Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-26T14:55:40.519Z Has data issue: false hasContentIssue false

Chapter 3 - Aging Bodies, Brains, and Emotions

The Physiological Hypothesis of Emotional Aging

from Part I - Basic Processes

Published online by Cambridge University Press:  07 December 2023

Ursula Hess
Affiliation:
Humboldt-Universität zu Berlin
Reginald B. Adams, Jr.
Affiliation:
Pennsylvania State University
Robert E. Kleck
Affiliation:
Dartmouth College, New Hampshire
Get access

Summary

Longstanding evidence finds that healthy older adults tend to experience greater positivity, equanimity, and well-being in daily life. Prominent psychological theories of emotional aging tend to focus on cognitive pathways such as shifting motivations and accumulated cognitive resources (e.g., attentional control, expertise) to explain observed emotional aging effects. In this chapter, we introduce the physiological hypothesis of emotional aging (PHEA). At its core, the PHEA proposes that physiological aging contributes to emotional aging, wherein age-related changes to the peripheral body and how the brain represents and regulates the peripheral body (e.g., interoception) should result in age-related changes to emotional experience and associated socioemotional perceptions and behaviors, i.e., emotion communication. Importantly, the PHEA argues that the dynamics of physiological aging (e.g., increased dysfunction, greater afferent noise from the viscera and peripheral transmission pathways, reduced interoception) may in turn facilitate the increased importance of cognitive pathways in late life emotional outcomes and functions. As such, the PHEA provides an integrative neuroscience approach to emotional aging that highlights the importance of physiological health and aging across the body and brain while providing an interpretive framework that complements existing cognitive theories of late life emotion. This chapter introduces core arguments of the PHEA, unifies existing evidence on physiological, interoceptive, and related neural aging as relevant for emotional aging, and forecasts new directions and implications for late life socioemotional functioning and interpersonal behaviors.

