin, S. (1991). Gravitational Clustering in the Expanding Universe: Controlled High-Resolution Studies in Two Dimensions. Astrophys. J., 372, pp. 351–63.Google Scholar
Berendzen, R., Hart, R., & Seeley, D. (1984). Man Discovers the Galaxies (New York, NY: Columbia University Press).Google Scholar
Bernheimer, W. (1932). A Metagalactic Cloud between Perseus and Pegasus. Nature, 130, p. 132.Google Scholar
Bertschinger, E. (1985). The Self-Similar Evolution of Holes in an Einstein-De Sitter Universe. Astrophys. J. Suppl., 58, pp. 137.Google Scholar
Bertschinger, E. & Dekel, A. (1989). Recovering the Full Velocity and Density Fields from Large-Scale Redshift-Distance Samples. Astrophys. J. Lett., 336, pp. L5L8.Google Scholar
Beygu, B. Peletier, R., Van der Hulst, J., Jarrett, T., Kreckel, K., Van de Weygaert, R., Van Gorkom, J., & Aragon-Calvo, M. (2017). The Void Galaxy Survey: Photometry, Structure and Identity of Void Galaxies. Mon. Not. Royal Astron. Soc., 464, pp.666–79.Google Scholar
Blumenthal, G., Pagels, H., & Primack, J. (1982). Galaxy Formation by Dissipationless Particles Heavier than Neutrinos. Nature, 299, pp. 37–8.Google Scholar
Blumenthal, G., Faber, S., Primack, J., & Rees, M. (1984). Formation of Galaxies and Large-Scale Structure with Cold Dark Matter. Nature, 311, pp. 517–25.Google Scholar
Blumenthal, G., Da Costa, L., Goldwirth, D., Lecar, M., & Piran, T. (1992). The Largest Possible Voids. Astrophys. J., 388, pp. 234–41.Google Scholar
Bok, B. (1934). Apparent Clustering of Galaxies. Nature, 133, p. 578.Google Scholar
Bok, B. (1978). Harlow Shapley. Natl. Acad., Sci.., Biographical Memoirs, 49, pp. 238–91.Google Scholar
Bond, J., Efstathiou, G., & Silk, J. (1980). Massive Neutrinos and the Large-Scale Structure of the Universe. Phys. Rev. Lett., 45, pp. 1980–4.Google Scholar
Bond, J., Kofman, L., & Pogosyan, D. (1996). How Filaments Are Woven into the Cosmic Web. Nature, 380, pp. 603–6.Google Scholar
Bond, J., Szalay, A., & Turner, M. (1982). Formation of Galaxies in a Gravitino-Dominated Universe. Phys. Rev. Lett., 48, pp. 1636–9.Google Scholar
Bondi, H. (1947). Spherically Symmetric Models in General Relativity. Mon. Not. Royal Astron. Soc., 107, pp. 410–25.Google Scholar
Bondi, H. (1948). The Steady-State Theory of the Expanding Universe. Mon. Not. Royal Astron. Soc., 108, pp. 252–70.Google Scholar
Bosma, A. (1978). The Distribution and Kinematics of Neutral Hydrogen in Spiral Galaxies of Various Morphological Types. Ph.D. thesis (Groningen, Netherlands: Groningen University).Google Scholar
Bothun, G., Beers, T., Mould, J., & Huchra, J. (1985). A Redshift Survey of Low-Surface-Brightness Galaxies. I – The Basic Data. Astron. J., 90, pp. 2487–94.Google Scholar
Bothun, G., Beers, T., Mould, J., & Huchra, J. (1986). A Redshift Survey of Low Surface Brightness Galaxies II. Do They Fill the Voids? Astrophys. J., 308, pp. 510–29.Google Scholar
Burbidge, E. (2002). Gerard de Vaucouleurs 1918–1995: A Biographical Memoir. Natl. Acad., Sci., Biographical Memoirs, 82, pp. 117.Google Scholar
Catapano, P. (2015). Massimo Tarenghi: A Lifetime in the Stars. CERN Courier, 55 (August Issue), pp. 31–3.Google Scholar
Centrella, J. & Melott, A. (1983). Three-Dimensional Simulation of Large-Scale Structure in the Universe. Nature, 305, pp. 196–8.Google Scholar
Chandrasekar, S. & Munch, G. (1952). The Theory of the Fluctuations in Brightness of the Milky Way. V. Astrophys. J., 115, pp. 103–23.Google Scholar
Charlier, C. (1908). Arkiv fur Matematik, Astronomi och Fysik, 4, p. 1.Google Scholar
Charlier, C. (1922). Arkiv fur Matematik, Astronomi och Fysik, 16, pp. 137.Google Scholar
Chincarini, G. (1978). Clumpy Structure of the Universe and General Field. Nature, 272, pp. 515–6.Google Scholar
Chincarini, G. (2013). Large-Scale Structure: The Seventies & Forty Years Later: From Clusters to Clusters. In The Thirteenth Marcel Grossmann Meeting, eds. Rosquist, K, Jantzen, R, & Ruffini., R (Singapore and Teaneck, NJ: World Scientific Publishing Company), also arXiv:1305.2893.Google Scholar
Chincarini, G. & Martins, D. (1975). On the “Seyfert Sextet,” VV 115. Astrophys. J., 196, pp. 335–7.Google Scholar
Chincarini, G. & Rood, H. (1975). Size of the Coma Cluster. Nature, 257, pp. 294–5.Google Scholar
Chincarini, G. & Rood, H. (1976). The Coma Supercluster – Analysis of Zwicky-Herzog Cluster 16 in Field 158. Astrophys. J., 206, pp. 30–7.Google Scholar
Chincarini, G. & Rood, H. (1980). The Cosmic Tapestry.Sky & Telescope, 59, pp. 364–7.Google Scholar
Chincarini, G., Thompson, L., & Rood, H. (1981). Supercluster Bridge between Groups of Galaxy Clusters. Astrophys. J. Lett., 249, pp. L47L50.Google Scholar
Christianson, G. (1995). Edwin Hubble: Mariner of the Nebulae (Chicago, IL: The University of Chicago Press).Google Scholar
Colberg, J., Pearce, F., Foster, C., et al. (2008). The Aspen-Amsterdam Void Finder Comparison Project. Mon. Not. Royal Astron. Soc., 387, pp. 933–44.Google Scholar
Cowsik, R. & McClelland, J. (1973). Gravity of Neutrinos of Nonzero Mass in Astrophysics. Astrophys. J., 180, pp. 710.Google Scholar
Cromwell, R. & Weymann, R. (1970). Changes in the Nuclear Spectrum of the Seyfert Galaxy NGC 4151. Astrophys. J. Lett., 159, pp. 147–50.Google Scholar
Croswell, K. (2001). The Universe at Midnight: Observations Illuminating the Cosmos (New York, NY: The Free Press).Google Scholar
Davis, M. (1988). Interview of Marc Davis by Alan Lightman on 14 October 1988 Niels Bohr Library & Archives, American Institute of Physics, College Park, MD USA, www.aip.org/history-programs/niels-bohr-library/oral-histories/34298Google Scholar
Davis, M. (2014). Cosmic Structure. International J. Modern Phys. D, 23, article number 1430021 (Ch. 14 in Vol. 2, One-Hundred Years of General Relativity ed. Wei-You Ni (Singapore: World Scientific Publ. 2014).Google Scholar
