Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-13T13:37:24.610Z Has data issue: false hasContentIssue false

Chapter Eight - The role of plant secondary metabolites in freshwater macrophyte–herbivore interactions

limited or unexplored chemical defences?

Published online by Cambridge University Press:  05 August 2012

Elisabeth M. Gross
Affiliation:
Laboratoire Interactions Ecotoxicologie Biodiversité Ecosystémes, Université de Lorraine
Elisabeth S. Bakker
Affiliation:
Department of Aquatic Ecology, Netherlands Institute of Ecology
Glenn R. Iason
Affiliation:
James Hutton Institute, Aberdeen
Marcel Dicke
Affiliation:
Wageningen Universiteit, The Netherlands
Susan E. Hartley
Affiliation:
University of York
Get access

Summary

Introduction

Historically, herbivory on aquatic plants has been considered negligible. ‘One could probably remove all the larger plants and substitute glass structures of the same form and surface texture without greatly affecting the immediate food relations’, wrote Shelford (1918), cited in Hutchinson (1975) about grazing losses of submerged angiosperms. This misconception might have persisted for so long because grazing by zooplankton on phytoplankton has been the major focus in limnology for decades. Also, herbivore-related biomass losses of higher aquatic plants were estimated to be less than 10% of the total production (Wetzel, 1983). In the past two decades many studies have shown that multiple invertebrate and vertebrate herbivores feed on freshwater angiosperms and that herbivory on vascular plants is quantitatively equally important in terrestrial and freshwater habitats (Lodge, 1991; Newman, 1991; Cyr & Pace, 1993). Thus, we are now ready to critically consider the role of plant secondary metabolites (PSMs) in freshwater plant–herbivore interactions. Whereas the importance and tremendous variety of PSMs is well acknowledged in terrestrial plants and seaweeds, relatively little is known about the presence, levels, types and function of PSMs in freshwater plants (Lodge et al., 1998; Sotka et al., 2009). This is surprising because aquatic angiosperms and most of their insect herbivores are in fact secondarily aquatic, descendant from terrestrial ancestors (Newman, 1991). Thus, similarities in potential feeding deterrents and host-plant selection might be anticipated. Yet there may also be pronounced differences in plant–herbivore interactions in the aquatic environment. For example, water provides different physico-chemical conditions compared with air or soil, which should affect the dispersal of released compounds. Additionally, not all terrestrial plant families and growth forms have relatives underwater, and aquatic herbivores differ in species composition and diet selection from their terrestrial counterparts. These environmental, phylogenetic and ecological predispositions might have shaped the kinds of feeding deterrents that are present in freshwater systems.

Type
Chapter
Information
The Ecology of Plant Secondary Metabolites
From Genes to Global Processes
, pp. 154 - 169
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alcorlo, P.Geiger, W.Otero, M. 2004 Feeding preferences and food selection of the red swamp crayfish, , in habitats differing in food item diversityCrustaceana 77 435CrossRefGoogle Scholar
Appel, H. M.Maines, L. W. 1995 The influence of host-plant on gut conditions of gypsy moth () caterpillarsJournal of Insect Physiology 41 241CrossRefGoogle Scholar
Arimura, G. -I.Matsui, K.Takabayashi, J. 2009 Chemical and molecular ecology of herbivore-induced plant volatiles: proximate factors and their ultimate functionsPlant and Cell Physiology 50 911CrossRefGoogle ScholarPubMed
