from PART II - DATA ASSIMILATION: DETERMINISTIC/STATIC MODELS
Published online by Cambridge University Press: 18 December 2009
In this chapter we revisit the linear least squares estimation problem and solve it using the method of orthogonal projection. This geometric view is quite fundamental and has guided the development and extension of least squares solutions in several directions. In Section 6.1 we describe the basic principles of orthogonal projections, namely, projecting a vector z onto a single vector h. In Section 6.2, we discuss the extension of this idea of projecting a given vector z onto the subspace spanned by the columns of the measurement matrix H ∈ ℝm×n. An interesting outcome of this exercise is that the set of linear equations defining the optimal estimate by this geometric method are identical to those derived from the method of normal equations. This invariance of the least squares solution with respect to the methods underscores the importance of this class of solutions. Section 6.3 develops the geometric equivalent of the weighted or generalized linear least squares problem. It is shown that the optimal solution is given by an oblique projection as opposed to an orthogonal projection. In Section 6.4 we derive conditions for the invariance of least squares solutions under linear transformations of both the model space ℝn and the observation space ℝm. It turns out invariance is achievable within the framework of generalized or weighted least squares formulation.
Orthogonal projection: basic idea
Let h = (h1, h2, …, hm)T ∈ ℝm be the given vector representing the measurement system, and let z = (z1, z2, …, zm)T ∈ ℝm be a set of m observations, where it is assumed that z is not a multiple of h. Refer to Figure 6.1.1.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.