Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-28T03:54:15.640Z Has data issue: false hasContentIssue false

Appendix: EBG literature review

Published online by Cambridge University Press:  06 July 2010

Fan Yang
Affiliation:
University of Mississippi
Yahya Rahmat-Samii
Affiliation:
University of California, Los Angeles
Get access

Summary

Overview

In recent years, electromagnetic band gap (EBG) structures have attracted increasing interest in the electromagnetic community. Because of their desirable electromagnetic properties, they have been widely studied for potential applications in antenna engineering. Hundreds of EBG papers have been published in various journals and conferences. To illustrate the rapid increase of research interest, a simple search using the keywords “EBG” and “antenna” was performed on IEEE Xplore on 1/18/2008 and the data are plotted in Fig. A.1 based on the available number of publications. It is clear that the number of papers has steadily increased over the years with an apparent peak of publications in 2005.

Here we provide a comprehensive overview of these publications so that readers can establish a clear picture of EBG development. It will also help readers to easily find papers related to their own research interests. Since the scope of this book is EBG metamaterials, papers on double negative property, left-handed propagation, and negative refractive index are not covered in this overview. We also regret if we have missed some papers as there have been so many international conferences with sessions on this topic.

To start with, we would like to emphasize several special issues organized in microwave and antenna journals that relate to EBG research. These special issues provide the readers with background and information for EBG research. They summarize the latest research progress at the time of publication, and have greatly stimulated EBG research afterwards.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Yablonovitch, E., “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett., vol. 58, 2059–63, 1987.CrossRefGoogle ScholarPubMed
John, S., “Strong localization of photons in certain disordered dielectric super lattices,” Phys. Rev. Lett., vol. 58, 2486–9, 1987.CrossRefGoogle Scholar
Joannopoulos, J. D., Meade, R. D., and Winn, J. N., Photonic Crystals, Princeton University Press, 1995.Google Scholar
Bowden, C. M., Dowling, J. P., and Everitt, H. O., “Development and applications of materials exhibiting photonic band gaps,” J. Opt. Soc. Amer B., Opt. Phys., vol. 10, 280, February 1993.CrossRefGoogle Scholar
Kurizki, G. and Haus, J. W., “Special issue on photonic band structures,” J. Mod. Opt., vol. 41, 171–2, February 1994.CrossRefGoogle Scholar
IEEE Trans. Microwave Theory Tech., Special Issue on Electromagnetic Crystal Structures, Designs, Synthesis, and Applications, vol. 47, no. 11, November 1999.
Ho, K. M., Chan, C. T., and Soukoulis, C. M., “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett., vol. 65, 3152–5, 1990.CrossRefGoogle ScholarPubMed
Yablonovitch, E., Gmitter, T. J., and Leung, K. M., “Photonic band structures: the face-centered-cubic case employing non-spherical atoms,” Phys. Rev. Lett., vol. 67, 2295–8, 1991.CrossRefGoogle Scholar
Kelly, P. K., Maloney, J. G., Shirley, B. L., and Moore, R. L., “Photonic bandgap structures of finite thickness: theory and experiment,” Proc. 1994 IEEE APS Int. Symp., vol. 2, pp. 718–21, Seattle, WA, June 1994.Google Scholar
Beaky, M. M., Burk, J. B., Everitt, H. O., Haider, M. A., and Venakides, S., “Two-dimensional photonic crystal Fabry-Perot resonators with lossy dielectrics,” IEEE Trans. Microwave Theory Tech., vol. 47, no. 11, 2085–91, 1999.CrossRefGoogle Scholar
Ho, K. M., Chan, C. T., Soukoulis, C. M., Biswas, R., and Sigalis, M., “Photonic band gaps in three dimensions: new layer-by-layer periodic structures,” Solid State Commun., vol. 89, 413–16, 1994.CrossRefGoogle Scholar
Wu, T. K. (Ed.), Frequency Selective Surface and Grid Array, John Wiley & Sons, Inc., 1995.Google Scholar
Munk, B. A., Frequency Selective Surfaces: Theory and Design, John Wiley & Sons, Inc., 2000.CrossRefGoogle Scholar
Kildal, P.-S., “Artificial soft and hard surfaces in electromagnetics,” IEEE Trans. Antennas Propagat., vol. 38, no. 10, 1537–44, 1990.CrossRefGoogle Scholar
Sievenpiper, D., Zhang, L., Broas, R. F. J., Alexopolus, N. G., and Yablonovitch, E., “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microwave Theory Tech., vol. 47, 2059–74, 1999.CrossRefGoogle Scholar
Sievenpiper, D. F., High-Impedance Electromagnetic Surfaces, Ph.D. Dissertation, Electrical Engineering Dept., University of California, Los Angeles, 1999.Google Scholar
Yang, F.-R., Ma, K.-P., Qian, Y., and Itoh, T., “A uniplanar compact photonic-bandgap (UC-Photonic Band Gap) structure and its applications for microwave circuits,” IEEE Trans. Microwave Theory Tech., vol. 47, no. 8, 1509–14, 1999.CrossRefGoogle Scholar
Yang, F.-R., Novel Periodic Structures for Applications to Microwave Circuits, Ph.D. Dissertation, Electrical Engineering Dept., University of California, Los Angeles, 1999.Google Scholar
Rahmat-Samii, Y. and Mosallaei, H., “Electromagnetic band-gap structures: classification, characterization and applications,” Proceeding of IEE-ICAP symposium, pp. 560–4, April 2001.Google Scholar
Dellavilla, A., Galdi, V., Capolino, F., Pierro, V., Enoch, S., and Tayeb, G., “A Comparative Study of Representative Categories of Electromagnetic Band Gap Dielectric Quasi-Crystals,” IEEE Antennas Wireless Propagat. Lett., vol. 5, 331–4, 2006.CrossRefGoogle Scholar
Shahparnia, S. and Ramahi, O. M., “Simple and accurate circuit models for high-impedance surfaces embedded in printed circuit boards,” IEEE APS Int. Symp. Dig., vol. 4, pp. 3565–8, June 2004.Google Scholar
Kim, H. and Drayton, R. F., “Development of analysis method of electromagnetic bandgap (Electromagnetic Band Gap) structures to predict Electromagnetic Band Gap behavior based on circuit models,” IEEE APS Int. Symp. Dig., pp. 1951–4, July 2006.Google Scholar
Rahman, M. and Stuchly, M. A., “Transmission line – periodic circuit representation of planar microwave photonic bandgap structures,” Microwave Optical Tech. Lett., vol. 30, no. 1, 15–19, 2001.CrossRefGoogle Scholar
Wu, X. H., Kishk, A. A., and Glisson, A. W., “A transmission line method to compute far-field radiation by arbitrarily directed Hertzian dipoles in a 1-D Electromagnetic Band Gap structure,” IEEE APS Int. Symp. Dig., pp. 2997–3000, July 2006.Google Scholar
Li, L., Li, B., Liu, H.-X., and Liang, C.-H., “Locally resonant cavity cell model for electromagnetic band gap structures,” IEEE Trans. Antennas Propagat., vol. 54, no. 1, 90–100, 2006.CrossRefGoogle Scholar
Cucini, A., Caiazzo, M., Nannetti, M., and Maci, S., “A network theory for Electromagnetic Band Gap surfaces: generalization to any direction of propagation in the azimuth plane,” IEEE APS Int. Symp. Dig., vol. 3, pp. 2564–7, June 2004.Google Scholar
Gao, C. and Wang, Y., “Analysis of Electromagnetic Band Gap structures implemented on CPW components by using EM-Artificial Neural Network models,” IEEE APS Int. Symp. Dig., vol. 4, pp. 368–71, June 2002.Google Scholar
Brakora, K., Barth, C., and Sarabandi, K., “A plane-wave expansion method for analyzing propagation in 3D periodic ceramic structures,” IEEE APS Int. Symp. Dig., vol. 2B, pp. 192–5, July 2005.Google Scholar
Sipus, Z., Kildal, P.-S., and Zentner, R., “Spectral domain analysis of dipole coupling over different electromagnetic band gap structures,” IEEE APS Int. Symp. Dig., vol. 1A, pp. 738–41, July 2005.Google Scholar
Mittra, R., “Numerical challenges in the modeling of metamaterials and antenna-Electromagnetic Band Gap composites,” IEEE APS Int. Symp. Dig., vol. 3B, pp. 10–13, July 2005.Google Scholar
Bozzi, M., Germani, S., Minelli, L., Perregrini, L., and Maagt, P., “Full-wave characterization of planar Electromagnetic Band Gap structures by the MoM/BI-RME method,” IEEE APS Int. Symp. Dig., vol. 4, pp. 4056–9, June 2004.Google Scholar
Zhang, L., Numerical Characterization of Electromagnetic Band-Gap Materials and Applications in Printed Antennas and Arrays, Ph.D. Dissertation, Electrical Engineering Dept., University of California, Los Angeles, 2000.Google Scholar