Bauer, N.Blaschke, U.Beutler, E. 2009 Seasonal and interannual dynamics of polyphenols in and their allelopathic activity on Aquatic Botany 91 110CrossRefGoogle Scholar
Becerra, J. X.Noge, K.Venable, D. L. 2009 Macroevolutionary chemical escalation in an ancient plant–herbivore arms raceProceedings of the National Academy of Sciences USA 106 18062CrossRefGoogle Scholar
Berezina, N. 2007 Food spectra and consumption rates of four amphipod species from the North-West of RussiaFundamental and Applied Limnology 168 317CrossRefGoogle Scholar
Bolser, R. C.Hay, M. E. 1998 A field test of inducible resistance to specialist and generalist herbivores using the water lily Oecologia 116 143CrossRefGoogle ScholarPubMed
Bolser, R. C.Hay, M. E.Lindquist, N.Fenical, W.Wilson, D. 1998 Chemical defenses of freshwater macrophytes against crayfish herbivoryJournal of Chemical Ecology 24 1639CrossRefGoogle Scholar
Bremer, B.Bremer, K.Chase, M. W. 2009 An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IIIBotanical Journal of the Linnean Society 161 105Google Scholar
Brönmark, C. 1989 Interactions between epiphytes, macrophytes and fresh-water snails – a reviewJournal of Molluscan Studies 55 299CrossRefGoogle Scholar
Bryant, J. P.Chapin Iii, F. S.Klein, D. R. 1983 Carbon/nutrient balance of boreal plants in relation to vertebrate herbivoryOikos 40 357CrossRefGoogle Scholar
Burks, R. L.Lodge, D. M. 2002 Cued in: advances and opportunities in freshwater chemical ecologyJournal of Chemical Ecology 28 1901CrossRefGoogle ScholarPubMed
Burlakova, L. E.Karatayev, A. Y.Padilla, D. K.Cartwright, L. D.Hollas, D. 2009 Wetland restoration and invasive species: apple snail () feeding on native and invasive aquatic plantsRestoration Ecology 17 433CrossRefGoogle Scholar
Calonje, M.Martin-Bravo, S.Dobes, C. 2009 Non-coding nuclear DNA markers in phylogenetic reconstructionPlant Systematics and Evolution 282 257CrossRefGoogle Scholar
Carlsson, N. O. L.Brönmark, C. 2006 Size-dependent effects of an invasive herbivorous snail on macrophytes and periphyton in Asian wetlandsFreshwater Biology 51 695CrossRefGoogle Scholar
Choi, C.Bareiss, C.Walenciak, O.Gross, E. M. 2002 Impact of polyphenols on the growth of the aquatic herbivore (Lepidoptera: Pyralidae)Journal of Chemical Ecology 28 2223CrossRefGoogle Scholar
Cloern, J. E.Canuel, E. A.Harris, D. 2002 Stable carbon and nitrogen isotope composition of aquatic and terrestrial plants of the San Francisco Bay estuarine systemLimnology and Oceanography 47 713CrossRefGoogle Scholar
Conner, W. E.Boada, R.Schroeder, F. C. 2000 Chemical defense: bestowal of a nuptial alkaloidal garment by a male moth on its mateProceedings of the National Academy of Sciences USA 97 14406CrossRefGoogle ScholarPubMed
Cook, C. D. K. 1999 The number and kinds of embryo-bearing plants which have become aquatic: a surveyPerspectives in Plant Ecology, Evolution and Systematics 2 79CrossRefGoogle Scholar
Cota, B. B.Magalhaes, A.Pimenta, A. M. C. 2008 Chemical constituents of Lindl. (Orchidaceae)Journal of the Brazilian Chemical Society 19 1098CrossRefGoogle Scholar
Cronin, G. 1998 Influence of macrophyte structure, nutritive value, and chemistry on the feeding choices of a generalist crayfishJeppesen, E.Sondergaard, M.Christoffersen, K.The Structuring Role of Macrophytes in LakesNew YorkSpringer-VerlagGoogle Scholar
Cronin, G.Lodge, D. M. 2003 Effects of light and nutrient availability on the growth, allocation, carbon/nitrogen balance, phenolic chemistry, and resistance to herbivory of two freshwater macrophytesOecologia 137 32CrossRefGoogle ScholarPubMed
Cronin, G.Wissing, K. D.Lodge, D. M. 1998 Comparative feeding selectivity of herbivorous insects on water lilies: aquatic vs. semi-terrestrial insects and submersed vs. floating leavesFreshwater Biology 39 243CrossRefGoogle Scholar
