Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-28T06:54:58.476Z Has data issue: false hasContentIssue false

26 - The 4DVAR problem: a statistical and a recursive view

from PART VI - DATA ASSIMILATION: DETERMINISTIC/DYNAMIC MODELS

Published online by Cambridge University Press:  18 December 2009

John M. Lewis
Affiliation:
National Severe Storms Laboratory, Oklahoma
S. Lakshmivarahan
Affiliation:
University of Oklahoma
Sudarshan Dhall
Affiliation:
University of Oklahoma
Get access

Summary

In Chapters 22–25 we have discussed the solution to the off-line, 4DVAR problem of assimilating a given set of observations in deterministic/dynamic models using the classical least squares (Part II) method. In this framework, the adjoint method facilitates the computation of the gradient of the least squares objective function, which when used in conjunction with the minimization methods described in Part III, leads to the optimal initial conditions for the dynamic model. Even in the ideal case of a perfect dynamic model (error free model), the computed values of the optimal initial condition are noisy in response to erroneous observations. The deterministic approach in Chapter 22–25 are predicated on the assumption that the statistical properties of the noise corrupting the observations are not known a priori. The question is: if we are given additional information, say the second-order properties (mean and covariance) of the noisy observations, how can we use this information to derive the second-order properties of the optimal initial conditions? This can only be achieved by reliance on the statistical least squares method described in Chapter 14.

The goal of this chapter is two fold. The first is to apply the statistical least squares method of Chapter 14. More specifically, we derive explicit expressions for the unbiased, optimal (least squares) estimate of the initial condition and its covariance when the model is linear and the observations are a linear function of the state.

Type
Chapter
Information
Dynamic Data Assimilation
A Least Squares Approach
, pp. 445 - 460
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×