Zhao, X. and Zhou, L., “Study on 2-D gyrotropic Electromagnetic Band Gap by Finite Element Method,” IEEE Int. Symp. Microw. Antennas Propagat. EMC, vol. 1, pp. 827–30, August 2005.Google Scholar
Vouvakis, M. N., Cendes, Z., and Lee, J.-F., “A Finite Element Method domain decomposition method for photonic and electromagnetic band gap structures,” IEEE Trans. Antennas Propagat., vol. 54, no. 2, part 2, 721–33, February 2006.CrossRefGoogle Scholar
Bushyager, N., Papapolymerou, J., and Tentzeris, M. M., “A composite cell multi-resolution time-domain technique for the design of antenna systems including electromagnetic band gap and via-array structures,” IEEE Trans. Antennas Propagat., vol. 53, no. 8, 2700–10, August 2005.CrossRefGoogle Scholar
Aminian, A., Yang, F., and Rahmat-Samii, Y., “Bandwidth determination for soft and hard ground planes by spectral Finite Difference Time Domain: a unified approach in visible and surface wave regions,” IEEE Trans. Antennas Propagat., vol. 53, no. 1, 18–28, January 2005.CrossRefGoogle Scholar
Aminian, A., Yang, F., and Rahmat-Samii, Y., “In-phase reflection and EM wave suppression characteristics of electromagnetic band gap ground planes,” IEEE APS Int. Symp. Dig., vol. 4, pp. 430–3, 22–27 June 2003.Google Scholar
Merrill, W. M., Kyriazidou, C. A., Contopanagos, H. F., and Alexopoulos, N. G., “Electromagnetic scattering from a Photonic Band Gap material excited by an electric line source,” IEEE Trans. Microwave Theory Tech., vol. 47, no. 11, 2105–14, November 1999.CrossRefGoogle Scholar
Kee, C.-S., Kim, J.-E., Park, H. Y., and Lim, H., “Roles of wave impedance and refractive index in photonic crystals with magnetic and dielectric properties,” IEEE Trans. Microwave Theory Tech., vol. 47, no. 11, 2148–50, November 1999.Google Scholar
Jia, H. and Yasumoto, K., “A new analysis of electromagnetic scattering from two-dimensional electromagnetic band-gap structures,” Proceedings, ICCEA 2004, pp. 21–4, 1–4 November 2004.Google Scholar
Capolino, F., Jackson, D. R., and Wilton, D. R., “Fundamental properties of source-excited field at the interface of a 2D Electromagnetic Band Gap material,” IEEE APS Int. Symp. Dig., vol. 2, pp. 1171–4, June 2004.Google Scholar
Capolino, F., Jackson, D. R., and Wilton, D. R., “Fundamental properties of the field at the interface between air and a periodic artificial material excited by a line source,” IEEE Trans. Antennas Propagat., vol. 53, 91–9, January 2005.CrossRefGoogle Scholar
Bertuch, T., “Comparative Investigation of Coupling Reduction by Electromagnetic Band Gap Surfaces for Quasi-Static Radar Cross Section Measurement Systems,” IEEE Antennas Wireless Propagat. Lett., vol. 5, 231–4, December 2006.CrossRefGoogle Scholar
Yang, F. and Rahmat-Samii, Y., “Reflection phase characterizations of the Electromagnetic Band Gap ground plane for low profile wire antenna applications,” IEEE Trans. Antennas Propagat., vol. 51, no. 10, 2691–703, October 2003.CrossRefGoogle Scholar
Li, L., Dang, X., Wang, L., Li, B., Liu, H., and Liang, C., “Reflection phase characteristics of plane wave oblique incidence on the mushroom-like electromagnetic band-gap structures,” Proceedings of Asia Pacific Microwave Conf., December 2005.Google Scholar
Enoch, S., Tayeb, G., and Gralak, B., “The richness of the dispersion relation of electromagnetic bandgap materials,” IEEE Trans. Antennas Propagat., vol. 51, no. 10, 2659–66, 2003.CrossRefGoogle Scholar
Chen, Y.-C., Tzuang, C.-K. C., Itoh, T., and Sarkar, T. K., “Modal characteristics of planar transmission lines with periodical perturbations: their behaviors in bound, stopband, and radiation regions,” IEEE Trans. Antennas Propagat., vol. 53, no. 1, part 1, 47–58, 2005.CrossRefGoogle Scholar
Baccarelli, P., Nallo, C., Paulotto, S., and Jackson, D. R., “A full-wave numerical approach for modal analysis of 1-D periodic microstrip structures,” IEEE Trans. Microw. Theory and Tech., vol. 54, no. 4, part 1, 1350–62, 2006.CrossRefGoogle Scholar
Baccarelli, P., Paulotto, S., and Nallo, C. D., “Full-wave analysis of bound and leaky modes propagating along 2D periodic printed structures with arbitrary metallisation in the unit cell,” IET Proc. Microwave Antennas Propagation, vol. 1, no. 1, 217–25, 2007.CrossRefGoogle Scholar
Aminian, A. and Rahmat-Samii, Y., “Bandwidth determination for soft and hard ground planes: a unified approach in visible and surface wave regions,” IEEE APS Int. Symp. Dig., vol. 1, pp. 313–16, June 2004.Google Scholar
Aminian, A., Fan, Yang, and Rahmat-Samii, Y., “Bandwidth determination for soft and hard ground planes by spectral Finite Difference Time Domain: a unified approach in visible and surface wave regions,” IEEE Trans. Antennas Propagat., vol. 53, no. 1, 18–28, 2005.CrossRefGoogle Scholar
Rajo-Iglesias, E., Kildal, P.-S,, Caiazzo, M., and Yang, J., “Comparison between bandgaps and bandwidths of back radiation of different narrow soft ground planes,” IEEE APS Int. Symp. Dig., vol. 1A, pp. 697–700, July 2005.Google Scholar
Rajo-Iglesias, E., Caiazzo, M., Inclan-Sanchez, L., and Kildal, P.-S., “Comparison of bandgaps of mushroom-type Electromagnetic Band Gap surface and corrugated and strip-type soft surfaces,” IET Proc. Microwave Antennas Propagation, vol. 1, no. 1, 184–9, 2007.CrossRefGoogle Scholar
Gao, C., Chen, Z. N., Wang, Y. Y., and Yang, N., “Investigation on relationship of electromagnetic bandgap structures and left/right handed structures,” 2005 IEEE International Workshop on Antenna Technology: Small Antennas and Novel Metamaterials, pp. 387–90, March 2005.Google Scholar
She, W. H., Gong, X., and Chappell, W. J., “Fundamental constraints on two-dimensional Electromagnetic Band Gap substrates,” IEEE APS Int. Symp. Dig., vol. 2, pp. 1419–22, June 2004.Google Scholar
Chappell, W. and Katehi, L. P. B., “Composite metamaterial systems for two-dimensional periodic structures,” IEEE APS Int. Symp. Dig., vol. 2, pp. 384–7, June 2002.Google Scholar
Mosallaei, H. and Sarabandi, K., “Periodic meta-material structures in electromagnetics: concept, analysis, and applications,” IEEE APS Int. Symp. Dig., vol. 2, pp. 380–3, June 2002.Google Scholar
Feresidis, A. P., Goussetis, G., and Vardaxoglou, J. C., “Metallodielectric arrays without vias as artificial magnetic conductors and electromagnetic band gap surfaces,” IEEE Trans. Antennas Propagat., vol. 2, 1159–62, 2004.CrossRefGoogle Scholar
Zheng, L. G. and Zhang, W. X., “Research on Electromagnetic Band Gap structure consisting of bianisotropic media,” IEEE APS Int. Symp. Dig., vol. 4, pp. 4519–22, June 2004.Google Scholar
Kern, D. J. and Werner, D. H., “The synthesis of metamaterial ferrites for RF applications using electromagnetic bandgap structures,” IEEE APS Int. Symp. Dig., vol. 1, pp. 497–500, June 2003.Google Scholar
Kim, D., Kim, M., and Kim, S.-W., “A microstrip phase shifter using ferroelectric electromagnetic bandgap ground plane,” IEEE APS Int. Symp. Dig., vol. 2, pp. 1175–8, June 2004.Google Scholar
Kern, D. J., Werner, D. H., and Lisovich, M., “Metaferrites: using electromagnetic bandgap structures to synthesize metamaterial ferrites,” IEEE Trans. Antennas Propagat., vol. 53, no. 4, 1382–9, 2005.CrossRefGoogle Scholar
Bell, J. M., Iskander, M. F., and Lee, J. J., “Ultrawideband hybrid Electromagnetic Band Gap/ferrite ground plane for low-profile array antennas,” IEEE Trans. Antennas Propagat., vol. 55, no. 1, 4–12, 2007.CrossRefGoogle Scholar
Pang, Y., Gao, B., and Du, Z., “Novel electromagnetic bandgap structure fabricating method,” IEEE APS Int. Symp. Dig., vol. 4, pp. 372–5, June 2002.Google Scholar
Gong, X., Smyth, T., and Chappell, W. J., “Cofiring different dielectric constants inside Low Temperature Co-fired Ceramic for metamaterial applications,” IEEE APS Int. Symp. Dig., pp. 1935–8, 9–14 July 2006.Google Scholar
Yu, A. and Zhang, X., “A novel 2-D electromagnetic band-gap structure and its application in micro-strip antenna arrays,” Proceedings of ICMMT 2002, pp. 580–3, 17–19 August 2002.Google Scholar
Yu, A. and Zhang, X., “A novel method to improve the performance of microstrip antenna arrays using a dumbbell Electromagnetic Band Gap structure,” Antennas Wireless Propagat. Lett., vol. 2, no. 1, 170–2, 2003.Google Scholar
