Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T17:06:54.720Z Has data issue: false hasContentIssue false

9 - Pathogenicity islands

Published online by Cambridge University Press:  06 August 2009

Bianca Hochhut
Affiliation:
Institut für molekulare Infektionsbiologie, Universität Würzburg
Jörg Hacker
Affiliation:
Institut für molekulare Infektionsbiologie, Universität Würzburg
Peter Mullany
Affiliation:
University College London
Get access

Summary

Infections caused by microbial pathogens are a major global health problem not only in developing countries, but also in the industrial world. Similarly, there are numerous diseases of animals and plants due to bacterial infections. Pathogenic bacteria can be found among various bacterial species, and the determination of the factors that are responsible for virulence of a certain bacterium has long been one of the main interests in microbial research. In the early 1990s, new insights into the evolution of bacterial pathogens were gained by the development of the concept of pathogenicity islands (PAIs), which are the topic of this chapter. Since then, the advances in genomics have led into a new area of pathogen research, with increasing knowledge of completely sequenced bacterial genomes.

The prokaryotic genome can be generally divided into a core gene pool encompassing those genes that encode essential functions, such as DNA replication, cell division, nucleotide turnover, and key metabolic pathways, and a flexible gene pool containing genes that are only required under certain environmental conditions. The core genes are normally encoded in stable regions of the chromosome and exhibit a relatively homogeneous G+C content. In contrast, genes of the flexible gene pool are often found on mobile genetic elements and are preferentially transmitted between different organisms by natural transformation (the uptake of naked DNA), phage-mediated transduction, or conjugation (the unidirectional transfer of DNA from a donor to a recipient via intimate cell-to-cell contact).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barksdale, W. L., and Pappenheimer, A. M. Jr. (1954). Phage–host relationships in nontoxigenic and toxigenic diphtheria bacilli. J. Bacteriol. 67, 220–232Google Scholar
Bloomfield, G. A., Whittle, G., McDonagh, M. B., Katz, M. E., and Cheetham, B. F. (1997). Analysis of sequences flanking the vap region of Dichelobacter nodosus: Evidence for multiple integration events, a killer system, and a new genetic element. Microbiology 143, 553–562CrossRefGoogle Scholar
Blum, G., Ott, M., Lischewski, A., Ritter, A., Imrich, H., Tschäpe, H., and Hacker, J. (1994). Excision of large DNA regions termed pathogenicity islands from tRNA-specific loci in the chromosome of an Escherichia coli wild-type pathogen. Infect. Immun. 62, 606–614Google ScholarPubMed
Brown, J. S., Gilliland, S. M., and Holden, D. W. (2001). A Streptococcus pneumoniae pathogenicity island encoding an ABC transporter involved in iron uptake and virulence. Mol. Microbiol. 40, 572–585CrossRefGoogle ScholarPubMed
Buchrieser, C., Brosch, R., Bach, S., Guiyoule, A., and Carniel, E. (1998). The high-pathogenicity island of Yersinia pseudotuberculosis can be inserted into any of the three chromosomal asn tRNA genes. Mol Microbiol 30, 965–978CrossRefGoogle ScholarPubMed
Burns, D. L. (1999). Biochemistry of type IV secretion. Curr. Opin. Microbiol. 2, 25–29CrossRefGoogle ScholarPubMed