Davis, M. Efstathiou, G., Frenk, C., & White, S. (1985). The Evolution of Large-Scale Structure in a Universe Dominated by Cold Dark Matter. Astrophys. J., 292, pp. 371–94. (DEFW)Google Scholar
Davis, M., Huchra, J., Latham, D., & Tonry, J. (1982). A Survey of Galaxy Redshifts. II. The Large Scale Space Distribution. Astrophys. J., 253, pp. 423–45.Google Scholar
Dick, S. (2013). Discovery and Classification in Astronomy: Controversy and Consensus (Cambridge, UK: Cambridge University Press).Google Scholar
Dicke, R., Peebles, P., Roll, P., and Wilkinson, D. (1965). Cosmic Black-Body Radiation. Astrophys. J., 142, pp. 414–9.Google Scholar
Doroshkevich, A. & Shandarin, S. (1978). A Statistical Approach to the Theory of Galaxy Formation. Soviet Astron., 22, pp. 653–60.Google Scholar
Doroshkevich, A., Shandarin, S., & Saar, E. (1978). Spatial Structure of Protoclusters and the Formation of Galaxies. Mon. Not. Royal Astron. Soc., 184, pp. 643–60.Google Scholar
Doroshkevich, A., Kotok, E., Poliudov, A., Shandarin, S., Sigov, I., & Novikov, I. (1980). Two Dimensional Simulation of the Gravitational System Dynamics and Formation of the Large-Scale Structure of the Universe. Mon. Not. Royal Astron. Soc., 192, pp. 321–37.Google Scholar
Doroshkevich, A., Zeldovich, Y., & Sunyaev, R. (1976). Adiabatic Theory of Formation of Galaxies. In Origin and Evolution of Galaxies and Stars,OEGS Conference, pp. 65104. (in Russian).Google Scholar
Doroshkevich, A., Zeldovich,, Y., Sunyaev, R., & Khlopov, M. (1980a). Astrophysical Implications of the Neutrino Rest Mass. II. The Density Perturbation Spectrum and Small-Scale Fluctuation in the Microwave Background. Astron. Lett. (Russian), 6, pp. 457–64.Google Scholar
Doroshkevich, A., Zeldovich,, Y., Sunyaev, R., & Khlopov, M. (1980b). Astrophysical Implications of the Neutrino Rest Mass. III. The Non-Linear Growth of Perturbations and Hidden Mass. Astron. Lett. (Russian), 6, pp. 465–9.Google Scholar
Eddington, A. (1923). The Mathematical Theory of Relativity. (Cambridge, UK: Cambridge University Press).Google Scholar
Eddington, A. (1934). Messenger Lectures; (1935) New Pathways in Science.Google Scholar
Efstathiou, G., Davis, M. White, S., & Frenk, C. (1985). Numerical Techniques for Large Cosmological N-body Simulations. Astrophys. J. Suppl., 57, pp. 241–60. (EDWF)Google Scholar
Einasto, J. (2014). Dark Matter and Cosmic Web Story (Singapore: World Scientific Publishing).Google Scholar
Einasto, J. (2018). Cosmology Paradigm Changes. Ann. Rev. Astron. & Astrophys., 56, pp. 139.Google Scholar
Einasto, J., Joeveer, M., & Saar, E. (1980). The Structure of Superclusters and Supercluster Formation. Mon. Not. Royal Astron. Soc., 193, pp. 353–75.Google Scholar
Einstein, A. (1915). The Field Equations of Gravitation. Transactions of the Royal Prussian Academy of Sciences (Berlin) pp. 844–7 (in German).Google Scholar
Einstein, A. (1917). Cosmological Reflections on General Relativity. Transactions of the Royal Prussian Academy of Sciences (Berlin), p. 142 (in German).Google Scholar
Eisenstein, D. et al. (2005). Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies. Astrophys. J., 633, pp. 560–74.Google Scholar
El-Ad, H. & Piran, T. (1997). Voids in the Large-Scale Structure. Astrophys. J., 491, pp. 421–35.Google Scholar
El-Ad, H., Piran, T., & Da Costa, L, L. (1996). Automated Detection of Voids in Redshift Surveys. Astrophys. J. Lett., 462, pp. L13L16.Google Scholar
Falco, E., Kurtz, M., Geller, M., Huchra, J., Peters, J., Berlind, P., Mink, D., Tokarz, S., & Elwell, B. (1999). The Updated Zwicky Catalog (UZC). Pub. Astron. Soc. Pacific, 111, pp. 438–52.Google Scholar
Ferris, T. (1983). The Red Limit (New York, NY: Quill).Google Scholar
Ferris, T. (1989). Coming of Age in the Milky Way (New York, NY: Anchor Books, Doubleday).Google Scholar
Frenk, C., White, S., & Davis, M. (1983). Non-Linear Evolution of Large-Scale Structure in the Universe. Astrophys. J., 271, pp. 417–30.Google Scholar
Friedmann, A. (1922). On the Curvature of Space. General Relativity and Gravitation, 31, p. 12, 1999 (English translation).Google Scholar
Fujimoto, M. (1983). Dynamics of Ellipsoidal Voids of Matter in an Expanding Universe. Pub. Astron. Soc. Japan, 35, pp.15971.Google Scholar
Gamow, G. (1948a). Origin of the Elements and the Separation of Galaxies. Phys. Rev., 74, 505–6.Google Scholar
Gamow, G. (1948b). The Evolution of the Universe. Nature, 162, pp. 680–2.Google Scholar
Geller, M. (1974). Bright Galaxies in Rich Clusters: A Statistical Model for Magnitude Distributions. Ph.D. thesis, Princeton University.Google Scholar
Geller, M. (1991) in Realm of the Universe Fifth Edition, 1994 Version. Abell, G., Morrison, D. & Wolff, S. (Fort Worth, TX: Saunders College Publishing),Google Scholar
Geller, M. & Huchra, J. (1989). Mapping the Universe. Science, 246, pp. 897903.Google Scholar
Gibbons, G. & Hawking, S. (1977). Cosmological Event Horizons, Thermodynamics, and Particle Creation. Phys. Rev., D15, pp. 2738–51.Google Scholar
Gingerich, O. (1990). Through Rugged Ways to Galaxies. J. Hist. Astron., 21, 7788.Google Scholar
Gingerich, O. (1999). Shapley, Hubble and Cosmology. In Edwin Hubble Centennial Symposium, ed. R. Kron, A.S.P. Conference Series, 10, pp. 1921.Google Scholar
Ginzburg, V. (1994). Obituary: Yakov Borissovich Zel’Dovich, 8 March 1914 – 2 December 1987. Biographical Memoirs of Fellows of the Royal Society, 40, pp. 430–41.Google Scholar
Giovanelli, R., Haynes, M., & Chincarini, G. (1986). Morphological Segregation in the Pisces-Perseus Supercluster. Astrophys. J., 300, pp. 7792. Oort (1983) references this paper as a “preprint” dated (1981).Google Scholar
Gott, J. III, (2016). The Cosmic Web (Princeton, NJ: Princeton University Press).Google Scholar
Gott, J. III, Juric, M., Schlegel, D., Hoyle, F., Vogeley, M., Tegmark, M., Bahcall, N., & Brinkman, J. (2005). A Map of the Universe. Astrophys. J., 624, 463–84.Google Scholar