Cronin, G.Schlacher, T.Lodge, D. M.Siska, E. L. 1999 Intraspecific variation in feeding preference and performance of (Chrysomelidae:Coleoptera) on aquatic macrophytesJournal of the North American Benthological Society 18 391CrossRefGoogle Scholar
Cronin, G.Lodge, D. M.Hay, M. E. 2002 Crayfish feeding preferences for freshwater macrophytes: the influence of plant structure and chemistryJournal of Crustacean Biology 22 708CrossRefGoogle Scholar
Cyr, H.Pace, M. L. 1993 Magnitude and patterns of herbivory in aquatic and terrestrial ecosystemsNature 361 148CrossRefGoogle Scholar
Demars, B. O. L.Edwards, A. C. 2008 Tissue nutrient concentrations in aquatic macrophytes: comparison across biophysical zones, surface water habitats and plant life formsChemistry and Ecology 24 413CrossRefGoogle Scholar
Dorn, N. J.Cronin, G.Lodge, D. M. 2001 Feeding preferences and performance of an aquatic lepidopteran on macrophytes: plant hosts as food and habitatOecologia 128 406CrossRefGoogle ScholarPubMed
Elger, A.Willby, N. J. 2003 Leaf dry matter content as an integrative expression of plant palatability: the case of freshwater macrophytesFunctional Ecology 17 58CrossRefGoogle Scholar
Elger, A.Lemoine, D. 2005 Determinants of macrophyte palatability to the pond snail Freshwater Biology 50 86CrossRefGoogle Scholar
Elger, A.De Boer, T.Hanley, M. E. 2007 Invertebrate herbivory during the regeneration phase: experiments with a freshwater angiospermJournal of Ecology 95 106CrossRefGoogle Scholar
Erhard, D.Pohnert, G.Gross, E. M. 2007 Chemical defense in reduces feeding and growth of aquatic herbivorous LepidopteraJournal of Chemical Ecology 33 1646CrossRefGoogle ScholarPubMed
Forbey, J. S.Foley, W. J. 2009 PharmEcology: a pharmacological approach to understanding plant–herbivore interactions. An introduction to the symposiumIntegrative and Comparative Biology 49 267CrossRefGoogle ScholarPubMed
Godmaire, H.Nalewajko, C. 1990 Structure and development of secretory trichomes on LAquatic Botany 37 99CrossRefGoogle Scholar
Gross, E. M. 2003 Differential response of tellimagrandin II and total bioactive hydrolysable tannins in an aquatic angiosperm to changes in light and nitrogenOikos 103 497CrossRefGoogle Scholar
Gross, E. M.Johnson, R. L.Hairston, N. G. 2001 Experimental evidence for changes in submersed macrophyte species composition caused by the herbivore (Lepidoptera)Oecologia 127 105CrossRefGoogle Scholar
Gross, E. M.Brune, A.Walenciak, O. 2008 Gut pH, redox conditions and oxygen levels in an aquatic caterpillar: potential effects on the fate of ingested tanninsJournal of Insect Physiology 54 462CrossRefGoogle Scholar
Habeck, D. H.Balciunas, J. K. 2005 Larvae of Nymphulinae (Lepidoptera : Pyralidae) associated with (Hydrocharitaceae) in North QueenslandAustralian Journal of Entomology 44 354CrossRefGoogle Scholar
Harborne, J. B. 1988 Introduction to Ecological BiochemistryLondonAcademic PressGoogle Scholar
Hay, M. E. 1991 Marine terrestrial contrasts in the ecology of plant-chemical defenses against herbivoresTrends in Ecology Evolution 6 362CrossRefGoogle ScholarPubMed
Hay, M. E.Duffy, J. E.Pfister, C. A.Fenical, W. 1987 Chemical defense against different marine herbivores: are amphipods insect equivalents?Ecology 68 1567CrossRefGoogle ScholarPubMed
Hay, M. E.Fenical, W. 1988 Marine plant–herbivore interactions – the ecology of chemical defenseAnnual Review of Ecology and Systematics 19 111CrossRefGoogle Scholar
Hempel, M.Grossart, H. P.Gross, E. M. 2009 Community composition of bacterial biofilms on two submerged macrophytes and an artificial substrate in a pre-alpine lakeAquatic Microbial Ecology 58 79CrossRefGoogle Scholar
Hidding, B.Nolet, B. A.De Boer, T.De Vries, P. P.Klaassen, M. 2009 Compensatory growth in an aquatic plant mediates exploitative competition between seasonally tied herbivoresEcology 90 1891CrossRefGoogle Scholar