Carniel, E. (2001). The Yersinia high-pathogenicity island: An iron-uptake island. Microbes Infect. 3, 561–569CrossRefGoogle Scholar
Censini, S., Lange, C., Xiang, Z., Crabtree, J. E., Ghiara, P., Borodovsky, M.. (1996). cag, A pathogenicity island of Helicobacter pylori, encodes type-I specific and disease-associated virulence factors. Proc. Natl. Acad. Sci. U S A 93, 14648–14653CrossRefGoogle ScholarPubMed
Cheetham, B. F., and Katz, M. E. (1995). A role for bacteriophages in the evolution and transfer of bacterial virulence determinants. Mol Microbiol 18, 201–208CrossRefGoogle Scholar
Christie, P. J. (2001). Type IV secretion: Intercellular transfer of macromolecules by systems ancestrally related to conjugation machines. Mol Microbiol 40, 294–305CrossRefGoogle ScholarPubMed
Dillard, J. P., and Seifert, H. S. (2001). A variable genetic island specific for Neisseria gonorrhoeae is involved in providing DNA for natural transformation and is found more often in disseminated infection isolates. Mol Microbiol 41, 263–277CrossRefGoogle ScholarPubMed
Dobrindt, U., Blum-Oehler, G., Nagy, G., Schneider, G., Johann, A., Gottschalk, G., and Hacker, J. (2002a). Genetic structure and distribution of four pathogenicity islands (PAI I536-PAI IV536) of uropathogenic Escherichia coli strain 536. Infect. Immun. 70, 6365–6372CrossRefGoogle Scholar
Dobrindt, U., Emödy, L., Gentschev, I., Goebel, W., and Hacker, J. (2002b). Efficient expression of the α-haemolysin determinant in the uropathogenic Escherichia coli strain 536 requires the leuX-encoded tRNA5Leu. Mol. Genet. Genomics 267, 370–379Google Scholar
Dobrindt, U., and Hacker, J. (1999). Plasmids, phages and pathogenicity islands: lessons on the evolution of bacterial toxins. In Alouf, J. and Freer, J., eds. The comprehensive sourcebook of bacterial protein toxins (New York: Academic Press), pp. 3–23Google Scholar
Dobrindt, U., and Hacker, J. (2001). Whole genome plasticity in pathogenic bacteria. Curr. Opin. Microbiol. 4, 550–557CrossRefGoogle ScholarPubMed
Finn, C. W. Jr., Silver, R. P., Habig, W. H., Hardgree, M. C., Zon, G., and Garon, C. F. (1984). The structural gene for tetanus neurotoxin is on a plasmid. Science 224, 881–884CrossRefGoogle ScholarPubMed
Galan, J. E., and Collmer, A. (1999). Type III secretion machines: Bacterial devices for protein delivery into host cells. Science 284, 1322–1328Google ScholarPubMed
Groisman, E. A., Blanc-Potard, A.-B., and Uchiya, K. (1999). Pathogenicity islands and the evolution of Salmonella virulence. In Kaper, J. B. and Hacker, J., eds. Pathogenicity islands and other mobile virulence elements (Washington, DC: ASM Press), pp. 127–150Google Scholar
Groisman, E. A., and Ochman, H. (1996). Pathogenicity islands: Bacterial evolution in quantum leaps. Cell 87, 791–794CrossRefGoogle ScholarPubMed
Groisman, E. A., and Ochman, H. (1997). How Salmonella became a pathogen. Trends Microbiol. 5, 343–349CrossRefGoogle ScholarPubMed
Hacker, J., Bender, L., Ott, M., Wingender, J., Lund, B., Marre, R., and Goebel, W. (1990). Deletions of chromosomal regions coding for fimbriae and hemolysins occur in vitro and in vivo in various extraintestinal Escherichia coli isolates. Microb. Pathog. 8, 213–225CrossRefGoogle ScholarPubMed
