Published online by Cambridge University Press: 06 August 2009
The mechanisms of homologous recombination in bacteria (described in Chapter 1) are ancient and highly conserved. The basic requirement is two DNA sequences that share sequence identity over a minimum distance, typically at least 40 to 50 nucleotides (Shen and Huang, 1986; Watt et al., 1985). These identical sequences are brought together to create, and eventually resolve, a recombinant molecule, by the actions of enzymes such as RecA, RecBCD/RecF, and RuvABC, or their equivalents (Kowalczykowski et al., 1994). Homologous recombination serves several purposes in the cell. The most fundamental of these, according to current understanding, is to facilitate the completion of chromosome replication (Cox, 2001; Smith, 2001). Replication forks frequently stall or break, and homologous recombination can solve this problem using the sister homolog as a template (Kuzminov, 1995). A related problem is that after replication bacterial chromosomes are frequently entangled and require homologous recombination to disentangle them.
In addition to its housekeeping roles, homologous recombination can shuffle the order of genes in a genome by recombination between repetitive sequences. It can also facilitate the incorporation of foreign DNA, although this is also achieved by site-specific recombination (Ochman et al., 2000). Lateral DNA transfer in bacteria can alleviate the effects of Muller's ratchet (Andersson and Hughes, 1996; Muller, 1964), and provide bacteria with access to a very large gene pool potentially containing important innovative properties (Ochman et al., 2000).
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.