Hunter, M. D.Schultz, J. C. 1993 Induced plant defenses breached – phytochemical induction protects an herbivore from diseaseOecologia 94 195CrossRefGoogle ScholarPubMed
Hutchinson, G. E. 1975 A Treatise on LimnologyLimnological BotanyNew YorkJohn Wiley and SonsGoogle Scholar
Jeffries, M. 1990 Evidence of induced plant defenses in a pondweedFreshwater Biology 23 265CrossRefGoogle Scholar
Kubanek, J.Fenical, W.Hay, M. E.Brown, P. J.Lindquist, N. 2000 Two antifeedant lignans from the freshwater macrophyte Phytochemistry 54 281CrossRefGoogle ScholarPubMed
Kubanek, J.Hay, M. E.Brown, P. J.Lindquist, N.Fenical, W. 2001 Lignoid chemical defenses in the freshwater macrophyte Chemoecology 11 1CrossRefGoogle Scholar
Lane, A. L.Kubanek, J. 2006 Structure–activity relationship of chemical defenses from the freshwater plant Phytochemistry 67 1224CrossRefGoogle ScholarPubMed
Larsson, S. 2007 The ‘new’ chemosystematics: phylogeny and phytochemistryPhytochemistry 68 2904CrossRefGoogle ScholarPubMed
Lemoine, D. G.Barrat-Segretain, M. H.Roy, A. 2009 Morphological and chemical changes induced by herbivory in three common aquatic macrophytesInternational Review of Hydrobiology 94 282CrossRefGoogle Scholar
Li, Y. K.Yu, D.Yan, X. 2004 Are polyphenolics valuable in anti-herbivory strategies of submersed freshwater macrophytes?Archiv für Hydrobiologie 161 391CrossRefGoogle Scholar
Li, Y. K.Yu, D.Xu, X. W.Xie, Y. G. 2005 Light intensity increases the susceptibility of to snail herbivoryAquatic Botany 81 265CrossRefGoogle Scholar
Lisonbee, L. D.Villalba, J. J.Provenza, F. D.Hall, J. O. 2009 Tannins and self-medication: implications for sustainable parasite control in herbivoresBehavioural Processes 82 184CrossRefGoogle ScholarPubMed
Lodge, D. M. 1991 Herbivory on fresh-water macrophytesAquatic Botany 41 195CrossRefGoogle Scholar
Lodge, D. M.Cronin, G.van Donk, E.Froelich, A. J. 1998 Impact of herbivory on plant standing crop: comparison among biomes, between vascular and nonvascular plants, and among freshwater herbivore taxaJeppesen, E.Sondergaard, M.Sondergaard, M.Christoffersen, K.The Structuring Role of Submerged Macrophytes in LakesNew YorkSpringerGoogle Scholar
Marklund, O.Sandsten, H.Hansson, L. A.Blindow, I. 2002 Effects of waterfowl and fish on submerged vegetation and macroinvertebratesFreshwater Biology 47 2049CrossRefGoogle Scholar
Marko, M. D.Newman, R. M.Gleason, F. K. 2005 Chemically mediated host-plant selection by the milfoil weevil: a freshwater insect–plant interactionJournal of Chemical Ecology 31 2857CrossRefGoogle ScholarPubMed
Miller, S. A.Provenza, F. D. 2007 Mechanisms of resistance of freshwater macrophytes to herbivory by invasive juvenile common carpFreshwater Biology 52 39CrossRefGoogle Scholar
Newman, R. M. 1991 Herbivory and detritivory on fresh-water macrophytes by invertebrates: a reviewJournal of the North American Benthological Society 10 89CrossRefGoogle Scholar
Newman, R. M. 2004 Invited review – biological control of Eurasian watermilfoil by aquatic insects: basic insights from an applied problemArchiv für Hydrobiologie 159 145CrossRefGoogle Scholar
Newman, R. M.Hanscom, Z.Kerfoot, W. C. 1992 The watercress glucosinolate-myrosinase system: a feeding deterrent to caddisflies, snails and amphipodsOecologia 92 1CrossRefGoogle ScholarPubMed
Newman, R. M.Kerfoot, W. C.Hanscom, Z. 1996 Watercress allelochemical defends high-nitrogen foliage against consumption: effects on freshwater invertebrate herbivoresEcology 77 2312CrossRefGoogle Scholar
Onion, A. 2004
Ostrofsky, M. L.Zettler, E. R. 1986 Chemical defences in aquatic plantsJournal of Ecology 74 279CrossRefGoogle Scholar