Type
Chapter
Information
Emotion Communication by the Aging Face and Body
A Multidisciplinary View
, pp. 54 - 82
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akha, A. A. S. (2018). Aging and the immune system: An overview. Journal of Immunological Methods, 463, 2126.CrossRefGoogle Scholar
Allen, M., Levy, A., Parr, T., & Friston, K. J. (2022). In the body’s eye: The computational anatomy of interoceptive inference. PLoS Computational Biology, 18, e1010490.CrossRefGoogle ScholarPubMed
Altose, M. D., Leitner, J., & Cherniack, N. S. (1985). Effects of age and respiratory efforts on the perception of resistive ventilatory loads. Journal of Gerontology, 40, 147153.CrossRefGoogle ScholarPubMed
Amery, A., Wasir, H., Bulpitt, C., et al. (1978). Aging and the cardiovascular system. Acta Cardiologica, 33, 443467.Google ScholarPubMed
Antonucci, T., Akiyama, H., & Takahashi, K. (2004). Attachment and close relationships across the life span. Attachment & Human Development, 6, 353370.CrossRefGoogle ScholarPubMed
Atzil, S., Gao, W., Fradkin, I., & Barrett, L. F. (2018). Growing a social brain. Nature Human Behaviour, 2, 624636.CrossRefGoogle ScholarPubMed
Axelsson, J., Sundelin, T., Olsson, M. J., et al. (2018). Identification of acutely sick people and facial cues of sickness. Proceedings of the Royal Society B, 285, 20172430.Google ScholarPubMed
Baltes, P. B. (1987). Theoretical propositions of life-span developmental psychology: On the dynamics between growth and decline. Developmental Psychology, 23, 611626.CrossRefGoogle Scholar
Bamonti, P. M., Heisel, M. J., Topciu, R. A., et al. (2010). Association of alexithymia and depression symptom severity in adults aged 50 years and older. The American Journal of Geriatric Psychiatry, 18, 5156.CrossRefGoogle ScholarPubMed
Barbas, H. (2015). General cortical and special prefrontal connections: Principles from structure to function. Annual Review of Neuroscience, 38, 269289.CrossRefGoogle ScholarPubMed
Barrett, L. F. (2017). The theory of constructed emotion: An active inference account of interoception and categorization. Social Cognitive and Affective Neuroscience, 12, 123.CrossRefGoogle ScholarPubMed
Barrett, L. F. (2018). Emotions are constructed with interoception and concepts within a predicting brain. In Fox, A. S., Lapate, R. C., Shackman, A. J., & Davidson, R. J. (eds.), The nature of emotion: Fundamental questions (pp. 3338). Oxford: Oxford University Press.Google Scholar
Barrett, L. F., & Bar, M. (2009). See it with feeling: Affective predictions during object perception. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 364, 13251334.CrossRefGoogle ScholarPubMed
Barrett, L. F., & Bliss-Moreau, E. (2009). Affect as a psychological primitive. Advances in Experimental Social Psychology, 41, 167218.CrossRefGoogle Scholar
Barrett, L. F., & Satpute, A. B. (2013). Large-scale brain networks in affective and social neuroscience: Towards an Integrative functional architecture of the brain. Current Opinion in Neurobiology, 23, 361372.CrossRefGoogle ScholarPubMed
Bernstein, D. M., Thornton, W. L., & Sommerville, J. A. (2011). Theory of mind through the ages: Older and middle-aged adults exhibit more errors than do younger adults on a continuous false belief task. Experimental Aging Research, 37, 481502.CrossRefGoogle ScholarPubMed
Berntson, G. G., Norman, G. J., Hawkley, L. C., & Cacioppo, J. T. (2008). Cardiac autonomic balance versus cardiac regulatory capacity. Psychophysiology, 45, 643652.CrossRefGoogle ScholarPubMed
Birditt, K. S., & Fingerman, K. L. (2005). Do we get better at picking our battles? Age group differences in descriptions of behavioral reactions to interpersonal tensions. Journals of Gerontology: Series B Psychological Sciences and Social Sciences, 60, 121128.CrossRefGoogle ScholarPubMed
Blanchard-Fields, F. (2007). Everyday problem solving and emotion. Current Directions in Psychological Science, 16, 2631.CrossRefGoogle Scholar
Borghi, A. M., & Setti, A. (2017). Abstract concepts and aging: An embodied and grounded perspective. Frontiers in Psychology, 8, 430.CrossRefGoogle ScholarPubMed
Bouhassira, D., Lantéri-Minet, M., Attal, N., Laurent, B., & Touboul, C. (2008). Prevalence of chronic pain with neuropathic characteristics in the general population. Pain, 136, 380387.CrossRefGoogle ScholarPubMed
Brewer, R., Cook, R., & Bird, G. (2016). Alexithymia: A general deficit of interoception. Royal Society Open Science, 3, 150664.CrossRefGoogle ScholarPubMed
Cacioppo, J. T., Berntson, G. G., Bechara, A., Tranel, D., & Hawkley, L. C. (2011). Could an aging brain contribute to subjective well-being? In Todorov, A., Fiske, S. T., & Prentice, D. A. (eds.), Social neuroscience: Toward understanding the underpinnings of the social mind (pp. 249262). Oxford: Oxford University Press.CrossRefGoogle Scholar
Cai, H., Mcneilly, A. S., Luttrell, L. M., & Martin, B. (2012). Endocrine function in aging. International Journal of Endocrinology, 2012, e872478.CrossRefGoogle ScholarPubMed