Gott, J. III, Melott, A., & Dickinson, M. (1986). The Sponge-like Topology of Large-Scale Structure in the Universe. Astrophys. J., 306, pp. 341–57.Google Scholar
Gott, J. III, Weinberg, D., & Melott, A. (1987). A Quantitative Approach to the Topology of Large-Scale Structure. Astrophys. J., 319, pp. 18.Google Scholar
Graham, J., Wade, C., & Price, R. (1994). Bart J. Bok. Natl. Acad., Sci.., Biographical Memoirs, 64, pp. 7297.Google Scholar
Gregory, S. (1975). Redshifts and Morphology of Galaxies in the Coma Cluster. Astrophys. J., 199, pp. 19.Google Scholar
Gregory, S. & Thompson, L. (1978). The Coma/A1376 Supercluster and Its Environs. Astrophys. J., 222, pp. 784–99.Google Scholar
Gregory, S. & Thompson, L. (1982). Superclusters and Voids in the Distribution of Galaxies. Sci. Amer., 246, No. 3, pp. 106–14.Google Scholar
Gregory, S. & Thompson, L. (1984). The A2197 and A2199 Galaxy Clusters. Astrophys. J., 286, pp. 422–36.Google Scholar
Gregory, S., Thompson, L., & Tifft, W. (1979). The Perseus/Pisces Supercluster. Bull. Amer. Astron. Soc., 10, p.622.Google Scholar
Gregory, S., Thompson, L., & Tifft, W. (1981). The Perseus Supercluster. Astrophys. J., 243, pp. 411–26.Google Scholar
Greenstein, J. (1974). Remembering Zwicky. Science and Engineering Newsletter. (Pasadena, CA: Caltech Library).Google Scholar
Grogin, N. & Geller, M. (1999). An Imaging and Spectroscopic Survey of Galaxies within Prominent Nearby Voids. I. The Sample and Luminosity Distribution” Astron. J., 118, pp. 2561–80.Google Scholar
Grogin, N. & Geller, M. (2000). An Imaging and Spectroscopic Survey of Galaxies within Prominent Nearby Voids. II. Morphologies, Star Formation, and Faint Companions. Astron. J., 119, pp. 3243.Google Scholar
Guthrie, B. & Napier, W. (1991). Evidence for Redshift Periodicity in Nearby Field Galaxies. Mon. Not. Royal Astron. Soc., 253, pp. 533–44.Google Scholar
Hamaus, N., Pisani, A., Sutter, P., Lavaux, G., Escoffier, S., Wandelt, B., & Weller, J. (2016). Constraints on Cosmology and Gravity from the Dynamics of Voids. Phys. Rev. Lett., 117, 091302.Google Scholar
Harrison, E. (1970). Fluctuations at the Threshold of Classical Cosmology. Phys. Rev. D, 1, pp. 2726–30.Google Scholar
Hauser, M. & Peebles, P. (1973). Statistical Analysis of Catalogs of Extragalactic Objects: II. The Abell Catalog of Rich Clusters. Astrophys. J., 185, pp. 757–85.Google Scholar
Hausman, M., Olson, D., & Roth, B. (1983). The Evolution of Voids in the Expanding Universe. Astrophys. J., 270, pp. 351–9.Google Scholar
Herschel, W. (1784). Account of Some Observations Tending to Investigate the Construction of the Heavens. Phil. Trans. Royal Soc. of London, 74, pp. 437–51.Google Scholar
Herschel, W. (1811). Astronomical Observations Relating to the Construction of the Heavens, Arranged for the Purpose of a Critical Examination, the Result of Which Appears to Throw Some New Light Upon the Organization of the Celestial Bodies. Phil. Trans. Royal Soc. of London, 101, pp. 437–51.Google Scholar
Hoffleit, D. (1992). J. Amer. Assoc. of Variable Star Observers, 21, pp. 151–6.Google Scholar
Hoffman, G., Salpeter, E., & Wasserman, I. (1983). Spherical Simulations of Holes and Honeycombs in Friedmann Universe. Astrophys. J., 268, pp. 527–39.Google Scholar
Hoffman, Y. & Shaham, J. (1982). On the Origin of the Voids in the Galaxy Distribution. Astrophys. J. Lett., 262, pp. L23L26.Google Scholar
Holmberg, E. (1937). A Study of Double and Multiple Galaxies Together with Inquires into Some Metagalactic Problems with an Appendix Containing a Catalogue of 827 Double and Multiple Galaxies. Medd. Lund Obs., 6, pp. 3173.Google Scholar
Hoscheit, B. & Barger, A. (2018). The KBC Void: Consistency with Supernovae Type Ia and the Kinematic SZ Effect in a Lambda LTB Model. Astrophys. J., 854, 46, 9 pp.Google Scholar
Hoyle, F. (1948). A New Model for the Expanding Universe. Mon. Not. Royal Astron. Soc., 108, pp. 372–82.Google Scholar
Hoyle, F. & Vogeley, M. (2002). Voids in the Point Source Catalogue and the Updated Zwicky Catalog. Astrophys. J., 566, pp. 641–51.Google Scholar
Hoyle, F. & Vogeley, M. (2004). Voids in the Two-Degree Field Galaxy Redshift Survey. Astrophys. J., 607, pp. 751–64.Google Scholar
Hoyle, F. & Tayler, R. (1964). The Mystery of the Cosmic Helium Abundance. Nature, 203, pp. 1108–10.Google Scholar
Hoyt, B. (1980). Vesto Melvin Slipher. Natl. Acad, Sci.., Biographical Memoirs, 52, pp. 410–49.Google Scholar
Hubble, E. (1934). The Distribution of Extra-Galactic Nebuae. Astrophys. J., 79, pp. 876.Google Scholar
Hubble, E. (1936a). Effects of Red Shifts on the Distribution of Nebulae. Astrophys. J., 84, pp. 517–54.Google Scholar
Hubble, E. (1936b). The Realm of the Nebulae (New Haven, CT: Yale University Press).Google Scholar
Hubble, E. & Humason, M. (1931). The Velocity-Distance Relation among Extra-Galactic Nebulae. Astrophys. J., 74, pp. 4379.Google Scholar
Huchra, J. (2002). Interview of John Huchra by Patrick McCray on 15 February 2002, Niels Bohr Library & Archives, American Institute of Physics, College Park, MD USA, Aip.org/history-programs/niels-bohr-library/oral-histories/31280–2Google Scholar
Huchra, J. & Thuan, T. (1977). Isolated Galaxies. Astrophys. J., 216, pp. 694–7.Google Scholar
Icke, V. (1973). Formation of Galaxies inside Clusters. Astron. & Astrophys., 27, pp. 121.Google Scholar
Icke, V. (1984). Voids and Filaments. Mon. Not. Royal Astron. Soc., 206, pp. P1–P3.Google Scholar
Jeans, J. (1919). The Present Position of the Nebular Hypothesis. Popular Astronomy, 27, pp. 339–48.Google Scholar
Joeveer, M., Einasto, J., & Tago, E. (1978). Spatial Distribution of Galaxies and Clusters of Galaxies in the Southern Galactic Hemisphere. Mon. Not. Royal Astron. Soc., 185, pp. 357–70.Google Scholar
