Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T08:13:15.740Z Has data issue: false hasContentIssue false

2 - Pathways into data assimilation: illustrative examples

from PART 1 - GENESIS OF DATA ASSIMILATION

Published online by Cambridge University Press:  18 December 2009

John M. Lewis
Affiliation:
National Severe Storms Laboratory, Oklahoma
S. Lakshmivarahan
Affiliation:
University of Oklahoma
Sudarshan Dhall
Affiliation:
University of Oklahoma
Get access

Summary

This chapter complements Chapter 1 by providing a bottom-up view of data assimilation through illustrative examples – one for each of the four classes of problems introduced there. We also include a discussion of problems associated with sensitivity and predictability. Using the standard least squares formulation, we provide a natural and intuitive interpretation of the solutions to these problems.

Least squares

The central criterion used in data assimilation is least squares. As stated earlier, it arose 200 years ago and history has bestowed simultaneity of discovery on both Gauss and Legendre. It assumes a variety of forms, but its fundamental tenet in data assimilation is minimization of the squared departure between the desired estimate and observations and/or other “background” information (typically a forecast). It was built on the foundation of variational calculus, the branch of mathematics that explores minimization of integrals – for example, integrals that express the path of quickest descent (the brachistichrone problem), path of least time (refraction of light), and the principle of least action. As such, there is a rich heritage of applied mathematical methods that can be brought to bear on these minimization problems.

Deterministic/Static problem

In its simplest form, the solution of a data assimilation problem underpinned by least squares reduces to averaging the observations. It is no more or no less than the “carpenter's rule of thumb”: the best estimate of a length measured more than once with the same instrument is the average of the measurements. Let's put this adage in the context of a dynamical law where we choose the nonlinear advection constraint of Burgers (see Chapter 3).

Type
Chapter
Information
Dynamic Data Assimilation
A Least Squares Approach
, pp. 27 - 50
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×