Yu, A. and Zhang, X., “A low profile monopole antenna using a dumbbell Electromagnetic Band Gap structure,” IEEE APS Int. Symp. Dig., vol. 2, pp. 1155–8, 20–25 June 2004.Google Scholar
Palikaras, G. K., Feresidis, A. P., and Vardaxoglou, J. C., “Cylindrical electromagnetic bandgap structures for directive base station antennas,” IEEE Antennas Wireless Propagat. Lett., vol. 3, no. 1, 87–9, 2004.CrossRefGoogle Scholar
Palikaras, G. K., Feresidis, A. P., and Vardaxoglou, J. C., “Cylindrical electromagnetic band gap structures for base station antennas,” IEEE APS Int. Symp. Dig., vol. 2, pp. 1163–6, June 2004.Google Scholar
Llombart, N., Neto, A., Gerini, G., and Maagt, P., “Planar circularly symmetric Electromagnetic Band Gap structures for reducing surface waves in printed antennas,” IEEE Trans. Antennas Propagat., vol. 53, no. 10, 3210–18, October 2005.CrossRefGoogle Scholar
Boutayeb, H., Denidni, T. A., Sebak, A. R., and Talbi, L., “Design of elliptical electromagnetic bandgap structures for directive antennas,” IEEE Antennas Wireless Propagat. Lett., vol. 4, 93–6, 2005.CrossRefGoogle Scholar
Boutayeb, H., Denidni, T. A., Mahdjoubi, K., Tarot, A.-C., Sebak, A.-R., and Talbi, L., “Analysis and design of a cylindrical Electromagnetic Band Gap-based directive antenna,” IEEE Trans. Antennas Propagat., vol. 54, no. 1, 211–19, 2006.CrossRefGoogle Scholar
Tse, S., Izquierdo, B. S., Batchelor, J. C., and Langley, R. J., “Convoluted elements for electromagnetic band gap structures,” IEEE APS Int. Symp. Dig., vol. 1, pp. 819–22, June 2004.Google Scholar
Zhao, X. and Zhou, L., “Study on 2-D gyrotropic Electromagnetic Band Gap by Finite Element Method,” IEEE Int. Symp. Microw. Antennas Propagat. EMC, vol. 1, pp. 827–30, August 2005.Google Scholar
Cakir, G. and Sevgi, L., “A double-arm generic microstrip electromagnetic bandgap structure with bandpass and bandstop characteristics,” 5th Int. Conf. Antenna Theory Techniques, pp. 464–6, May 2005.Google Scholar
Boisbouvier, N., Louzir, A., Bolzer, F., Tarot, A.-C., and Mahdjoubi, K., “A double layer Electromagnetic Band Gap structure for slot-line printed devices,” IEEE APS Int. Symp. Dig., vol. 4, pp. 3553–6, June 2004.Google Scholar
Feresidis, A. P., Apostolopoulos, G., Serfas, N., and Vardaxoglou, J. C., “Closely coupled metallodielectric electromagnetic band-gap structures formed by double-layer dipole and tripole arrays,” IEEE Trans. Antennas Propagat., vol. 52, no. 5, 1149–58, 2004.CrossRefGoogle Scholar
Yeo, J., Mittra, R., and Chakravarty, S., “A Genetic Algorithm-based design of electromagnetic bandgap (Electromagnetic Band Gap) structures utilizing frequency selective surfaces for bandwidth enhancement of microstrip antennas,” IEEE APS Int. Symp. Dig., vol. 2, pp. 400–3, 16–21 June 2002.Google Scholar
Maci, S., Caiazzo, M., Cucini, A., and Asaletti, M., “A pole-zero matching method for Electromagnetic Band Gap surfaces composed of a dipole Frequency Selective Surface printed on a grounded dielectric slab,” IEEE Trans. Antennas Propag., vol. 53, no. 1, part 1, 70–81, 2005.CrossRefGoogle Scholar
Goussetis, G., Feresidis, A. P., and Vardaxoglou, J. C., “Frequency Selective Surface printed on grounded dielectric substrates: resonance phenomena, Artificial Magnetic Conductor and Electromagnetic Band Gap characteristics,” IEEE APS Int. Symp. Dig., vol. 1B, pp. 644–7, July 2005.Google Scholar
Lee, Y. J., Yeo, J., Mittra, R., and Park, W. S., “Design of a frequency selective surface (Frequency Selective Surface) type superstrate for dual-band directivity enhancement of microstrip patch antennas,” IEEE APS Int. Symp. Dig., vol. 3A, pp. 2–5, July 2005.Google Scholar
Goussetis, G., Feresidis, A. P., and Vardaxoglou, J. C., “Tailoring the Artificial Magnetic Conductor and Electromagnetic Band Gap characteristics of periodic metallic arrays printed on grounded dielectric substrate,” IEEE Trans. Antennas Propagat., vol. 54, no. 1, 82–9, 2006.CrossRefGoogle Scholar
Rodes, E., Diblanc, M., Drouet, J., Thevenot, M., Monediere, T., and Jecko, B., “Design of a dual-band Electromagnetic Band Gap resonator antenna using capacitive Frequency Selective Surface,” IEEE APS Int. Symp. Dig., pp. 3009–12, 9–14 July 2006.Google Scholar
Pirhadi, A., Keshmiri, F., and Hakkak, M., “Design of dual-band low profile high directive Electromagnetic Band Gap resonator antenna, using single layer frequency selective surface (Frequency Selective Surface) superstrate,” IEEE APS Int. Symp. Dig., pp. 3005–8, July 2006.Google Scholar
Chappell, W. J. and Gong, X., “Wide bandgap composite Electromagnetic Band Gap substrates,” IEEE Trans. Antennas Propagat., vol. 51, no. 10, 2744–50, 2003.CrossRefGoogle Scholar
Bell, J. M., Iskander, M. F., and Lee, J. J., “Ultrawideband hybrid Electromagnetic Band Gap/ferrite ground plane for low-profile array antennas,” IEEE Trans. Antennas Propagat., vol. 55, no. 1, 4–12, 2007.CrossRefGoogle Scholar
Chiau, C. C., Chen, X., and Parini, C., “Multiperiod Electromagnetic Band Gap structure for wide stopband circuits,” IEE Proc. Microw. Antennas Propagat., vol. 150, no. 6, 489–92, 2003.CrossRefGoogle Scholar
Chen, C., Liu, A.-S., and Wu, R.-B., “A wide-stopband low-pass filter design based on multi-period taper-etched Electromagnetic Band Gap structure,” Proceedings of 2005 Asia Pacific Microwave Conf., vol. 3, December 2005.Google Scholar
Kern, D. J., Werner, D. H., and Wilhelm, M. J., “Active negative impedance loaded Electromagnetic Band Gap structures for the realization of ultra-wideband Artificial Magnetic Conductors,” IEEE APS Int. Symp. Dig., vol. 2, pp. 427–30, 22–27 June 2003.Google Scholar
Mosallaei, H. and Sarabandi, K., “A compact wide-band Electromagnetic Band Gap structure utilizing embedded resonant circuits,” IEEE Antennas Wireless Propagat. Lett., vol. 4, 5–8, 2005.CrossRefGoogle Scholar
Bray, M. G. and Werner, D. H., “A novel design approach for an independently tunable dual-band EBG AMC surface,” IEEE APS Int. Symp. Dig., vol. 1, pp. 289–92, June 2004.Google Scholar
Kern, D. J., Werner, D. H., Monorchio, A., Lanuzza, L., and Wilhelm, M. J., “The design synthesis of multiband artificial magnetic conductors using high impedance frequency selective surfaces,” IEEE Trans. Antennas Propagat., vol. 53, no. 1, 8–17, 2005.CrossRefGoogle Scholar
Yao, Y., Wang, X., and Feng, Z., “A novel dual-band compact electromagnetic bandgap (Electromagnetic Band Gap) structure and its application in multi-antennas,” IEEE APS Int. Symp. Dig., pp. 1943–6, 2006.Google Scholar
Goussetis, G., Guo, Y., Feresidis, A. P., and Vardaxoglou, J. C., “Miniaturised and multiband artificial magnetic conductors and electromagnetic band gap surfaces,” IEEE APS Int. Symp. Dig., vol. 1, pp. 293–6, June 2005.Google Scholar
Tse, S., Izquierdo, B. S., Batchelor, J. C., and Langley, R. J., “Reduced sized cells for high impedance (HIP) ground planes,” Proceedings of 2003 ICAP, vol. 2, pp. 473–6, 2003.Google Scholar
Yang, L. and Feng, Z., “Advanced methods to improve compactness in Electromagnetic Band Gap design and utilization,” IEEE APS Int. Symp. Dig., vol. 4, pp. 3585–8, June 2004.Google Scholar
Yang, L., Feng, Z., Chen, F., and Fan, M., “A novel compact electromagnetic band-gap (Electromagnetic Band Gap) structure and its application in microstrip antenna arrays,” Microwave Symp. Dig., vol. 3, pp. 1635–8, June 2004.Google Scholar
Shaker, G. S. A. and Safavi-Naeini, S., “Reduced size electromagnetic band gap (Electromagnetic Band Gap) structures for antenna applications,” 2005 Canadian Conference on Electrical and Computer Engineering, pp. 1198–201, May 2005.CrossRefGoogle Scholar
Shaker, G. S. A. and Safavi-Naeini, S., “A novel approach for designing miniaturized artificial magnetic conductors (Artificial Magnetic Conductors) and electromagnetic band gap structures (Electromagnetic Band Gaps),” IEEE APS Int. Symp. Dig., vol. 3A, pp. 770–3, July 2005.Google Scholar
Jin, N. and Rahmat-Samii, Y., “Particle swarm optimization of miniaturized quadrature reflection phase structure for low-profile antenna applications,” IEEE APS Int. Symp. Dig., vol. 2B, pp. 255–8, July 2005.Google Scholar
Apostolopoulos, G., Feresidis, A., and Vardaxoglou, J. C., “Miniaturised Electromagnetic Band Gap structures based on complementary geometries,” IEEE APS Int. Symp. Dig., pp. 2253–6, July 2006.Google Scholar