Joeveer, M. & Einasto, J. (1978). Has the Universe the Cell Structure? In The Large Scale Structure of the Universe, IAU Symposium No. 79, eds. M. Longair & J. Einasto, pp. 241–51.Google Scholar
Kaiser, N. (1984). On the Spatial Correlations of Abell Clusters. Astrophys. J. Lett., 284, pp. L9L12.Google Scholar
Kauffmann, G. & Fairall, A. (1991). Voids in the Distribution of Galaxies: An Assessment of their Significance and Derivation of a Void Spectrum. Mon. Not. Royal Astron. Soc., 248, pp. 313–24.Google Scholar
Keenan, R., Barger, A., & Cowie, L. 2013. Evidence for a ~300 Megaparsec Scale Under-Density in the Local Galaxy Distribution. Astrophys. J., 775, pp. 6277.Google Scholar
Kenworthy, D., Scolnic, D., & Riess, A. (2019). The Local Perspective on the Hubble Tension: Local Structure Does Not Impact Measurement of the Hubble Constant. Astrophys. J., 875, 145, 10pp.Google Scholar
Kirshner, R, Oemler, A. Jr., & Schechter, P. (1978). A Study of Field Galaxies. I. Redshifts and Photometry of a Complete Sample of Galaxies. Astron. J., 83, pp. 1549–63.Google Scholar
Kirshner, R, Oemler, A. Jr., & Schechter, P. (1979). A Study of Field Galaxies. II. The Luminosity and Space Distribution of Galaxies. Astron. J., 84, pp. 951–7.Google Scholar
Kirshner, R, Oemler, A. Jr., Schechter, , P. & Shectman, S. (1981). A Million Cubic Megaparsec Void in Bootes. Astrophys. J. Lett., 248, L57L60.Google Scholar
Kirshner, R, Oemler, A. Jr., Schechter, , P. & Shectman, . S (1982). The Big Blank – Void in Space. Sci. Amer., 246, No.2, pp. 7583.Google Scholar
Kirshner, R., Oemler, A. Jr., Schechter, P., & Shectman, S. (1987). A Survey of the Bootes Void. Astrophys. J., 314, pp. 493506.Google Scholar
Klypin, A. & Shandarin, S. (1983). Three-Dimensional Numerical Model of the Formation of Large-Scale Structure in the Universe. Mon. Not. Royal Astron. Soc., 204, pp. 891907.Google Scholar
Koo, D., Kron, R., & Szalay, A. (1987). Deep redshift surveys of large-scale structure. Proceedings of the 13th Texas Symposium on Relativistic Astrophysics (Singapore and Teaneck, NJ: World Scientific Publishing Company) pp. 284–5.Google Scholar
Kreisch, C., Pisani, A., Carbone, C., Liu, J., Hawken, A., Massara, E., Spergel, D., & Wandelt, B. (2019). Massive Neutrinos Leave Fingerprints on Cosmic Voids. Mon. Not. Royal Astron. Soc., 488, pp. 4413–26.Google Scholar
de Lapparent, V., Geller, M., & Huchra, J. (1986). A Slice of the Universe. Astrophys. J. Lett., 302, pp. L1L5.Google Scholar
Lavaux, G. & Wandelt, B. (2010). Precision Cosmology with Voids: Definition, Methods, Dynamics. Mon. Not. Royal Astron. Soc., 403, pp. 13921408.Google Scholar
Lavaux, G. . Wandelt, B. (2012). Precision Cosmology with Stacked Voids. Astrophys. J., 754, pp. 109–23.Google Scholar
Leavitt, H. (1908). 1777 Variables in the Magellanic Clouds. Ann. Harvard College Obs., 60, No. 4, pp. 87108.Google Scholar
Leavitt, H. & Pickering, E. (1912). Periods of 25 Variable Stars in the Small Magellanic Cloud. Harvard College Obs., Circ. 173, pp. 13.Google Scholar
Lee, J. & Park, D. (2009). Constraining the Dark Energy Equation of State with Cosmic Voids. Astrophys. J. Lett., 696, pp. L10L12.Google Scholar
Lemaître, G. (1931a). A Homogeneous Universe of Constant Mass and Increasing Radius Accounting for the Radial Velocity of Extra-galactic Nebulae. Mon. Not. Royal Astron. Soc., 91, 483–90.Google Scholar
Lemaître, G. (1931b). The Expanding Universe. Mon. Not. Royal Astron. Soc., 91, 490501.Google Scholar
Lightman, A. & Brawer, R. (1990). Origins: The Lives and Worlds of Modern Cosmologists (Cambridge, MA: Harvard University Press).Google Scholar
Limber, D. (1953). The Analysis of the Counts of the Extragalactic Nebulae in Terms of a Fluctuating Density Field. I. Astrophys. J., 117, pp. 134–44.Google Scholar
Limber, D. (1954). The Analysis of the Counts of the Extragalactic Nebulae in Terms of a Fluctuating Density Field. II. Astrophys. J., 119, pp. 655–81.Google Scholar
Limber, D. (1957). The Analysis of the Counts of the Extragalactic Nebulae in Terms of a Fluctuating Density Field. III. Astrophys. J., 125, pp. 941.Google Scholar
Lin, C., Mestel, L. & Shu, F. (1965). The Gravitational Collapse of a Uniform Spheroid. Astrophys. J., 142, pp. 1431–46.Google Scholar
Longair, M. (2006). The Cosmic Century: A History of Astrophysics and Cosmology (Cambridge, UK: Cambridge University Press).Google Scholar
Luud, L. Ruusalepp, E., & Kaasik, A. (1978). Anomalous Line Profiles for the Fe(42) Multiplet in the Spectrum of Deneb. Sov. Astron. Lett., 4, pp. 151–2.Google Scholar
Lynden-Bell, D. (1964). On Large-Scale Instabilities during Gravitational Collapse and the Evolution of Shrinking Maclaurin Spheroids. Astrophys. J., 139, pp. 11951216.Google Scholar
Lyubimov, V., Novikov, E., Nozik, V., Tretyakov, E., & Kosik, V. (1980). An Estimate of the Electron Neutrino Mass from the Beta-Spectrum of Tritium in the Valine Molecule. Physics Letters, 138, pp. 3056.Google Scholar
Madsen, C. (2013). Retirement of Massimo Tarenghi. European Southern Obs. Messenger, 153, pp. 3941.Google Scholar
Matsuda, T. & Shima, E. (1984). Topology of Supercluster-Void Structure. Progress of Theoretical Physics, 71, pp. 855–8.Google Scholar
Mayall, N. (1951). Comparison of Rotational Motions Observed in the Spirals M31 and M33 and The Galaxy. Pub. Obs. Michigan, No. 10, p.19.Google Scholar
Mayall, N. (1960). Advantages of Electronic Photography for Extragalactic Spectroscopy. Ann. Astrophys., 23, pp. 344–59.Google Scholar
Melott, A. (1983). Massive Neutrinos in Large-Scale Gravitational Clustering. Astrophys. J., 264, pp. 5986.Google Scholar
Melott, A. (1993). Galaxy Clustering: Why Peebles and Zeldovich Were Both Right. Comments on Astrophys., 16, pp. 321–30.Google Scholar
