Published online by Cambridge University Press: 06 July 2010
FDTD fundamentals
Introduction
A fundamental quest in electromagnetics and antenna engineering is to solve Maxwell's equations under various specific boundary conditions. In the last several decades, computational electromagnetics has progressed rapidly because of the increased popularity and enhanced capability of computers. Various numerical techniques have been proposed to solve Maxwell's equations [1]. Some of them deal with the integral form of Maxwell's equations while others handle the differential form. In addition, Maxwell's equations can be solved either in the frequency domain or time domain depending on the nature of applications. The success in computational electromagnetics has propelled modern antenna engineering developments.
Among various numerical techniques, the finite difference time domain (FDTD) method has demonstrated desirable and unique features for analysis of electromagnetic structures [2]. It simply discretizes Maxwell's equations in the time and space domains, and electromagnetics behavior is obtained through a time evolving process. A significant advantage of the FDTD method is the versatility to solve a wide range of microwave and antenna problems. It is flexible enough to model various media, such as conductors, dielectrics, lumped elements, active devices, and dispersive materials. Another advantage of the FDTD method is the capability to provide a broad band characterization in one single simulation. Since this method is carried out in the time domain, a wide frequency band response can be obtained through the Fourier transformation of the transient data.
Because of these advantages, the FDTD method has been widely used in many electromagnetic applications.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.