Vardaxoglou, J. C., Gousetis, G., and Feresidis, A. P., “Miniaturisation schemes for metallodielectric electromagnetic bandgap structures,” IET Proc. Microwave Antennas Propagation, vol. 1, no. 1, pp. 234–9, 2007.CrossRefGoogle Scholar
Simovski, C. R., Maagt, P., and Melchakova, I., “High-impedance surfaces having stable resonance with respect to polarization and incidence angle,” IEEE Trans. Antennas and Propag., vol. 53, no. 3, 908–14, 2005.CrossRefGoogle Scholar
Yang, L., Fan, M., and Feng, Z., “A spiral electromagnetic bandgap (Electromagnetic Band Gap) structure and its application in microstrip antenna arrays,” APMC 2005 Proceedings, vol. 3, December 2005.Google Scholar
Kim, Y., Yang, F., and Elsherbeni, A., “Compact artificial magnetic conductor designs using planar square spiral geometry,” Progress In Electromagnetics Research, PIER 77, 43–54, 2007.CrossRefGoogle Scholar
McVay, J. and Engheta, N., “High impedance metamaterial surfaces using Hilbert-curve inclusions,” IEEE Microw. Wireless Components Lett., vol. 14, no. 3, 130–2, 2004.CrossRefGoogle Scholar
Yang, F. and Rahmat-Samii, Y., “Polarization dependent electromagnetic band-gap surfaces: characterization, designs, and applications,” IEEE APS Int. Symp. Dig., vol. 3, pp. 339–42, June 2003.Google Scholar
Yang, F. and Rahmat-Samii, Y., “Polarization dependent electromagnetic band gap (Polarization-Dependent Electromagnetic Band Gap) structures: designs and applications,” Microwave Optical Tech. Lett., vol. 41, no. 6, 439–44, July 2004.CrossRefGoogle Scholar
Yan, D., Gao, Q., Wang, C., Zhu, C., and Yuan, N., “Study on polarization characteristic of asymmetrical Artificial Magnetic Conductor structure,” Asia Pacific Microw. Conf. Proc., December 2005.Google Scholar
Yan, D., Gao, Q., Wang, C., Zhu, C., and Yuan, N., “A novel polarization convert surface based on artificial magnetic conductor,” Asia Pacific Microw. Conf. Proc., December 2005.Google Scholar
Sievenpiper, D., Schaffner, J., Loo, B., Tangonan, G., Harold, R., Pikulski, J., and Garcia, R., “Electronic beam steering using a varactor-tuned impedance surface,” 2001 IEEE APS Int. Symp. Dig., vol. 1, pp. 174–7, July 2001.Google Scholar
Sievenpiper, D. F., Schaffner, J. H., Song, H. J., Loo, R. Y., and Tangonan, G., “Two-dimensional beam steering using an electrically tunable impedance surface,” IEEE Trans. Antennas Propagat., vol. 51, no. 10, 2713–22, October 2003.CrossRefGoogle Scholar
Vardaxoglou, J. C., Chauraya, A., and Maagt, P., “Reconfigurable electromagnetic band gap based structures with defects for MM wave and antenna applications,” Proceedings of 2003 ICAP, vol. 2, pp. 763–6, 2003.Google Scholar
Kern, D. J., Wilhelm, M. J., Werner, D. H., and Werner, P. L., “A novel design technique for ultra-thin tunable EBG AMC surfaces,” IEEE APS Int. Symp. Dig., vol. 2, pp. 1167–70, 20–25 June 2004.Google Scholar
Liang, T., Li, L., Bossard, J. A., Werner, D. H., and Mayer, T. S., “Reconfigurable ultra-thin Electromagnetic Band Gap absorbers using conducting polymers,” IEEE APS Int. Symp. Dig., vol. 2B, pp. 204–7, July 2005.Google Scholar
Mercier, L., Rodes, E., Drouet, J., Leger, L., Arnaud, E., Thevenot, M., Monediere, T., and Jecko, B., “Steerable and tunable ‘Electromagnetic Band Gap resonator antennas’ using smart metamaterials,” IEEE APS Int. Symp. Dig., pp. 406–9, July 2006.Google Scholar
Boutayeb, H. and Denidni, T. A., “Technique for reducing the power supply in reconfigurable cylindrical electromagnetic bandgap structures,” IEEE Antennas Wireless Propagat. Lett., vol. 5, pp. 424–5, December 2006.CrossRefGoogle Scholar
Kern, D. J., Bossard, J. A., and Werner, D. H., “Design of reconfigurable electromagnetic bandgap surfaces as artificial magnetic conducting ground planes and absorbers,” IEEE APS Int. Symp. Dig., pp. 197–200, July 2006.Google Scholar
Bray, M. G., Bayraktar, Z., and Werner, D. H., “Genetic Algorithm optimized ultra-thin tunable EBG AMC surfaces,” IEEE APS Int. Symp. Dig., pp. 410–13, July 2006.Google Scholar
Yeo, J., Mittra, R., and Chakravarty, S., “A Genetic Algorithm-based design of electromagnetic bandgap (Electromagnetic Band Gap) structures utilizing frequency selective surfaces for bandwidth enhancement of microstrip antennas,” IEEE APS Int. Symp. Dig., vol. 2, pp. 400–3, 16–21 June 2002.Google Scholar
Bray, M. G., Bayraktar, Z., and Werner, D. H., “Genetic Algorithm optimized ultra-thin tunable EBG AMC surfaces,” IEEE APS Int. Symp. Dig., pp. 410–13, July 2000.Google Scholar
Ge, Y. and Esselle, K. P, “Genetic Algorithm/Finite Difference Time Domain technique for the design and optimisation of periodic metamaterials,” IET Proc. Microwave Antennas Propagation, vol. 1, no. 1, pp. 158–64, 2007.CrossRefGoogle Scholar
Jin, N. and Rahmat-Samii, Y., “Parallel Particle Swarm Optimization/Finite Difference Time Domain algorithm for the optimization of patch antennas and Electromagnetic Band Gap structures,” IEEE/ACES Int. Conf. Wireless Communications and Applied Computational Electromagnetics, pp. 582–5, April 2005.Google Scholar
Jin, N. and Rahmat-Samii, Y., “Particle swarm optimization of miniaturized quadrature reflection phase structure for low-profile antenna applications,” IEEE APS Int. Symp. Dig., vol. 2B, pp. 255–8, July 2005.Google Scholar
Yang, F. and Rahmat-Samii, Y., “Applications of electromagnetic band-gap (Electromagnetic Band Gap) structures in microwave antenna designs,” Proceedings, ICMMT 2002, pp. 528–31, 17–19 August 2002.Google Scholar
Maagt, P., Gonzalo, R., Vardaxoglou, Y. C., and Baracco, J. M., “Electromagnetic bandgap antennas and components for microwave and (sub)millimeter wave applications,” IEEE Trans. Antennas Propagat., vol. 51, no. 10, 2667–77, 2003.CrossRefGoogle Scholar
Kern, D. J. and Werner, D. H., “The synthesis of metamaterial ferrites for RF applications using electromagnetic bandgap structures,” IEEE APS Int. Symp. Dig., vol. 1, pp. 497–500, June 2003.Google Scholar
Rahmat-Samii, Y., “The marvels of electromagnetic band gap (Electromagnetic Band Gap) structures: novel microwave and optical applications,” Proceedings of the 2003 SBMO/IEEE MTT-S International, vol. 1, pp. 265–75, 20–23 Sept. 2003.Google Scholar
Falcone, F., Martin, F., Bonache, J., Lopetegi, T., Gomez-Laso, M. A., Garcia, J., Gil, N., and Sorolla, M., “Electromagnetic bandgap structures in planar circuit technology,” IEEE APS Int. Symp. Dig., vol. 4, pp. 3545–8, June 2004.Google Scholar
Kern, D. J., Spence, T. G., and Werner, D. H., “The design optimization of antennas in the presence of EBG AMC ground planes,” IEEE APS Int. Symp. Dig., vol. 3A, pp. 10–13, July 2005.Google Scholar
Vardaxoglou, J. C., Feresidis, A. P., and Goussetis, G., “Recent advances on Electromagnetic Band Gap and Artificial Magnetic Conductor surfaces with applications in terminal and high gain antennas,” 7th Int. Conf. Telecommunications in Modern Satellite, Cable and Broadcasting Services, vol. 1, pp. 3–6, September 2005.Google Scholar
Zaridze, R., Saparishvili, G., Paroshina, I., and Loskutov, D., “Computer simulation and experimental fabrication of some Electromagnetic Band Gap antenna devices and electronic circuits,” IEEE APS Int. Symp. Dig., vol. 4B, pp. 351–4, July 2005.Google Scholar
Lee, Y., Hao, Y., and Parini, C., “Applications of electromagnetic bandgap (Electromagnetic Band Gap) structures for novel communication antenna dsigns,” European Microw. Conf., pp. 1056–9, September 2006.Google Scholar
Gonzalo, R., Maagt, P., and Sorolla, M., “Enhanced patch antenna performance by suppressing surface waves using photonic-bandgap substrates,” IEEE Trans. Microwave Theory Tech., vol. 47, 2131–8, 1999.CrossRefGoogle Scholar
Cocciolo, R., Yang, F. R., Ma, K. P., and Itoh, T., “Aperture coupled patch antenna on UC-Photonic Band Gap substrate,” IEEE Trans. Microwave Theory Tech., vol. 47, 2123–30, November 1999.CrossRefGoogle Scholar
Yang, F., Kee, C.-S., and Rahmat-Samii, Y., “Step-like structure and Electromagnetic Band Gap structure to improve the performance of patch antennas on high dielectric substrate,” IEEE APS Int. Symp. Dig., vol. 2, pp. 482–5, 8–13 July 2001.Google Scholar