Painter, D. S.Mccabe, K. J. 1988 Investigation into the disappearance of Eurasian watermilfoil from the Kawartha Lakes, CanadaJournal of Aquatic Plant Management 26 3Google Scholar
Pappers, S. M.Van Der Velde, G.Ouborg, N. J. 2002 Host preference and larval performance suggest host race formation in Oecologia 130 433CrossRefGoogle Scholar
Parker, J. D.Collins, D. O.Kubanek, J. 2006 Chemical defenses promote persistence of the aquatic plant Journal of Chemical Ecology 32 815CrossRefGoogle ScholarPubMed
Parker, J. D.Caudill, C. C.Hay, M. E. 2007 Beaver herbivory on aquatic plantsOecologia 151 616CrossRefGoogle ScholarPubMed
Pipalova, I. 2002 Initial impact of low stocking density of grass carp on aquatic macrophytesAquatic Botany 73 9CrossRefGoogle Scholar
Prusak, A. C.O’Neal, J.Kubanek, J. 2005 Prevalence of chemical defenses among freshwater plantsJournal of Chemical Ecology 31 1145CrossRefGoogle ScholarPubMed
Rid, S.Hesselschwerdt, J.Gross, E. M. 2008 Induziert VerteidigungsmechanismenMyriophyllum spicatumKonstanzJahrestagung der DGL/Deutschen Gesellschaft für LimnologieGoogle Scholar
Rowell, K.Blinn, D. W. 2003 Herbivory on a chemically defended plant as a predation deterrent in Freshwater Biology 48 247CrossRefGoogle Scholar
Sand-Jensen, K.Jacobsen, D. 2002 Herbivory and growth in terrestrial and aquatic populations of amphibious stream plantsFreshwater Biology 47 1475CrossRefGoogle Scholar
Serandour, J.Reynaud, S.Willison, J. 2008 Ubiquitous water-soluble molecules in aquatic plant exudates determine specific insect attractionPLOS One 3 e3350CrossRefGoogle ScholarPubMed
Shipley, L. A.Forbey, J. S.Moore, B. D. 2009 Revisiting the dietary niche: when is a mammalian herbivore a specialist?Integrative and Comparative Biology 49 274CrossRefGoogle ScholarPubMed
Smolders, A. J. P.Vergeer, L. H. T.van der Velde, G.Roelofs, J. G. M. 2000 Phenolic contents of submerged, emergent and floating leaves of aquatic and semi-aquatic macrophyte species: why do they differ?Oikos 91 307CrossRefGoogle Scholar
Sotka, E. E.Forbey, J.Horn, M. 2009 The emerging role of pharmacology in understanding consumer–prey interactions in marine and freshwater systemsIntegrative and Comparative Biology 49 291CrossRefGoogle ScholarPubMed
Sterry, P. R.Thomas, J. D.Patience, R. L. 1983 Behavioural response of (Say) to chemical factors from aquatic macrophytes including decaying (Hegelm ex Engelm)Freshwater Biology 13 465CrossRefGoogle Scholar
Sun, Y.Ding, J. Q.Rena, M. X. 2009 Effects of simulated herbivory and resource availability on the invasive plant, in different habitatsBiological Control 48 287CrossRefGoogle Scholar
van Donk, E. 1998 Switches between clear and turbid water states in a biomanipulated lake (1986–1996): the role of herbivory on macrophytesJeppesen, E.Sondergaard, M.Sondergaard, M.Christoffersen, K.The Structuring Role of Submerged Macrophytes in LakesNew YorkSpringerGoogle Scholar
Walenciak, O.Zwisler, W.Gross, E. M. 2002 Influence of -derived tannins on gut microbiota of its herbivore Journal of Chemical Ecology 28 2045CrossRefGoogle ScholarPubMed
Wetzel, R. G. 1983 LimnologyFort WorthSaunders College PublishingGoogle Scholar
Wheeler, G. S.Van, T. K.Center, T. D. 1998 Herbivore adaptations to a low-nutrient food: weed biological control specialist (Lepidoptera: Noctuidae) fed the floating aquatic plant Environmental Entomology 27 993CrossRefGoogle Scholar
Wilson, D. M.Fenical, W.Hay, M.Lindquist, N.Bolser, R. 1999 Habenariol, a freshwater feeding deterrent from the aquatic orchid (Orchidaceae)Phytochemistry 50 1333CrossRefGoogle Scholar
Wilson, J. R. U.Ajuonu, O.Center, T. D. 2007 The decline of water hyacinth on Lake Victoria was due to biological control by sppAquatic Botany 87 90CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×