Melott, A., Einasto, J., Saar, E., Suisalu, I., Klypin, A., & Shandarin, S. (1983). Cluster Analysis of the Non-Linear Evolution of Large-Scale Structure in an Axion / Gravitino / Photino Dominated Universe. Phys. Rev. Letters, 51, pp. 935–8.Google Scholar
Milne, E. (1935). Relativity, Gravitation and World Structure. (Oxford, UK: Oxford University Press).Google Scholar
Micheletti, D. ; 48 other authors (2014). The VIMOS Public Extragalactic Redshift Survey: Searching for Cosmic Voids. Astron. & Astrophys., vol. 570, A106.Google Scholar
Moffat, J. & Tatarski, D. (1995). Cosmological Observations of a Local Void. Astrophys. J., 453, pp. 1724.Google Scholar
Moody, J., Kirshner, R., MacAlpine, G., & Gregory, S. (1987). Emission-Line Galaxies in the Bootes Void. Astrophys. J. Lett., 314, pp. L33-L37.Google Scholar
Moss, A., Zibin, J., & Scott, D. (2011). Precision Cosmology Defeats Void Models for Acceleration. Phys. Rev. D., 83, 103515.Google Scholar
Muller, V., Arbabi-Bidgoli, S., Einasto, J., & Tucker, D. (2000). Voids in the Las Campanas Redshift Survey versus Cold Dark Matter Models. Mon. Not. Royal Astron. Soc., 318, pp. 280–8.Google Scholar
Nadathur, S., Carter, P., Percival, W., Winther, H., & Bautista, J. (2019). Beyond BAO: Improving Cosmological Constraints from BOSS with Measurement of the Void-Galaxy Cross-Correlation. Phys. Rev. D, 100, 023504.Google Scholar
Neyman, J., & Scott, E., (1952). A Theory of the Spatial Distribution of Galaxies. Astrophys. J., 116, pp. 144–63.Google Scholar
Neyman, J, Scott, E., & Shane, C. (1953). On the Spatial Distribution of Galaxies: a Specific Model. Astrophys. J., 117, pp. 92133.Google Scholar
Neyrinck, M. (2008). ZOBOV: A Parameter-Free Void-Finding Algorithm. Mon. Not. Royal Astron. Soc., 386, pp. 2101–9.Google Scholar
Oort, J. (1983). Superclusters. Ann. Rev. Astron. & Astrophys., 21, pp. 373428. (Palo Alto, CA: Annual Reviews).Google Scholar
Opik, E. (1922). An Estimate of the Distance of the Andromeda Nebula. Astrophys. J., 55, pp. 406–10.Google Scholar
Osterbrock, D. (1993). Pauper & Prince – Ritchey, Hale, and Big American Telescopes (Tucson, AZ: University of Arizona Press).Google Scholar
Ostriker, J. & Cowie, L. (1981). Galaxy Formation in an Intergalactic Medium Dominated by Explosions. Astrophys. J. Lett., 243, pp. 127–31.Google Scholar
Padilla, N., Ceccarelli, L., & Lambas, D. (2005). Spatial and Dynamical Properties of Voids in a Lambda Cold Dark Matter Universe. Mon. Not. Royal Astron. Soc., 363, pp.977–90.Google Scholar
Pais, A. (1982). Subtle is the Lord … The Science and the Life of Albert Einstein (Oxford, UK: Oxford University Press).Google Scholar
Pan, D., Vogeley, M., Hoyle, F., Choi, Y., & Park, C. (2012). Cosmic Voids in Sloan Digital Sky Survey Data Release 7. Mon. Not. Royal Astron. Soc., 421, pp.926–34.Google Scholar
Paz, D., Lares, M., Ceccarelli, L., Padilla, N., & Lambas, D. (2013). Clues on Void Evolution II. Measuring Density and Velocity Profiles on SDSS Galaxy Redshift Space Distortions. Mon. Not. Royal Astron. Soc., 436, pp.3480–91.Google Scholar
Peacock, J. (2003). Large Scale Structure and Matter in the Universe. Roy. Soc. London Trans. Ser. A, 361, pp.2479–95.Google Scholar
Peebles, P. (1970). Structure of the Coma Cluster of Galaxies. Astron. J., 75, pp.1320.Google Scholar
Peebles, P. (1980). The Large Scale Structure of the Universe (Princeton, NJ: Princeton University Press).Google Scholar
Peebles, P. (1982a). The Peculiar Velocity around Holes in the Galaxy Distribution. Astrophys. J., 257, pp. 438–41.Google Scholar
Peebles, P. (1982b). Large-Scale Background Temperature and Mass Fluctuations Due to Scale-Invariant Primeval Perturbations. Astrophys. J., 263, pp. L1L5.Google Scholar
Peebles, P. (1983). Hierarchical Clustering. in Clusters and Groups of Galaxies, eds. Mardirossian, F, Giuricin, G, & Mezetti, M, Astrophys. & Space Sci. Library, 111, pp. 405–14 (Dordrecht, Netherlands: D. Reidel).Google Scholar
Peebles, P. (1984). Interview of Jim Peebles by Martin Harwit on 1984 September 27, Niels Bohr Library & Archives, American Institute of Physics, College Park,MD USA, www.aip.org/history-programs/niels-bohr-library/oral-histories/33957Google Scholar
Peebles, P. (1988). Interview of Jim Peebles by Alan Lightman on 1988 January 19, Niels Bohr Library & Archives,American Institute of Physics, College Park,MD USA,www.aip.org/history-programs/niels-bohr-library/oral-histories/4814Google Scholar
Peebles, P. (1993). Principles of Physical Cosmology (Princeton, NJ: Princeton University Press).Google Scholar
Peebles, P. (2001). The Void Phenomenon. Astrophys. J., 557, pp. 495504.Google Scholar
Peebles, P. & Dicke, R. (1968). Origin of the Globular Clusters. Astrophys. J., 154, pp. 891908.Google Scholar
Peebles, P. & Yu, J. (1970). Primeval Adiabatic Perturbation in an Expanding Universe. Astrophys. J., 162, pp.815–36.Google Scholar
Penzias, A. & Wilson, R. (1965). A Measurement of Excess Antenna Temperature at 4080 MHz. Astrophys. J., 142, pp. 419–21.Google Scholar
Pisani, A., Massara, E., Spergel, D.; 26 co-authors. (2019). Cosmic Voids: A Novel Probe to Shed Light on our Universe. Astro2020 Science White Paper. Bull. Amer. Astron. Soc., 51c, 40p.Google Scholar
Platen, E., Van de Weygaert, R., & Jones, B. (2007). A Cosmic Watershed: the WVF Void Detection Technique. Mon. Not. Royal Astron. Soc., 380, pp.551–70.Google Scholar
Pomarede, D., Hoffman, Y., Courtois, H., & Tully, R. (2017). The Cosmic V-Web. Astrophys. J., 845, pp.5564.Google Scholar
Postman, M., Geller, M., & Huchra, J. (1986). The Cluster-Cluster Correlation Function. Astron. J., 91, pp.1267–73.Google Scholar
Pranav, P. Edelsbrunner, H., Van de Weygaert, R., Vegter, G., Kerber, M., Jones, , B., & Wintraecken, M. 2016. The Topology of the Cosmic Web in Terms of Persistent Betti Numbers. Mon. Not. Royal Astron. Soc., 465, pp.4281–310.Google Scholar