Fallah-Rad, M. and Shafai, L., “Enhanced performance of a microstrip patch antenna using a high impedance Electromagnetic Band Gap structure,” IEEE APS Int. Symp. Dig., vol. 3, pp. 982–5, June 2003.Google Scholar
Zhang, Y., Hagen, J., Younis, M., Fischer, C., and Wiesbeck, W., “Planar artificial magnetic conductors and patch antennas,” IEEE Trans. Antennas Propagat., vol. 51, no. 10, 2704–12, 2003.CrossRefGoogle Scholar
Chiau, C. C., Chen, X., and Parini, C. G., “A microstrip patch antenna on the embedded multi-period Electromagnetic Band Gap structure,” Proceeding of the 6th Int. Symp. Antennas, Propagation and EM Theory, pp. 96–9, 2003.Google Scholar
Chiau, C. C., Chen, X., and Parini, C. G., “A multi-period Electromagnetic Band Gap structure for microstrip antennas,” Proceedings of 2003 ICAP, vol. 2, pp. 727–30, 2003.Google Scholar
Llombart, N., Neto, A., Gerini, G., and Maagt, P., “Bandwidth, efficiency and directivity enhancement of printed antenna performance using planar circularly symmetric Electromagnetic Band Gaps,” 2005 European Microwave Conference, vol. 3, p. 4, October 2005.Google Scholar
Llombart, N., Neto, A., Gerini, G., and Maagt, P., “Enhanced antenna performances using planar circularly symmetric Electromagnetic Band Gaps,” IEEE APS Int. Symp. Dig., vol. 1A, pp. 770–3, July 2005.Google Scholar
Wang, X., Hao, Y., and Hall, P. S., “Dual-band resonances of a patch antenna on UC-Electromagnetic Band Gap substrate,” 2005 Asia-Pacific Conference Proceedings, December 2005.Google Scholar
Menon, S. K., Lethakumary, B., Aanandan, C. K., Vasudevan, K., and Mohanan, P., “A novel Electromagnetic Band Gap structured ground plane for microstrip antennas,” IEEE APS Int. Symp. Dig., vol. 2A, pp. 578–81, July 2005.Google Scholar
Llombart, N., Neto, A., Gerini, G., and Maagt, P., “Planar circularly symmetric Electromagnetic Band Gap structures for reducing surface waves in printed antennas,” IEEE Trans. Antennas Propagat., vol. 53, no. 10, 3210–18, 2005.CrossRefGoogle Scholar
Li, R. L., DeJean, G., Tentzeris, M. M., Papapolymerou, J., and Laskar, J., “Radiation-pattern improvement of patch antennas on a large-size substrate using a compact soft-surface structure and its realization on Low Temperature Co-fired Ceramic multilayer technology,” IEEE Trans. Antennas Propagat., vol. 53, no. 1, 200–8, 2005.Google Scholar
Gao, W., “Radiation characteristics of a patch with line-fed on Electromagnetic Band Gap ground,” IEEE APS Int. Symp. Dig., pp. 3021–4, July 2006.Google Scholar
Qu, D., Shafai, L., and Foroozesh, A., “Improving microstrip patch antenna performance using Electromagnetic Band Gap substrates,” IEE Proc. Microw. Antennas Propag, vol. 153, no. 6, pp. 558–63, December 2006.CrossRefGoogle Scholar
Sudha, T. and Vedavathy, T. S., “A dual band circularly polarized microstrip antenna on an Electromagnetic Band Gap substrate,” IEEE APS Int. Symp. Dig., vol. 2, pp. 68–71, June 2002.Google Scholar
Rahman, M. and Stuchly, M. A., “Circularly polarised patch antenna with periodic structure,” IEE Proc. Microw. Antennas Propagat., vol. 149, no. 3, pp. 141–6, June 2002.CrossRefGoogle Scholar
Iriarte, J. C., Ederra, I., Gonzalo, R., Gosh, A., Laurin, J., Caloz, C., Brand, Y., Gavrilovic, M., Demers, Y., and Maagt, P., “Electromagnetic Band Gap superstrate for gain enhancement of a circularly polarized patch antenna,” IEEE APS Int. Symp. Dig., pp. 2993–6, 2006.Google Scholar
Yang, L., Chen, W., Fan, M., and Feng, Z., “Enhanced performance of a suspended patch antenna with stacked Electromagnetic Band Gap utilization,” IEEE APS Int. Symp. Dig., vol. 3, pp. 2412–15, June 2004.Google Scholar
Yeo, J., Mittra, R., and Chakravarty, S., “A Genetic Algorithm-based design of electromagnetic bandgap (Electromagnetic Band Gap) structures utilizing frequency selective surfaces for bandwidth enhancement of microstrip antennas,” IEEE APS Int. Symp. Dig., vol. 2, pp. 400–3, June 2002.Google Scholar
Kiziltas, G., Psychoudakis, D., Volakis, J. L., and Kikuchi, N., “Topology design optimization of dielectric substrates for bandwidth improvement of a patch antenna,” IEEE Trans. Antennas Propagat., vol. 51, no. 10, 2732–43, 2003.CrossRefGoogle Scholar
Qu, D. and Shafai, , “Wideband microstrip patch antenna with Electromagnetic Band Gap substrates,” IEEE APS Int. Symp. Dig., vol. 2A, pp. 594–7, July 2005.Google Scholar
Qu, D. and Shafai, L., “The performance of microstrip patch antennas over high impedance Electromagnetic Band Gap substrates within and outside its bandgap,” IEEE Int. Symp. Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications, vol. 1, pp. 423–6, August 2005.Google Scholar
Leger, L., Monediere, T., and Jecko, B., “Enhancement of gain and radiation bandwidth for a planar 1-D Electromagnetic Band Gap antenna,” IEEE Microw. Wirel. Co. Lett., vol. 15, no. 9, 573–5, 2005.CrossRefGoogle Scholar
Pioch, S. and Laheurte, J.-M., “Size reduction of microstrip antennas by means of periodic metallic patterns,” Electron. Lett., vol. 39, no. 13, 959–61, 2003.CrossRefGoogle Scholar
Horii, Y. and Tsutsumi, M., “Wide band operation of a harmonically controlled Electromagnetic Band Gap microstrip patch antenna,” IEEE APS Int. Symp. Dig., vol. 3, 768–71, 2002.Google Scholar
Lee, Y., Yeo, J., and Mittra, R., “Investigation of electromagnetic bandgap (Electromagnetic Band Gap) structures for antenna pattern control,” IEEE APS Int. Symp. Dig., vol. 2, pp. 1115–18, June 2003.Google Scholar
Lee, Y. J., Yeo, J., Ko, K. D., Mittra, R., Lee, Y., and Park, W. S., “Techniques for controlling the defect frequencies of electromagnetic bandgap (Electromagnetic Band Gap) superstrates for dual-band directivity enhancement of a patch antenna,” IEEE APS Int. Symp. Dig., vol. 2, pp. 1143–6, June 2004.Google Scholar
Lee, Y. J., Yeo, J., Mittra, R., and Park, W. S., “Application of electromagnetic bandgap (Electromagnetic Band Gap) superstrates with controllable defects for a class of patch antennas as spatial angular filters,” IEEE Trans. Antennas Propagat., vol. 53, no. 1, part 1, pp. 224–35, 2005.Google Scholar
Lee, Y. J., Yeo, J., Mittra, R., and Park, W. S., “Design of a frequency selective surface (Frequency Selective Surface) type superstrate for dual-band directivity enhancement of microstrip patch antennas,” IEEE APS Int. Symp. Dig., vol. 3A, pp. 2–5, July 2005.Google Scholar
Yang, F. and Rahmat-Samii, Y., “Mutual coupling reduction of microstrip antennas using electromagnetic band-gap structure,” IEEE APS Int. Symp. Dig., vol. 2, pp. 478–81, July 2001.Google Scholar
Mao, S.-G., Chen, C.-M., and Chang, D.-C., “Modeling of slow-wave Electromagnetic Band Gap structure for printed-bowtie antenna array,” IEEE Antennas Wireless Propagat. Lett., vol. 1, no. 1, 124–7, 2002.Google Scholar
Yu, A. and Zhang, X., “A novel 2-D electromagnetic band-gap structure and its application in micro-strip antenna arrays,” Proceedings of ICMMT 2002, pp. 580–3, 17–19 August 2002.Google Scholar
Yang, F. and Rahmat-Samii, Y., “Microstrip antennas integrated with electromagnetic band-gap (Electromagnetic Band Gap) structures: a low mutual coupling design for array applications,” IEEE Trans. Antennas Propagat., vol. 51, no. 10, part 2, 2936–46, 2003.CrossRefGoogle Scholar
Yu, A. and Zhang, X., “A novel method to improve the performance of microstrip antenna arrays using a dumbbell Electromagnetic Band Gap structure,” Antennas Wireless Propagat. Lett., vol. 2, no. 1, 170–2, 2003.Google Scholar
Bozzetti, M., D'Orazio, A., Sario, M., Grisorio, C., Petruzzelli, V., Prudenzano, F., and Rotunno, A., “Electromagnetic bandgap phased array antenna controlled by piezoelectric transducer,” Electron. Lett., vol. 39, no. 14, 1028–30, July 2003.CrossRefGoogle Scholar
Yang, L., Feng, Z., Chen, F., and Fan, M., “A novel compact electromagnetic band-gap (Electromagnetic Band Gap) structure and its application in microstrip antenna arrays,” Microwave Symposium Digest, vol. 3, pp. 1635–8, June 2004.Google Scholar
Iluz, Z., Shavit, R., and Bauer, R., “Microstrip antenna phased array with electromagnetic bandgap substrate,” IEEE Trans. Antennas Propagat., vol. 52, no. 6, 1446–53, 2004.CrossRefGoogle Scholar
Kretly, L. C. and Alves, S. A. M. P., “The effect of an electromagnetic band-gap structure on a PIFA antenna array,” Proceedings of IEEE Symp. Personal, Indoor and Mobile Radio Communications, vol. 2, pp. 1268–71, September 2004.Google Scholar
