Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-09T02:19:10.321Z Has data issue: false hasContentIssue false

4 - Optimal reservoir operation for water quality

Published online by Cambridge University Press:  14 August 2009

K. D. W. Nandalal
Affiliation:
University of Peradeniya, Sri Lanka
Janos J. Bogardi
Affiliation:
United Nations University, Bonn, Germany
Get access

Summary

When a flowing river is dammed and becomes an impoundment, two major changes occur. First, creating an impoundment greatly increases the time required for water to travel the distance from the headwaters to the discharge at the dam. Second, thermal or density and therefore chemical stratification may take place. Both have a marked effect on water quality. Both the increased detention time and thermal stratification in an impoundment change the characteristics of the water discharged at a given geographical location from what they were when the stream was free flowing. Some effects of impoundments improve water quality; others deteriorate it. This also implies the possibility of using the reservoirs for control of the quality of water besides merely satisfying the quantity requirement.

The increased emphasis on water quality accents the need for formulation of methodologies for operating reservoirs for control of water quality. Considering reservoir dynamics while applying optimization techniques for operational decisions enables policies for a reservoir accounting for the quality of water supplied besides satisfying quantity requirements. The assumption of complete instantaneous mixing of water in a reservoir throughout its entire volume is an over-simplification compared to the real behavior of reservoirs that undergo mixing and stratification cycles. This chapter presents models that assume complete mixing in reservoirs while deriving optimum operation policies when quality aspects are of interest.

There have been relatively few studies of optimum reservoir operation in which water quality has been considered.

Type
Chapter
Information
Dynamic Programming Based Operation of Reservoirs
Applicability and Limits
, pp. 59 - 72
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×