Hacker, J., Blum-Oehler, G., Janke, B., Nagy, G., and Goebel, W. (1999). Pathogenicity islands of extraintestinal Escherichia coli. In Kaper, J. B. and Hacker, J., eds. Pathogenicity islands and other mobile virulence elements (Washington, DC: ASM Press), pp. 59–76Google Scholar
Hacker, J., Blum-Oehler, G., Mühldorfer, I., and Tschäpe, H. (1997). Pathogenicity islands of virulent bacteria: Structure, function and impact on microbial evolution. Mol Microbiol 23, 1089–1097CrossRefGoogle ScholarPubMed
Hacker, J., and Carniel, E. (2001). Ecological fitness, genomic islands and bacterial pathogenicity. EMBO Rep. 2, 376–381CrossRefGoogle ScholarPubMed
Hacker, J., and Kaper, J. B. (1999). The concept of pathogenicity islands. In Kaper, J. B. and Hacker, J., eds. Pathogenicity islands and other mobile virulence elements (Washington, DC: ASM Press), pp. 1–11Google Scholar
Hacker, J., and Kaper, J. B. (2000). Pathogenicity islands and the evolution of microbes. Annu. Rev. Microbiol. 54, 641–679CrossRefGoogle ScholarPubMed
Hochhut, B., Jahreis, K., Lengeler, J. W., and Schmid, K. (1997). CTnscr94, a conjugative transposon found in enterobacteria. J Bacteriol 179, 2097–2102CrossRefGoogle ScholarPubMed
Hochhut, B., and Waldor, M. K. (1999). Site-specific integration of the conjugal Vibrio cholerae SXT element into prfC. Mol Microbiol 32, 99–110CrossRefGoogle ScholarPubMed
Iriarte, M., and Cornelis, G. R. (1999). The 70-kilobase virulence plasmid of yersiniae. In Kaper, J. B. and Hacker, J., eds. Pathogenicity islands and other mobile virulence elements (Washington, DC: ASM Press), pp. 91–126Google Scholar
Kaper, J. B., Mellies, J. L., and Nataro, J. P. (1999). Pathogenicity islands and other mobile genetic elements of diarrheagenic Escherichia coli. In Kaper, J. B. and Hacker, J., eds. Pathogenicity islands and other mobile virulence elements (Washington, DC: ASM Press), pp. 33–58Google Scholar
Karaolis, D. K. R., Johnson, J. A., Bailey, C. C., Boedeker, E. C., Kaper, J. B., and Reeves, P. R. (1998). A Vibrio cholerae pathogenicity island associated with epidemic and pandemic strains. Proc. Natl. Acad. Sci. U S A 95, 3134–3139CrossRefGoogle ScholarPubMed
Karaolis, D. K. R., Somara, S., Maneval, D. R. Jr., Johnson, J. A., and Kaper, J. B. (1999). A bacteriophage encoding a pathogenicity island, a type IV pilus and a phage receptor in cholera bacteria. Nature 399, 375–379CrossRefGoogle Scholar
Kim, J. F., and Alfano, J. R. (2002). Pathogenicity islands and virulence plasmids of bacterial plant pathogens. In Hacker, J. and Kaper, J. B., eds. Pathogenicity islands and the evolution of pathogenic microbes (Berlin Heidelberg: Springer-Verlag), pp. 127–147Google Scholar
Klose, K. E. (2001). Regulation of virulence in Vibrio cholerae. Int. J. Med. Microbiol. 291, 81–88CrossRefGoogle ScholarPubMed
Lee, C. A. (1996). Pathogenicity islands and the evolution of bacterial pathogens. Infect. Agents Dis. 5, 1–7Google ScholarPubMed
Lindqvist, B. H., Deho, G., and Calendar, R. (1993). Mechanisms of genome propagation and helper exploitation by satellite phage P4. Microbiol. Rev. 57, 683–702Google ScholarPubMed
Lindsay, J. A., Ruzin, A., Ross, H. F., Kurepina, N., and Novick, R. P. (1998). The gene for toxic shock toxin is carried by a family of mobile pathogenicity islands in Staphylococus aureus. Mol Microbiol 29, 527–543CrossRefGoogle Scholar
Lucas, R. L., and Lee, C. A. (2000). Unravelling the mysteries of virulence gene regulation in Salmoella typhimurium. Mol Microbiol 36, 1024–1033CrossRefGoogle ScholarPubMed