Fu, Y. and Yuan, N., “Elimination of scan blindness in phased array of microstrip patches using electromagnetic bandgap materials,” IEEE Antennas Wireless Propagat. Lett., vol. 3, no. 1, 63–5, 2004.Google Scholar
Llombart, N., Neto, A., Gerini, G., and Maagt, P., “Planar circularly symmetric Electromagnetic Band Gaps to improve the isolation of array elements,” IEEE APS Int. Symp. Dig., vol. 2A, pp. 582–5, 3–8 July 2005.Google Scholar
Llombart, N., Neto, A., Gerini, G., and Maagt, P., “On the use of planar Electromagnetic Band Gaps in one dimensional (1D) scanning printed arrays,” Proceedings of Radar Conf., pp. 303–6, October 2005.Google Scholar
Yang, L., Fan, M., and Feng, Z., “A spiral electromagnetic bandgap (Electromagnetic Band Gap) structure and its application in microstrip antenna arrays,” 2005 Asia-Pacific Conference Proceedings, December 2005.CrossRefGoogle Scholar
Liang, J. and Yang, H. Y. D., “Analysis of a Proximity Coupled Patch Antenna on a Metallized Substrate,” IEEE APS Int. Symp. Dig., pp. 2287–90, July 2006.Google Scholar
Pynttari, V., Makinen, R., Ruhanen, A., Heikkinen, J., and Kivikoski, M., “Comparison of electromagnetic band-gap structures for microstrip antenna arrays on thin substrates,” IEEE APS Int. Symp. Dig., pp. 3017–20, July 2006.Google Scholar
Liu, H.-L., Wang, B.-Z., Yang, X.-S., and Shao, W., “Elimination of mutual couplings in reflectarray using electromagnetic bandgap structures,” IEEE APS Int. Symp. Dig., pp. 2299–302, July 2006.Google Scholar
Donzelli, G., Capolino, F., Boscolo, S., and Midrio, M., “Elimination of scan blindness in phased array antennas using a grounded-dielectric Electromagnetic Band Gap material,” IEEE Antennas Wireless Propagat. Lett., vol. 6, 2007.CrossRefGoogle Scholar
Yang, F. and Rahmat-Samii, Y., “Reflection phase characterizations of the Electromagnetic Band Gap ground plane for low profile wire antenna applications,” IEEE Trans. Antennas Propagat., vol. 51, no. 10, 2691–703, 2003.CrossRefGoogle Scholar
Boutayeb, H., Mahdjoubi, K., and Tarot, A. C., “Design of a directive and matched antenna with a planar Electromagnetic Band Gap structure,” IEEE APS Int. Symp. Dig., vol. 1, pp. 835–8, June 2004.Google Scholar
Sohn, J. R., Tae, H.-S., Lee, J.-G., and Lee, J.-H., “Comparative analysis of four types of high-impedance surfaces for low profile antenna applications,” IEEE APS Int. Symp. Dig., vol. 1A, pp. 758–61, July 2005.Google Scholar
Abedin, M. F. and Ali, M., “Effects of Electromagnetic Band Gap reflection phase profiles on the input impedance and bandwidth of ultrathin directional dipoles,” IEEE Trans. Antennas Propagat., vol. 53, no. 11, 3664–72, 2005.CrossRefGoogle Scholar
Clavijo, S., Diaz, R. E., and McKinzie, W. E., “Design methodology for Sievenpiper high-impedance surfaces: an artificial magnetic conductor for positive gain electrically small antennas,” IEEE Trans. Antennas Propagat., vol. 51, no. 10, 2678–90, 2003.CrossRefGoogle Scholar
Abedin, M. F. and Ali, M., “Application of Electromagnetic Band Gap substrates to design ultra-thin wideband directional dipoles,” IEEE APS Int. Symp. Dig., vol. 2, pp. 2071–4, June 2004.Google Scholar
Yang, F., Demir, V., Elsherbeni, D. A., Elsherbeni, A. Z., and Eldek, A. A., “Planar dipole antennas near the edge of an Electromagnetic Band Gap ground plane for Wireless Local Area Network applications,” IEEE APS Int. Symp. Dig., vol. 1A, pp. 750–3, 3–8 July 2005.Google Scholar
Akhoondzadeh-Asl, L., Hall, P. S., Nourinia, J., and Ch., Ghobadi, “Influence of Angular Stability of Electromagnetic Band Gap Structures on Low Profile Dipole Antenna Performance,” IEEE Int. Workshop on Antenna Technology Small Antennas and Novel Metamaterials, pp. 253–6, March, 2006.CrossRefGoogle Scholar
Ederra, I., Gonzalo, R., Martinez, B., Azcona, L., Alderman, B., Huggard, P., Hon, B. P. D., Beurden, M. V., Marchand, L., and Maagt, P., “Modifications of the woodpile structure for the improvement of its performance as substrate for dipole antennas,” IET Proc. Microwave Antennas Propagation, vol. 1, no. 1, 226–33, 2007.CrossRefGoogle Scholar
Yu, A. and Zhang, X., “A low profile monopole antenna using a dumbbell Electromagnetic Band Gap structure,” IEEE APS Int. Symp. Dig., vol. 2, pp. 1155–8, June 2004.Google Scholar
Yang, F. and Rahmat-Samii, Y., “Bent monopole antennas on Electromagnetic Band Gap ground plane with reconfigurable radiation patterns,” IEEE APS Int. Symp. Dig., vol. 2, pp. 1819–22, June 2004.Google Scholar
Liu, T. H., Zhang, W. X., Zhang, M., and Tsang, K. F., “Low profile spiral antenna with Photonic Band Gap substrate,” Electron. Lett., vol. 36, no. 9, 779–80, 2000.CrossRefGoogle Scholar
Nakano, H., Ikeda, M., Hitosugi, K., Yamauchi, J., and Hirose, K., “A spiral antenna backed by an electromagnetic band-gap material,” IEEE APS Int. Symp. Dig., vol. 4, pp. 482–5, June 2003.Google Scholar
Nakano, H., Hitosugi, K., Tatsuzawa, N., Togashi, D., Mimaki, H., and Yamauchi, J., “Effects on the radiation characteristics of using a corrugated reflector with a helical antenna and an electromagnetic band-gap reflector with a spiral antenna,” IEEE Trans. Antennas Propagat., vol. 53, no. 1, 191–9, 2005.CrossRefGoogle Scholar
Yang, F. and Rahmat-Samii, Y., “Curl antennas over electromagnetic band-gap surface: a low profiled design for Circular Polarization applications,” IEEE APS Int. Symp. Dig., vol. 3, pp. 372–5, July 2001.Google Scholar
Yang, F. and Rahmat-Samii, Y., “A low profile circularly polarized curl antenna over electromagnetic band-gap (Electromagnetic Band Gap) surface,” Microwave Optical Tech. Lett., vol. 31, no. 4, 264–7, 2001.CrossRefGoogle Scholar
Raumonen, P., Keskilammi, M., Sydanheimo, L., and Kivikoski, M., “A very low profile CP EBG antenna for Radio Frequency IDentification reader,” IEEE APS Int. Symp. Dig., vol. 4, pp. 3808–11, June 2004.Google Scholar
J., Kim and Rahmat-Samii, Y., “Low-profile loop antenna above Electromagnetic Band Gap structure,” IEEE APS Int. Symp. Dig., vol. 2A, pp. 570–3, July 2005.Google Scholar
Ooi, B.-L., “A modified contour Integral analysis for Sierpinski fractal carpet antennas with and without electromagnetic band gap ground plane,” IEEE Trans. Antennas Propagat., vol. 52, no. 5, 1286–93, 2004.CrossRefGoogle Scholar
Nakano, H., Asano, Y., and Yamauchi, J., “A wire inverted F antenna on a finite-sized Electromagnetic Band Gap material,” IEEE International Workshop on Antenna Technology: Small Antennas and Novel Metamaterials, pp. 13–16, March 2005.Google Scholar
Bell, J. M. and Iskander, M. F., “A low-profile Archimedean spiral antenna using an Electromagnetic Band Gap ground plane,” IEEE Antennas Wireless Propagat. Lett., vol. 3, no. 1, 223–6, 2004.CrossRefGoogle Scholar
Schreider, L., Begaud, X., Soiron, M., Perpere, B., and Renard, C., “Broadband Archimedean spiral antenna above a loaded electromagnetic band gap substrate,” IET Proc. Microwave Antennas Propagation, vol. 1, no. 1, pp. 212–16, 2007.CrossRefGoogle Scholar
Bray, M. G. and Werner, D. H., “A broadband open-sleeve dipole antenna mounted above a tunable EBG AMC ground plane,” IEEE APS Int. Symp. Dig., vol. 2, pp. 1147–50, June 2004.Google Scholar
Best, S. R. and Hanna, D. L., “Design of a broadband dipole in close proximity to an Electromagnetic Band Gap ground plane,” 2005 Antenna Applications Symposium, University of Illinois, September 2005.Google Scholar
Akhoondzadeh-Asl, L. and Hall, P. S., “Wideband dipoles on electromagnetic bandgap ground planes,” IEE Conf. Wideband and Multi-band Antennas and Arrays, pp. 41–5, September 2005.CrossRefGoogle Scholar
Akhoondzadeh, L., Kern, D. J., Hall, P. S., and Werner, D. H., “Wideband dipoles on electromagnetic bandgap ground planes,” IEEE Trans. Antennas Propagat., vol. 55, no. 9, 2426–34, September 2007.CrossRefGoogle Scholar
Abedin, M. F. and Ali, M., “Reducing the mutual-coupling between the elements of a printed dipole array using planar Electromagnetic Band Gap structures,” IEEE APS Int. Symp. Dig., vol. 2A, 598–601, 2005.Google Scholar
Abedin, M. F. and Ali, M., “Effects of a smaller unit cell planar Electromagnetic Band Gap structure on the mutual coupling of a printed dipole array,” IEEE Antennas Wireless Propagat. Lett., vol. 4, 274–6, 2005.CrossRefGoogle Scholar