Press, W. & Schechter, P. (1974). Formation of Galaxies and Clusters of Galaxies by Self-Similar Gravitational Condensation. Astrophys. J., 187, pp.425–38.Google Scholar
Rees, M. (1977). Cosmology and Galaxy Formation. in Evolution of Galaxies and Stellar, Populations. ed. B. Tinsley, and R. Larson. (New Haven, CT: Yale Univ. Obs.), pp.339–68.Google Scholar
Rees, M. & Ostriker, J. (1977). Cooling, Dynamics and Fragmentation of Massive Gas Clouds: Clues to the Masses and Radii of Galaxies and Clusters. Mon. Not. Royal Astron. Soc., 179, pp.541–59.Google Scholar
Refsdal, S. (1964). The Gravitational Lens Effect. Mon. Not. Royal Astron. Soc., 128, 295306.Google Scholar
Ricciardelli, E., Cava, A., Varela, J., & Quilis, V. (2014). The Star Formation Activity in Cosmic Voids. Mon. Not. Royal Astron. Soc., 445, pp.4045–54.Google Scholar
Riess, A., Macri, L., Casertano, S., Lampeid, H., Ferguson, H., Filippenko, A., Jha, S., Li, W., Chornock, R., & Silverman, J. (2011). A 3% Solution: Determination of the Hubble Constant with the Hubble Space Telescope and Wide Field Camera Three. Astrophys. J., 730, 119, 18pp.Google Scholar
Rizzi, L., Tully, R., Shaya, E., Kourkchi, E., & Karachentsev, I. (2017). Draining the Local Void. Astrophys. J., 835, pp.7885.Google Scholar
Roberts, M. (1966). A High-Resolution 21-cm Hydrogen-Line Survey of the Andromeda Nebula. Astrophys. J., 144, pp.639–56.Google Scholar
Rojas, R., Vogeley, M., Hoyle, F., & Brinkmann, J. (2004). Photometric Properties of Void Galaxies in the Sloan Digital Sky Survey). Astrophys. J., 617, pp.5063.Google Scholar
Roll, P. & Wilkinson, D. (1966). Cosmic Background Radiation at 3.2 cm – Support for Cosmic Black-Body Radiation. Phys. Rev. Lett., 16, pp. 405–7.Google Scholar
Rood, H. (1988a). Voids. Ann. Rev. Astron. & Astrophys., 26, pp.245–94.Google Scholar
Rood, H. (1988b). Supplementary Topics on Voids. Pub. Astron. Soc. Pacific, 100, pp. 1071–5.Google Scholar
Rubin, V. (1951). Differential Rotation of the Inner Metagalaxy. Astron. J., 56, pp. 47–8.Google Scholar
Rubin, V. (1954). Fluctuation of the Space Distribution of the Galaxies. Pub. National Acad. Sci., 40, 541–9.Google Scholar
Rubin, V. (1989). The Local Supercluster. Ch.16. in Gerard and Antoinette de Vaucouleurs: A Life for Astronomy, eds. Capaccioli, M & Corwrin, H, Jr. (Singapore: World Scientific Publishing Co.).Google Scholar
Rubin, V. & Ford, W., Jr. (1970). Rotation of the Andromeda Nebula from a Spectroscopic Survey of Emission Regions. Astrophys.J., 159, pp.379403.Google Scholar
Rubin, V., Ford, W., Jr., & Thonard, N. (1978). Extended Rotation Curves of High-Luminosity Spiral Galaxies. IV. Systematic Dynamical Properties, Sa through Sc. Astrophys. J. Lett., 225, pp.L107L111.Google Scholar
Ryden, B. (1995). Measuring qo from the Distortion of Voids in Redshift Space. Astrophys. J., 452, pp.2532.Google Scholar
Sahlen, M., Zubeldia, I., & Silk, J. (2016). Cluster-Void Degeneracy Breaking: Dark Energy, Planck, and the Largest Cluster & Void. Astrophys. J. Lett., 820, L7L12.Google Scholar
Sandage, A. (1961). The Ability of the 200-inch Telescope to Discriminate between Selected World Models. Astrophys. J., 133, pp.355–92.Google Scholar
Sandage, A. (1987) . Observational Cosmology 1920 – 1985: An Introduction to the Conference. in I.A.U. Symposium No. 124, Observational Cosmology, eds. Hewitt, A, Burbidge, G, & Fang, L. (Dordrecht, Netherlands: D. Reidel), pp.127.Google Scholar
Sandage, A. (1989). Edwin Hubble 1889–1953. J. Royal Astron. Soc. Canada, 83, pp.351–62.Google Scholar
Sandage, A., Tammann, G., & Hardy, E. (1972). Limits on the Local Deviation of the Universe from a Homogeneous Model. Astrophys. J., 172, pp.253–63.Google Scholar
Sanduleak, N. & Pesch, P. (1987). The Case Low-Dispersion Northern Sky Survey. IV – Galaxies in the Bootes Void Region. Astrophys. J. Suppl., 63, pp.809–19.Google Scholar
Sarkar, S., Pandey, B., & Khatri, R. (2019). Testing Isotropy in the Universe using Photometric and Spectroscopic Data from the SDSS. Mon. Not. Royal Astron. Soc., vol. 483, pp.2453–64.Google Scholar
Saunders, W., Sutherland, W., Maddox, S., Keeble, O., Oliver, S., Rowan-Robinson, M., McMahon, R., Efstathiou, G., Tadros, H., White, S., Frenk, C., Carraminana, A., & Hawkins, M. (2000). The PSCz Catalogue. Mon. Not. Royal Astron. Soc., 317, pp. 5563.Google Scholar
Scott, E., Shane, C., & Swanson, M. (1954). Comparison of the Synthetic and Actual Distribution of Galaxies on a Photographic Plate. Astrophys. J., 119, 91112.Google Scholar
Shaikh, S., Mukherjee, S., Das, S., Wandelt, B., & Souradeep, T. (2019). Joint Bayesian Analysis of Large angular scale CMB Temperature Anomalies. J. Cosmol. Astroparticle Phys., 08, 007.Google Scholar
Shane, C. (1970). Distribution of Galaxies. In Galaxies and the Universe, ed. Sandage, A, Sandage, M, & Kristian, J (Chicago, IL: University of Chicago Press), pp.647–63.Google Scholar
Shane, C. & Wirtanen, C. (1948). The Distribution of Extragalactic Nebulae. Lick Obs. Bulletin, 20, pp.91110.Google Scholar
Shane, C. & Wirtanen, C. (1954). The Distribution of Extragalactic Nebulae. Astron. J., 59, pp. 285304.Google Scholar
Shapley, H. (1919). Studies Based on the Colors and Magnitudes in Stellar Clusters. Twelfth Paper: Remarks on the Arrangement of the Sidereal Universe. Astrophys. J., 49, pp.311–33.Google Scholar
Shapley, H. (1930a). The Super-Galaxy Hypothesis. Harvard College Obs. Circ., 350, pp.17.Google Scholar
Shapley, H. (1930b). Note on a Remote Cloud of Galaxies in Centaurus. Harvard College Obs. Bulletin, 874, pp.912.Google Scholar
Shapley, H. (1934). A First Search for a Metagalactic Gradient. Harvard College Obs. Bulletin, 894, pp. 513.Google Scholar
Shapley, H. (1938). A Metagalactic Density Gradient. Publ. Natl. Acad. Sci., 24, pp.282–7.Google Scholar