Mellies, J. L., Elliott, S. J., Sperandio, V., Donnenberg, M. S., and Kaper, J. B. (1999). The Per regulon of enteropathogenic Escherichia coli: Identification of a regulatory cascade and a novel transcriptional activator, the locus of enterocyte effacement (LEE)-encoded regulator (Ler). Mol Microbiol 33, 296–306CrossRefGoogle Scholar
Middendorf, B., Hochhut, B., Leipold, K., Dobrindt, U., Blum-Oehler, G., and Hacker, J. (2004). Instability of pathogenicity islands in uropathogenic Escherichia coli 536. J Bacteriol 186, 3086–3096CrossRefGoogle ScholarPubMed
Mikesell, P., Ivins, B. E., Ristroph, J. D., and Dreier, T. M. (1983). Evidence for plasmid-mediated toxin production in Bacillus anthracis. Infect. Immun. 39, 371–376Google ScholarPubMed
Morschhäuser, J., Vetter, V., Emödy, L., and Hacker, J. (1994). Adhesin regulatory genes within large, unstable DNA regions of pathogenic Escherichia coli: Cross-talk between different adhesin gene clusters. Mol Microbiol 11, 555–566CrossRefGoogle ScholarPubMed
Moss, J. E., Cardozo, T. J., Zychlinsky, A., and Groisman, E. A. (1999). The selC-associated SHI-2 pathogenicity island of Shigella flexneri. Mol Microbiol 33, 74–83CrossRefGoogle ScholarPubMed
Odenbreit, S., and Haas, R. (2002). Helicobacter pylori: Impact of gene transfer and the role of the cag pathogenicity island for host adaptation and virulence. In Hacker, J. and Kaper, J. B., eds. Pathogenicity islands and the evolution of pathogenic microbes (Berlin Heidelberg: Springer-Verlag), pp. 1–22Google Scholar
O'Shea, Y. A., and Boyd, E. F. (2002). Mobilization of the Vibrio pathogenicity island between Vibrio cholerae isolates mediated by CP-T1 generalized transduction. FEMS Microbiol. Lett. 214, 153–157CrossRefGoogle Scholar
Parsot, C., and Sansonetti, P. J. (1999). The virulence plasmid of shigellae: An archipelago of pathogenicity islands? In Kaper, J. B. and Hacker, J., eds. Pathogenicity islands and other mobile virulence elements (Washington, DC: ASM Press), pp. 151–165Google Scholar
Rajakumar, K., Sasakawa, C., and Adler, B. (1997). Use of a novel approach, termed island probing, identifies the Shigella flexneri she pathogenicity island which encodes a homolog of the immunoglobulin A protease-like family of proteins. Infect. Immun. 65, 4606–4614Google ScholarPubMed
Rakin, A., Noelting, C., Schropp, P., and Heesemann, J. (2001). Integrative module of the high-pathogenicity island of Yersinia. Mol Microbiol 39, 407–415CrossRefGoogle ScholarPubMed
Reiter, W.-D., Palm, P., and Yeats, S. (1989). Transfer RNA genes frequently serve as integration sites for prokaryotic genetic elements. Nucleic Acids Res. 17, 1907–1914CrossRefGoogle ScholarPubMed
Ritter, A., Gally, D. L., Olsen, P. B., Dobrindt, U., Friedrich, A., Klemm, P., and Hacker, J. (1997). The PAI-associated leuX specific tRNA5Leu affects type 1 fimbriation in pathogenic E. coli by control of FimB recombinase expression. Mol Microbiol 25, 871–882CrossRefGoogle ScholarPubMed
Ruzin, A., Lindsay, J., and Novick, R. P. (2001). Molecular genetics of SaPI1—A mobile pathogenicity island in Staphylococcus aureus. Mol Microbiol 41, 365–377CrossRefGoogle ScholarPubMed
Salyers, A. A., Shoemaker, N. B., Stevens, A. M., and Li, L.-Y. (1995). Conjugative transposons: An unusual and diverse set of integrated gene transfer elements. Microbiol. Rev. 59, 579–590Google Scholar