Ederra, I., Pascual, B. M., Labajos, A. B., Teniente, J., Gonzalo, R., and Maagt, P., “Experimental verification of the reduction of coupling between dipole antennas by using a woodpile substrate,” IEEE Trans. Antennas Propagat., vol. 54, no. 7, 2105–12, 2006.CrossRefGoogle Scholar
Nakano, H., Hitosugi, K., and Yamauchi, J., “A spiral antenna array with an electromagnetic band-gap reflector,” IEEE APS Int. Symp. Dig., vol. 1, pp. 831–4, June 2004.Google Scholar
Nakano, H., Hitosugi, K., Huang, P., Mimaki, H., and Yamauchi, J., “A low-profile spiral antenna array above an Electromagnetic Band Gap reflector,” IEEE APS Int. Symp. Dig., vol. 3A, pp. 18–21, July 2005.Google Scholar
Baracco, J.-M., Paquay, M., and Maagt, P., “An electromagnetic bandgap curl antenna for phased array applications,” IEEE Trans. Antennas Propagat., vol. 53, no. 1, part 1, 173–80, 2005.CrossRefGoogle Scholar
Nakano, H., Asano, Y., Mimaki, H., and Yamauchi, J., “Tilted beam formation by an array composed of strip inverted F antennas with a finite-sized Electromagnetic Band Gap reflector,” IEEE Int. Symp. Microwave, Antenna, Propagation EMC, vol. 1, pp. 438–41, August 2005.Google Scholar
Nakano, H., Asano, Y., Tsutsumi, G., and Yamauchi, J., “A Low-Profile Inverted F Element Array Backed by an Electromagnetic Band Gap Reflector,” IEEE APS Int. Symp. Dig., pp. 2985–8, 2006.Google Scholar
Shumpert, J. D., Chappell, W. J., and Katehi, L. P. B., “Parallel-plate mode reduction in conductor-backed slots using electromagnetic bandgap substrates,” IEEE Trans. Microwave Theory Tech., vol. 47, no. 11, 2099–104, 1999.CrossRefGoogle Scholar
Fernandez, J. M. and Castaner, M. S., “Effect of Artificial Magnetic Conductor sidewall structures in parallel plate slot antennas,” IEEE APS Int. Symp. Dig., vol. 2B, pp. 659–62, July 2005.Google Scholar
Neto, A., Llombart, N., Gerini, G., and Maagt, P., “On the optimal radiation bandwidth of printed slot antennas surrounded by Electromagnetic Band Gaps,” IEEE Trans. Antennas Propagat., vol. 54, no. 4, 1074–83, 2006.CrossRefGoogle Scholar
Habib, M. A., Nedil, M., and Denidni, T. A., “Radiation efficiency enhancement of slot antennas using Electromagnetic Band Gap-pin inclusion,” IEEE APS Int. Symp. Dig., pp. 2295–8, July 2006.Google Scholar
Llombart, N., Neto, A., Gerini, G., and Maagt, P., “1-D Scanning Arrays on Dense Dielectrics Using PCS-Electromagnetic Band Gap Technology,” IEEE Trans. Antennas Propagat., vol. 55, no. 1, 26–35, 2007.CrossRefGoogle Scholar
Xu, D., Ooi, B. L., and Zhao, G., “A new triple-band slot antenna with Electromagnetic Band Gap feed,” IEEE Int. Symp. Microwave Antennas Propagat. EMC, vol. 1, pp. 41–4, August 2005.Google Scholar
Ooi, B. L., Xu, X. D., and Ang, I., “Triple-band slot antenna with spiral Electromagnetic Band Gap feed,” IEEE Int. Workshop Antenna Technology: Small Antennas and Novel Metamaterials, pp. 329–32, March 2005.Google Scholar
Bin, L., Long, L., and Liang, C.-H., “Waveguide slot array antenna with Electromagnetic Band Gap high-impedance surface structure,” 2005 Asia-Pacific Microwave Conference Proceedings, December 2005.Google Scholar
Zheng, Q.-R., Zhang, G.-H., and Yuan, N.-C., “Single ridged waveguide slot phased antenna array integrated with high impedance ground plane,” 2005 Asia-Pacific Microwave Conference Proceedings, December 2005.Google Scholar
Gao, Q., Zhang, G.-H., Yan, D.-B., and Yuan, N.-C., “Waveguide slot antenna using high-impedance surface,” 2005 Asia-Pacific Microwave Conference Proceedings, December 2005.Google Scholar
Li, L., Dang, X.-J., Li, B., and Liang, C.–H., “Analysis and design of waveguide slot antenna array integrated with electromagnetic band-gap structures,” IEEE Antennas Wireless Propagat. Lett., vol. 5, no. 1, 111–15, 2006.CrossRefGoogle Scholar
Kelly, P. K., Maloney, J. G., and Smith, G., “Antenna design with the use of photonic bandgap materials as all-dielectric planar reflector,” Microwave and Optical Tech. Lett., vol. 11, 169–74, 1996.Google Scholar
Thevenot, M., Reineix, A., and Jecko, B., “Directive photonic-bandgap antennas,” IEEE Trans. Microwave Theory Tech., vol. 47, no. 11, 2115–22, 1999.CrossRefGoogle Scholar
Wang, S., Feresidis, A. P., Goussetis, G., and Vardaxoglou, J. C., “Low profile highly directive antennas using Electromagnetic Band Gap superstrates and metamaterial ground planes,” IEEE APS Int. Symp. Dig., vol. 4B, pp. 335–8, July 2005.Google Scholar
Jecko, B., Monediere, T., and Leger, L., “High Gain Electromagnetic Band Gap Resonator Antenna,” 18th Int. Conf. Applied Electromagnetics Communications, pp. 1–3, October 2005.Google Scholar
Vardaxoglou, J. C. and Maagt, P., “Recent advances on metamaterials with applications in terminal and high gain array and reflector antennas,” IEEE APS Int. Symp. Dig., pp. 423–6, July 2006.Google Scholar
Vardaxoglou, Y. and Capolino, F., “Review of highly-directive flat-plate antenna technology with metasurfaces and metamaterials,” European Microw. Conf., pp. 963–6, September 2006.Google Scholar
Cheype, C., Serier, C., Thevenot, M., Monediere, T., Reineix, A., and Jecko, B., “An electromagnetic bandgap resonator antenna,” IEEE Trans. Antennas Propagat., vol. 50, no. 9, 1285–90, 2002.CrossRefGoogle Scholar
Weily, A. R., Esselle, K., Sanders, B. C., and Bird, T. S., “Woodpile Electromagnetic Band Gap resonator antenna with double slot feed,” IEEE APS Int. Symp. Dig., vol. 2, pp. 1139–42, 20–5 June 2004.Google Scholar
Weily, A. R., Horvath, L., Esselle, K. P., Sanders, B. C., and Bird, T. S., “A planar resonator antenna based on a woodpile Electromagnetic Band Gap material,” IEEE Trans. Antennas Propagat., vol. 53, no. 1, 216–23, 2005.CrossRefGoogle Scholar
Thevenot, M., Drouet, J., Jecko, B., Monediere, T., Leger, L., Freytag, L., Chantalat, R., and Diblanc, M., “New advancements to exploit the potentialities of the Electromagnetic Band Gap resonator antennas,” IEEE APS Int. Symp. Dig., vol. 3A, pp. 22–5, July 2005.Google Scholar
Sardi, G. M., Donzelli, G., and Capolino, F., “High directivity at broadside with new radiators made of dielectric Electromagnetic Band Gap materials,” IEEE APS Int. Symp. Dig., pp. 373–6, July 2006.Google Scholar
Lee, Y., Lu, X., Hao, Y., Yang, S., Ubic, R., Evans, J. R. G., and Parini, C. G., “Directive millimetre-wave antenna based on free formed woodpile Electromagnetic Band Gap structure,” Electron. Lett., vol. 43, no. 4, 195–6, 2007.CrossRefGoogle Scholar
Diblanc, M., Rodes, E., Arnaud, E., Thevenot, M., Monediere, T., and Jecko, B., “Circularly polarized metallic Electromagnetic Band Gap antenna,” IEEE Microw. Wirel. Co. Lett., vol. 15, no. 10, 638–40, 2005.CrossRefGoogle Scholar
Weily, A. R., Esselle, K. P., Bird, T. S., and Sanders, B. C., “High gain circularly polarised 1-D Electromagnetic Band Gap resonator antenna,” Electron. Lett., vol. 42, no. 18, 3–4, 2006.CrossRefGoogle Scholar
Weily, A. R., Esselle, K. P., Bird, T. S., and Sanders, B. C., “High gain antenna with improved radiation bandwidth using dual 1-D Electromagnetic Band Gap resonators and array feed,” IEEE APS Int. Symp. Dig., pp. 3–10, July 2006.Google Scholar
Weily, A. R., Esselle, K. P., Bird, T. S., and Sanders, B. C., “Dual resonator 1-D Electromagnetic Band Gap antenna with slot array feed for improved radiation bandwidth,” IET Proc. Microwave Antennas Propagation, vol. 1, no. 1, 198–203, 2007.CrossRefGoogle Scholar
Gardelli, R., Albani, M., and Capolino, F., “Electromagnetic Band Gap superstrates for dual polarized sparse arrays,” IEEE APS Int. Symp. Digest, vol. 2A, pp. 586–9, July 2005.Google Scholar
Skobelev, S. P. and Kildal, P.-S., “Analysis of conical quasi-Transverse ElectroMagnetic horn with a hard corrugated section,” IEEE Trans. Antennas Propagat., vol. 51, no. 10, 2723–31, 2003.CrossRefGoogle Scholar
Skobelev, S. P. and Kildal, P.-S., “Mode-matching modeling of a hard conical quasi-Transverse ElectroMagnetic horn realized by an Electromagnetic Band Gap structure with strips and vias,” IEEE Trans. Antennas Propagat., vol. 53, no. 1, 139–43, 2005.CrossRefGoogle Scholar
Weily, A. R., Esselle, K. P., Sanders, B. C., and Bird, T. S., “A woodpile Electromagnetic Band Gap sectoral horn antenna,” IEEE APS Int. Symp. Dig., vol. 4B, pp. 323–6, July 2005.Google Scholar