Shapley, H. & Ames, A. (1932a). A Survey of the External Galaxies Brighter that the Thirteenth Magnitude. Ann. Astron. Observat. Harvard College, 88, No. 2, pp.4375. (Shapley-Ames Catalogue).Google Scholar
Shapley, H. & Ames, A. (1932b). Photometric Survey of the Nearer Extragalactic Nebulae. Harvard College Observat. Bull., No. 887, pp.16.Google Scholar
Shaya, E., Tully, R., Hoffman, Y., & Pomarede, D. (2017). Action Dynamics of the Local Supercluster. Astrophys. J., 850, pp.207–22.Google Scholar
Sheth, R. & Van de Weygaert, R. (2004). A Hierarchy of Voids: Much Ado about Nothing. Mon. Not. Royal Astron. Soc., 350, pp.517–38.Google Scholar
Slipher, V. (1917). Nebulae. Proc. American Philosophical Society, 56, pp.403–9.Google Scholar
Smith, R. (1982). The Expanding Universe: Astronomy’s “Great Debate” 1900–1931 (Cambridge, UK: Cambridge University Press).Google Scholar
Soneira, R. & Peebles, P. (1978). A Computer Model Universe – Simulation of the Nature of the Galaxy Distribution in the Lick Catalog. Astron. J., 83, pp.845–60.Google Scholar
Steinicke, W. (2010). Nebulae and Star Clusters: From Herschel to Dreyer’s New General Catalogue (Cambridge University Press: Cambridge, England).Google Scholar
Sunyaev, R. & Zeldovich, Ya. (1972). Formation of Clusters of Galaxies; Protocluster Fragmentation and Intergalactic Gas Heating. Astron. & Astrophys., 20, pp.189200.Google Scholar
Sutter, P., Lavaux, G., Wandelt, B., & Weinberg, D. (2012). A Public Void Catalog from the SDSS DR7 Galaxy Redshift Surveys Based on the Watershed Transform. Astrophys. J., 761, pp.4456.Google Scholar
Szalay, A. & Marx, G. (1976). Neutrino Rest Mass from Cosmology. Astron. & Astrophys., 49, pp.437–41.Google Scholar
Tarenghi, M., Tifft, W., Chincarini, G., Rood, H., & Thompson, L. (1978). The Structure of the Hercules Supercluster. In The Large Scale Structure of the Universe, IAU Symposium No. 79, eds. Longair, M & Einasto, J. (Dordrecht, Netherlands: D. Reidel Publishing Co.), pp. 263–5.Google Scholar
Tarenghi, M., Tifft, W., Chincarini, G., Rood, H., & Thompson, L. (1979). The Hercules Supercluster. I. Basic Data. Astrophys. J., 234, pp.793801.Google Scholar
Tarenghi, M., Tifft, W., Chincarini, G., Rood, H., & Thompson, L. (1979) . The Hercules Supercluster. II. Analysis. Astrophys. J., 235, pp.724–42.Google Scholar
Thompson, L. (1976). Angular Momentum Properties of Galaxies in Rich Clusters. Astrophys. J., 209, pp. 2234.Google Scholar
Thompson, L. (1977). Possible Ring Galaxies near Rich Clusters. Astrophys. J., 211, pp.684–92.Google Scholar
Thompson, L. (1983). Markarian Galaxies and Voids in the Galaxy Distribution. Astrophys. J. Lett., 266, pp.446–50.Google Scholar
Thompson, L. (2013). Slipher and the Development of the Nebular Spectrograph. In Origins of the Expanding Universe: 1912–1932, eds. Way, M & Hunter., D Astron. Soc. Pacific. Conference Series, 471, pp.135–42.Google Scholar
Thompson, L. & Gardner, C. (1987). Experiments on Laser Guide Stars at Mauna Kea Observatory for Adaptive Imaging in Astronomy. Nature, 238, pp.229–31.Google Scholar
Thompson, L. & Gregory, S. (1978). Is the Coma Cluster a Zeldovich Disk? Astrophys. J., 220, 809–13.Google Scholar
Tifft, W. (1972a). Two Dimensional Area Scanning with Image Dissectors. Pub. Astron. Soc. Pacific, 84, pp.137–44.Google Scholar
Tifft, W. (1972b). The Correlation of Redshift with Magnitude and Morphology in the Coma Cluster. Astrophys. J., 175, pp.613–35.Google Scholar
Tifft, W. (1976). Discrete States of Redshift & Galaxy Dynamics. I. Internal Motions in Single Galaxies. Astrophys. J., 206, pp.3856.Google Scholar
Tifft, W. & Gregory, S. (1976). Direct Observations of the Large-Scale Distribution of Galaxies. Astrophys. J., 205, pp.696708.Google Scholar
Tifft, W & Gregory, S. (1978). Observations of the Large Scale Distribution of Galaxies. In The Large Scale Structure of the Universe, IAU Symposium No. 79, eds. Longair, M & Einasto, J. (Dordrecht, Netherlands: D. Reidel Publishing Co.), pp. 267–9.Google Scholar
Tinker, J. & Conroy, C. (2009). The Void Phenomenon Explained. Astrophys. J., 691, pp.633–9.Google Scholar
Tolman, R. (1931). On the Problem of the Entropy of the Universe as a Whole. Phys. Rev., 37, pp.1639–60.Google Scholar
Tolman, R. (1934). Effect of Inhomogeneity on Cosmological Models. Proc. Natl. Acad., Sci., 20, pp.169–76.Google Scholar
Tremaine, S. & Gunn, J. (1979). Dynamical Role of Light Leptons in Cosmology. Phys. Rev. Lett., 42, pp.407–10.Google Scholar
Trumpler, R. (1930). Absorption of Light in the Galactic System. Pub. Astron. Soc. Pacific, 42, pp.214–27.Google Scholar
Tully, R. (1982). The Local Supercluster. Astrophys. J., 257, pp.389422.Google Scholar
Tully, R. & Fisher, J. (1978a). Nearby Small Groups of Galaxies. In The Large Scale Structure of the Universe, IAU Symposium No. 79, eds. Longair, M & Einasto, J. (Dordrecht, Netherlands: D. Reidel Publishing Co.), pp.3148.Google Scholar
Tully, R. & Fisher, J. (1978b). A Tour of the Local Supercluster. In The Large Scale Structure of the Universe, IAU Symposium No. 79, eds. Longair, M & Einasto., J (Dordrecht, Netherlands: D. Reidel Publishing Co.), pp. 214–16.Google Scholar
Tully, R. & Fisher, J. (1987). Nearby Galaxies Atlas (Cambridge, UK: Cambridge University Press).Google Scholar
Tully, R., Pomarede, D., Graziana, R., Courtois, H., Hoffman, Y., & Shaya, E. (2019). Cosmicflows-3: Cosmography of the Local Void. Astrophys. J., 880, i.d.24, 14 pp.Google Scholar
Tully, R., Shaya, E., Karachentsev, I., Courtois, H., Kocevski, D., Ruzzi, L., & Peel, A. (2008). Our Peculiar Motion away from the Local Void. Astrophys. J., 676, pp.184205.Google Scholar
Yu, J. & Peebles, P. (1969). Superclusters of Galaxies. Astrophys. J., 158, pp.103–13.Google Scholar
van de Weygaert, R., Kreckel, K., Platen, E., ; 9 co-authors. (2011). The Void Galaxy Survey. Astrophys. Space Sci. Proceedings, 27, pp.1725.Google Scholar
