Introduction
This chapter is dedicated to the study of linear dynamic models, more precisely to the study of the temporal evolution of one or several variables. It is organized in the following way. The first part provides the definitions of stochastic processes in discrete time. Next, we study models that have a particular representation, namely the univariate ARMA(p, q) models. In the last part we extend these models to the multivariate setting.
Generally speaking, a stochastic process is a family of random variables on a common probability space indexed by the elements of an ordered set T which is the time index set. The random variable indexed by an element i ∈ T describes the state of the process at time i. The stochastic processes considered here are defined in the following way.
Definition 12.1A stochastic process is a family of random variables {xi, i ∈ T} where the time index set T is a subset of the real line ℝ.
We could denote by T the set of all parameters, but to avoid the confusion with the parameters in a statistical sense, we call it the time index set. It is often called the domain of the definition of the stochastic process {xi, i ∈ T}. If T is an interval of the real line, then the process is said to be a continuous-time process.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.