Weily, A. R., Esselle, K. P., Bird, T. S., and Sanders, B. C., “Linear array of woodpile Electromagnetic Band Gap sectoral horn antennas,” IEEE Trans. Antennas Propagat., vol. 54, no. 8, 2263–74, 2006.CrossRefGoogle Scholar
Boutayeb, H., Denidni, T. A., Sebak, A., and Talbi, L., “Metallic Electromagnetic Band Gap structures for directive antennas using rectangular, cylindrical and elliptical shapes,” IEEE APS Int. Symp. Dig., vol. 1A, pp. 762–5, July 2005.Google Scholar
Israel, D., Shavit, R., and Iluz, Z., “Multi-beam reflector antenna with feeds covered by an Electromagnetic Band Gap structure used as a spatial angular filter,” IEEE APS Int. Symp. Dig., pp. 353–6, July 2006.Google Scholar
Sievenpiper, D. F., Schaffner, J. H., Song, H. J., Loo, R. Y., and Tangonan, G., “Two-dimensional beam steering using an electrically tunable impedance surface,” IEEE Trans. Antennas Propagat., vol. 51, no. 10, 2713–22, 2003.CrossRefGoogle Scholar
Leger, L., Monediere, T., Thevenot, M., and Jecko, B., “Multifrequency and beam steered electromagnetic band gap antennas,” IEEE APS Int. Symp. Dig., vol. 2, pp. 1151–4, June 2004.Google Scholar
Talleb, H., Lautru, D., and Fouad-Hanna, V., “Analysis of adaptive antenna having electromagnetic band gap metallic structures,” IEEE APS Int. Symp. Dig., vol. 2A, pp. 566–9, July 2005.Google Scholar
Ratajczak, P., Brachat, P., and Fargeas, J. M., “An adaptive beam steering antenna for mobile communications,” IEEE APS Int. Symp. Dig., pp. 418–21, July 2006Google Scholar
Talleb, H., Lautru, D., and Fouad-Hanna, V., “Analysis of an electronically adaptive antenna using an Electromagnetic Band Gap metallic structure with inserted localized elements,” 36th European Microw. Conf., pp. 768–71, September 2006.CrossRefGoogle Scholar
Chauraya, A., Panagamuwa, C., and Vardaxoglou, J., “Beam scanning antenna with photonically tuned Electromagnetic Band Gap phase shifters,” IEEE APS Int. Symp. Dig., pp. 2283–6, July 2006.Google Scholar
Boutayeb, H. and Denidni, T. A., “New configuration of cylindrical Electromagnetic Band Gap structure for beam switching antennas,” IEEE APS Int. Symp. Dig., pp. 2271–4, July 2006.Google Scholar
Palikaras, G. K., Feresidis, A. P., and Vardaxoglou, J. C., “Cylindrical electromagnetic bandgap structures for directive base station antennas,” IEEE Antennas Wireless Propagat. Lett., vol. 3, no. 1, 87–9, 2004.CrossRefGoogle Scholar
Freytag, L., Pointereau, E., and Jecko, B., “Omnidirectional dielectric electromagnetic band gap antenna for base station of wireless network,” IEEE APS Int. Symp. Dig., vol. 1, pp. 815–18, June 2004.Google Scholar
Goussetis, G., Vardaxoglou, J. C., and Feresidis, A. P., “Handset antenna performance using flexible MEBG structures,” IEEE International Workshop on Antenna Technology: Small Antennas and Novel Metamaterials, pp. 55–8, March 2005.Google Scholar
Palikaras, G. K., Feresidis, A. P., and Vardaxoglou, J. C., “Cylindrical Electromagnetic Band Gap surfaces for omni-directional wireless LAN antennas,” IEEE APS Int. Symp. Dig., vol. 4B, pp. 339–42, July 2005.Google Scholar
Alkhatib, R. and Drissi, M., “Electromagnetic Band Gap antenna for microwave links applications,” Int. Conf. Information and Communication Technologies, vol. 2, pp. 2190–4, April 2006.CrossRefGoogle Scholar
Bao, X. L., Ruvio, G., Ammann, M. J., and John, M., “A novel Global Positioning System patch antenna on a fractal hi-impedance surface substrate,” IEEE Antennas Wireless Propagat. Lett., vol. 5, 323–6, 2006.CrossRefGoogle Scholar
Martinez-Vazquez, M. and Baggen, R., “Characterisation of printed Electromagnetic Band Gap surfaces for Global Positioning System applications,” IEEE Int. Workshop on Antenna Technology Small Antennas and Novel Metamaterials, pp. 5–8, March 2006.CrossRefGoogle Scholar
Ukkonen, L., Sydanheimo, L., and Kivikoski, M., “Patch antenna with Electromagnetic Band Gap ground plane and two-layer substrate for passive Radio Frequency IDentification of metallic objects,” IEEE APS Int. Symp. Dig., vol. 1, pp. 93–6, June 2004.Google Scholar
Raumonen, P., Keskilammi, M., Sydanheimo, L., and Kivikoski, M., “A very low profile CP EBG antenna for Radio Frequency IDentification reader,” IEEE APS Int. Symp. Dig., vol. 4, pp. 3808–11, June 2004.Google Scholar
Stupf, M., Mittra, R., Yeo, J., and Mosig, J. R., “Some novel design for Radio Frequency IDentification antennas and their performance enhancement with metamaterials,” IEEE APS Int. Symp. Dig., pp. 1023–6, July 2006.Google Scholar
Salonen, P., Yang, F., Rahmat-Samii, Y., and Kivikoski, M., “WEBGA – wearable electromagnetic band-gap antenna,” IEEE APS Int. Symp. Dig., vol. 1, pp. 451–4, June 2004.Google Scholar
Zhu, S. and Langley, R., “Dual-band wearable antennas over Electromagnetic Band Gap substrate,” Electron. Lett., vol. 43, no. 3, 141–2, 2007.CrossRefGoogle Scholar
J., Kim and Rahmat-Samii, Y., “Exterior antennas for wireless medical links: Electromagnetic Band Gap backed dipole and loop antennas,” IEEE APS Int. Symp. Dig., vol. 2B, pp. 800–3, 3–8 July 2005.Google Scholar
J., Kim and Rahmat-Samii, Y., “Electromagnetic interactions between biological tissues and implantable biotelemetry systems,” IEEE MTT-S Int. Microwave Symposium Digest, June 2005.Google Scholar
Hirata, A., “Accuracy compensation in direction finding using patch antenna array with Electromagnetic Band Gap structure,” IEEE Antennas Wireless Propagat. Lett., vol. 5, 1–3, 2006.CrossRefGoogle Scholar
Bell, J. M., Iskander, M. F., and Lee, J. J., “Ultra-wideband and low-profile hybrid Electromagnetic Band Gap/ferrite ground plane for airborne foliage penetrating radar,” IEEE APS Int. Symp. Dig., pp. 369–72, July 2006.Google Scholar
Salonen, P. and Rintala, K., “An S-band Electromagnetic Band Gap antenna for mini-UAV,” IEEE APS Int. Symp. Dig., pp. 2373–6, July 2006.Google Scholar
Yang, F.-R., Ma, K.-P., Qian, Y., and Itoh, T., “A novel Transverse ElectroMagnetic waveguide using uniplanar compact photonic-bandgap (UC-Photonic Band Gap) structure,” IEEE Trans. Microwave Theory Tech., vol. 47, no. 11, 2092–8, 1999.CrossRefGoogle Scholar
Kamgaing, T. and Ramahi, O. M., “Electromagnetic band-gap structures for multiband mitigation of resonant modes in parallel-plate waveguides,” IEEE APS Int. Symp. Dig., vol. 4, pp. 3577–80, June 2004.Google Scholar
Padhi, S. K. and Karmakar, N. C., “Spurious harmonics suppression of tapered SIR band-pass filter using electromagnetic bandgap (Electromagnetic Band Gap) structure,” IEEE APS Int. Symp. Dig., vol. 4, pp. 3561–4, June 2004.Google Scholar
Ederra, I., Azcona, L., Alderman, B., Laisne, A., Gonzalo, R., and Maagt, P., “A 250 GHz sub-harmonic mixer design implemented in Electromagnetic Band Gap technology,” IEEE APS Int. Symp. Dig., vol. 3A, pp. 35–8, July 2005.Google Scholar
Karim, M. F., Liu, A.-Q., Alphones, A., Zhang, X. J., and Yu, A. B., “CPW band-stop filter using unloaded and loaded Electromagnetic Band Gap structures,” IEE Proc. Microw. Antennas Propagat., pp. 434–40, December 2005.CrossRefGoogle Scholar
Simpson, J. J., Taflove, A., Mix, J. A., and Heck, H., “Advances in hyperspeed digital interconnects using electromagnetic bandgap technology: measured low-loss 43-GHz passband centered at 50 GHz,” IEEE APS Int. Symp. Dig., vol. 3A, pp. 26–9, July 2005.Google Scholar
Shahparnia, S. and Ramahi, O. M., “Electromagnetic interference (ElectroMagnetic Interference) reduction from printed circuit boards (Printed Circuit Board) using electromagnetic bandgap structures,” IEEE Trans. Electromagnetic Compatibility, vol. 46, no. 4, 580–7, 2004.CrossRefGoogle Scholar
Chen, G, Melde, K., and Prince, J., “The applications of Electromagnetic Band Gap structures in power/ground plane pair SSN suppression,” IEEE 13th Topical Meeting on Electrical Performance of Electronic Packaging, pp. 207–10, 2004.Google Scholar
Yang, H. Y. D. and Zhou, C.-Z., “The reduction of electromagnetic interference in RF integrated circuits through the use of metallized substrates,” IEEE APS Int. Symp. Dig., pp. 65–8, July 2006.Google Scholar
Qin, J. and Ramahi, O. M., “Power plane with planar electromagnetic bandgap structures for ElectroMagnetic Interference reduction in high speed circuits,” IEEE APS Int. Symp. Dig., pp. 365–8, 9–14 July 2006.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×