Schubert, S., Dufke, S., Sorsa, J., and Heesemann, J. (2004). A novel integrative and conjugative element (ICE) of Escherichia coli: the putative progenitor of the Yersinia high-pathogenicity island. Mol Microbiol 51, 837–848CrossRefGoogle ScholarPubMed
Scott, J. R., and Churchward, G. G. (1995). Conjugative transposition. Ann. Rev. Microbiol. 49, 367–397CrossRefGoogle ScholarPubMed
Segal, E. D., Cha, J., Lo, J., Falkow, S., and Tompkins, L. S. (1999). Altered states: Involvement of phosphorylated CagA in the induction of host cellular growth changes by Helicobacter pylori. Proc. Natl. Acad. Sci. U S A 96, 14559–14564CrossRefGoogle ScholarPubMed
Shankar, N., Baghdayan, A. S., and Gilmore, M. S. (2002). Modulation of virulence within a pathogenicity island in vancomycin-resistant Enterococcus faecalis. Nature 417, 746–750CrossRefGoogle Scholar
Sullivan, J. T., and Ronson, C. W. (1998). Evolution of rhizobia by acquisition of a 500 kb symbiosis island that integrates into a phe-tRNA gene. Proc. Natl. Acad. Sci. U S A 95, 5145–5149CrossRefGoogle ScholarPubMed
Tauschek, M., Strugnell, R. A., and Robins-Browne, R. M. (2002). Characterization and evidence of mobilization of the LEE pathogenicity island of rabbit-specific strains of enteropathogenic Escherichia coli. Mol Microbiol 44, 1533–1550CrossRefGoogle ScholarPubMed
Thorne, C. B. (1985). Genetics of Bacillus anthracis. In Lieve, L., Bonventre, P. F., Morello, J. A., Schlesinger, S., Silver, S. D., and Wu, H. C., eds. Microbiology-85 (Washington, DC: ASM Press), pp. 56–62Google Scholar
Vokes, S. A., Reeves, S. A., Torres, A. G., and Payne, S. M. (1999). The aerobactin iron transport system genes in Shigella flexneri are present within a pathogenictiy island. Mol Microbiol 33, 63–73CrossRefGoogle ScholarPubMed
Waldor, M. K., and Mekalanos, J. J. (1996). Lysogenic conversion by a filamentous phage encoding cholera toxin. Science 272, 1910–1914CrossRefGoogle ScholarPubMed
Williams, K. P. (2002). Integration sites for genetic elements in prokaryotic tRNA and tmRNA genes: Sublocation preference of integrase subfamilies. Nucleic Acids Res. 30, 866–875CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Pathogenicity islands
    • By Bianca Hochhut, Institut für molekulare Infektionsbiologie, Universität Würzburg, Jörg Hacker, Institut für molekulare Infektionsbiologie, Universität Würzburg
  • Edited by Peter Mullany, University College London
  • Book: The Dynamic Bacterial Genome
  • Online publication: 06 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511541544.009
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Pathogenicity islands
    • By Bianca Hochhut, Institut für molekulare Infektionsbiologie, Universität Würzburg, Jörg Hacker, Institut für molekulare Infektionsbiologie, Universität Würzburg
  • Edited by Peter Mullany, University College London
  • Book: The Dynamic Bacterial Genome
  • Online publication: 06 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511541544.009
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Pathogenicity islands
    • By Bianca Hochhut, Institut für molekulare Infektionsbiologie, Universität Würzburg, Jörg Hacker, Institut für molekulare Infektionsbiologie, Universität Würzburg
  • Edited by Peter Mullany, University College London
  • Book: The Dynamic Bacterial Genome
  • Online publication: 06 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511541544.009
Available formats
×