Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-14T22:47:44.226Z Has data issue: false hasContentIssue false

20 - 3DVAR: a Bayesian formulation

from PART V - DATA ASSIMILATION: STOCHASTIC/STATIC MODELS

Published online by Cambridge University Press:  18 December 2009

John M. Lewis
Affiliation:
National Severe Storms Laboratory, Oklahoma
S. Lakshmivarahan
Affiliation:
University of Oklahoma
Sudarshan Dhall
Affiliation:
University of Oklahoma
Get access

Summary

This chapter develops the solution to the retrieval problem (stated in Chapter 18) using the Bayesian framework and draws heavily from Part III (especially Chapters 16 and 17). The method based on this framework has also come to be known as the three dimensional variational method – 3DVAR for short. This class of methods is becoming the industry standard for use at the operational weather prediction centers around the world (Parrish and Derber (1992), Lorenc (1995), Gauthier et al. (1996), Cohn et al. (1998), Rabier et al. (1998). Andersson et al. (1998)). This global method does not require any form of data selection strategy which local methods depend on.

From the algorithmic perspective, there are two ways of approach for this problem – use of the model space (ℝn) or use of the observation space (ℝm) (refer to Chapter 17). While these two approaches are logically equivalent, there is a computational advantage to model space when n < m, whereas the advantage goes to observation space when n > m.

In Section 20.1, we derive the Bayesian framework for the problem. The straightforward solution for the special case when the forward operator is linear is covered in Section 20.2. The following Section 20.3 brings out the duality between the model space and the observation space formulations using the notion of preconditioning. The general case of nonlinear method is treated in the next two sections with the second-order method in Section 20.4 and the first-order method in Section 20.5. The first-order method for the nonlinear case closely resembles the linear formulation.

Type
Chapter
Information
Dynamic Data Assimilation
A Least Squares Approach
, pp. 322 - 339
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×