de Vaucouluers, G. (1953). Evidence for a Local Supergalaxy. Astron. J., 58, pp.30–2.Google Scholar
de Vaucouleurs, G. (1956). The Distribution of Bright Galaxies and the Local Supergalaxy. Vistas in Astronomy, 2, 1584 (London, England: Pergamon Press), pp.1584–606.Google Scholar
de Vaucouleurs, G. (1970). The Case for a Hierarchical Cosmology. Science, 167, pp.1203–13.Google Scholar
de Vaucouleurs, G. (1971). The Large Scale Distribution of Galaxies and Clusters of Galaxies., Pub. Astron. Soc. Pacific., 83, pp.113–43.Google Scholar
de Vaucouleurs, G. (1988). Interview of G. de Vaucouleurs by Alan Lightman on 1988 November 7, Niels Bohr Library & Archives, American Institute of Physics, College Park, MD USA, www.aip.org/history-programs/niels-bohr-library/oral-histories/33930Google Scholar
de Vaucouleurs, G. (1991). Interview of Gerard de Vaucouleurs by Ronald Doel on 1991 November 23, Niels Bohr Library & Archives, American Institute of Physics, College Park, MD USA, www.aip.org/history-programs/niels-bohr-library/oral-histories/31929–2Google Scholar
Vettolani, G., De Souza, R., Marano, B., & Chincarini, G. (1985). The Distribution of Voids. Astron. Astrophys., 144, pp.506–13.Google Scholar
Vogeley, M. (1993). Statistical Measures of the Large-Scale Structure. Ph.D. thesis, Harvard University.Google Scholar
Vogeley, M., Geller, M., & Huchra, J. (1991). Void Statistics of the CfA Redshift Survey. Astrophys. J., 382, pp.4454.Google Scholar
Vorontsov-Velyaminov, B. (1987). Extragalactic Astronomy: Revised and Expanded English Edition. Translated from the Russian by R. Rodman. Edited by Sharp, N. Supplemented by D. Meloy Elmergreen. With contributions by H. Bushouse & H. Corwin (Chur, Switzerland: Harwood Academic Publishers), pp. 483484.Google Scholar
Wagoner, R., Fowler, W., & Hoyle, F. (1967). On the Synthesis of Elements at Very High Temperature. Astrophys. J., 148, pp. 349.Google Scholar
Weistrop, D. & Downes, R, R. 1988). Spectra of Galaxies in the Case Low-Dispersion Sky Survey in the Direction of the Bootes Void. Astrophys. J., 331, pp.172–80 .Google Scholar
Wertz, J. (1970). Newtonian Hierarchical Cosmology. Ph.D. Thesis, Univ. of Texas.Google Scholar
Wertz, J. (1971). A Newtonian Big-Bang Hierarchical Cosmological Model. Astrophys. J., 164, pp.227–36.Google Scholar
Whitbourn, J. & Shanks, T. (2016). The Galaxy Luminosity Function and the Local Hole. Mon. Not. Royal Astron. Soc., 459, pp.496507.Google Scholar
White, S. (1976). The Dynamics of Rich Clusters of Galaxies. Mon. Not. Royal Astron. Soc., 177, pp.717–33.Google Scholar
White, S. (1979). The Hierarchy of Correlation Functions and Its Relation to Other Measures of Galaxy Clustering. Mon. Not. Royal Astron. Soc., 186, pp. 145–54.Google Scholar
White, S. (2017). Reconstructing the Universe in a Computer: Physical Understanding in the Digital Age, arXiv:1806.06348.Google Scholar
White, S., Frenk, C., & Davis, M. (1983). Clustering in a Neutrino-Dominated Universe. Astrophys. J., 274, L1L5.Google Scholar
White, S., Frenk, C. & Davis, M., & Efstathiou, G. (1987). Clusters, Filaments, and Voids in a Universe Dominated by Cold Dark Matter. Astrophys. J., 313, pp. 505–16. (WFDE).Google Scholar
White, S. & Rees, M., (1978). Core Condensation in Heavy Halos – A Two-Stage Theory for Galaxy Formation and Clustering. Mon. Not. Royal Astron. Soc., 183, pp. 341–58.Google Scholar
Yo, H-J. (2017). Does the Universe Really Expand, or Does the Size of Matter Shrink Instead?. J. Modern Phys., 8, pp.2077–86.Google Scholar
York, D., Adelman, J., Anderson, J. Jr., & 142 other coauthors. (2000). The Sloan Digital Sky Survey: Technical Summary. Astron. J., 120, pp.1579–87.Google Scholar
Zeldovich, Y. (1970). Gravitational Instability: An Approximate Theory for Large Density Perturbations. Astron. Astrophys., 5, pp. 84–9.Google Scholar
Zeldovich, Y. (1972). A Hypothesis, Unifying the Structure and the Entropy of the Universe. Mon. Not. Royal Astron., 160, pp. 1P–3P.Google Scholar
Zeldovich, Y. (1983). Modern Cosmology. Highlights of Astronomy, v. 6, in Proceedings of the 18th IAU General Assembly . ed. West, R (Dordrecht: Netherlands: D. Reidel), pp.2952.Google Scholar
Zeldovich, Y., Einasto, J., & Shandarin, S. (1982). Giant Voids in the Universe. Nature, 300, pp. 407–13.Google Scholar
Zeldovich, Y. & Sunyaev, R. (1980). Astrophysical Implications of the Neutrino Rest Mass. I. The Universe. Astron. Lett. (Russian), 6, pp.451–56.Google Scholar
Zwicky, F. (1933). Die Rotverschiebung von Extragalaktischen Nebeln. Helvetica Physics, 6, pp.110–27.Google Scholar
Zwicky., F. (1937). On the Masses of Nebulae and of Clusters of Nebulae. Astrophys. J., 86, pp.217–46.Google Scholar
Zwicky, F. (1957). Morphological Astronomy (Berlin, Germany: Springer-Verlag).Google Scholar
Zwicky, F. (1959). Multiple Galaxies. In Encyclopedia of Physics, 53, ed. Flugge, S (Berlin, Germany: Springer Verlag, 1959.), p. 396.Google Scholar
Zwicky, F., Herzog, E., & Wild, P. (1961). Catalogue of Galaxies and of Clusters of Galaxies. 1, p. 24 (Zurich, Switzerland: California Institute of Technology).Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Laird A. Thompson, University of Illinois, Urbana-Champaign
  • Book: The Discovery of Cosmic Voids
  • Online publication: 02 December 2020
  • Chapter DOI: https://doi.org/10.1017/9781108867504.016
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Laird A. Thompson, University of Illinois, Urbana-Champaign
  • Book: The Discovery of Cosmic Voids
  • Online publication: 02 December 2020
  • Chapter DOI: https://doi.org/10.1017/9781108867504.016
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Laird A. Thompson, University of Illinois, Urbana-Champaign
  • Book: The Discovery of Cosmic Voids
  • Online publication: 02 December 2020
  • Chapter DOI: https://doi.org/10.1017/9781108867504.016
Available formats
×