Carstensen, L. L., Isaacowitz, D. M., & Charles, S. T. (1999). Taking time seriously: A theory of socioemotional selectivity. American Psychologist, 54, 165181.CrossRefGoogle ScholarPubMed
Carstensen, L. L., Turan, B., Scheibe, S., et al. (2011). Emotional experience improves with age: Evidence based on over ten years of experience sampling. Psychology and Aging, 26, 2133.CrossRefGoogle ScholarPubMed
Castle, E., Eisenberger, N. I., Seeman, T. E., et al. (2012). Neural and behavioral bases of age differences in perceptions of trust. Proceedings of the National Academy of Sciences, 109, 2084820852.CrossRefGoogle ScholarPubMed
Castro, V. L., & Isaacowitz, D. M. (2019). The same with age: Evidence for age-related similarities in interpersonal accuracy. Journal of Experimental Psychology: General, 148, 15171537.CrossRefGoogle ScholarPubMed
Chan, J. S., Wibral, M., Stawowsky, C., et al. (2021). Predictive coding over the lifespan: Increased reliance on perceptual priors in older adults. Frontiers in Aging Neuroscience, 13, 631599.CrossRefGoogle ScholarPubMed
Chanes, L., & Barrett, L. F. (2016). Redefining the role of limbic areas in cortical processing. Trends in Cognitive Sciences, 20, 96106.CrossRefGoogle ScholarPubMed
Charles, S. T. (2010). Strength and vulnerability integration: A model of emotional well-being across adulthood. Psychological Bulletin, 136, 10681091.CrossRefGoogle Scholar
Charles, S. T., Piazza, J. R., Luong, G., & Almeida, D. M. (2009). Now you see it, now you don’t: Age differences in affective reactivity to social tensions. Psychology and Aging, 24, 645653.CrossRefGoogle ScholarPubMed
Chen, Y. (2002). Unwanted beliefs: Age differences in beliefs of false information. Aging, Neuropsychology, and Cognition, 9, 217230.CrossRefGoogle Scholar
Chowdhury, R., Sharot, T., Wolfe, T., Düzel, E., & Dolan, R. J. (2014). Optimistic update bias increases in older age. Psychological Medicine, 44, 20032012.CrossRefGoogle ScholarPubMed
Coats, A. H., & Blanchard-Fields, F. (2008). Emotion regulation in interpersonal problems: The role of cognitive-emotional complexity, emotion regulation goals, and expressivity. Psychology and Aging, 23, 3951.CrossRefGoogle ScholarPubMed
Costello, M. C., & Bloesch, E. K. (2017). Are older adults less embodied? A review of age effects through the lens of embodied cognition. Frontiers in Psychology, 8, 267.CrossRefGoogle ScholarPubMed
Craig, B. M. & Lipp, O. V. (2018). The influence of multiple social categories on emotion perception. Journal of Experimental Social Psychology, 75, 2734.CrossRefGoogle Scholar
Critchley, H. D., & Garfinkel, S. N. (2018). The influence of physiological signals on cognition. Current Opinion in Behavioral Sciences, 19, 1318.CrossRefGoogle Scholar
Critchley, H. D., Mathias, C. J., & Dolan, R. J. (2001). Neural activity in the human brain relating to uncertainty and arousal during anticipation. Neuron, 29, 537545.CrossRefGoogle ScholarPubMed
Dressaire, D., Stone, C. B., Nielson, K. A., et al. (2015). Alexithymia impairs the cognitive control of negative material while facilitating the recall of neutral material in both younger and older adults. Cognition and Emotion, 29, 442459.CrossRefGoogle ScholarPubMed
Dunn, B. D., Galton, H. C., Morgan, R., et al. (2010). Listening to your heart: How interoception shapes emotion experience and intuitive decision making. Psychological Science, 21, 18351844.CrossRefGoogle ScholarPubMed
Eldesouky, L., & English, T. (2018). Another year older, another year wiser? Emotion regulation strategy selection and flexibility across adulthood. Psychology and Aging, 33, 572585.CrossRefGoogle ScholarPubMed
Fan, F., Liao, X., Lei, T., et al. (2021). Development of the default-mode network during childhood and adolescence: A longitudinal resting-state fMRI study. NeuroImage, 226, 117581.CrossRefGoogle ScholarPubMed
Feldman, M. J., MacCormack, J. K., Bonar, A. S., & Lindquist, K. A. (2023). Interoceptive ability moderates the effect of physiological reactivity on social judgment. Emotion, epub ahead of print. https://doi.org/10.1037/emo0001210CrossRefGoogle Scholar
Feldman, M. J., Siegel, E., Barrett, L. F., Quigley, K. S., & Wormwood, J. B. (2022). Affect and social judgment: The roles of physiological reactivity and interoceptive sensitivity. Affective Science, 3, 464479.CrossRefGoogle ScholarPubMed
FeldmanHall, O., Glimcher, P., Baker, A. L., & Phelps, E. A. (2016). Emotion and decision-making under uncertainty: Physiological arousal predicts increased gambling during ambiguity but not risk. Journal of Experimental Psychology: General, 145, 12551262.CrossRefGoogle Scholar
Fenske, N. A., & Lober, C. W. (1986). Structural and functional changes of normal aging skin. Journal of the American Academy of Dermatology, 15, 571585.CrossRefGoogle ScholarPubMed
Filippi, P., Congdon, J. V., Hoang, J., et al. (2016). Humans recognize emotional arousal in vocalizations across all classes of terrestrial vertebrates: Evidence for acoustic universals. Proceedings of the Royal Society B, 284, 20170990.Google Scholar
Fjell, A. M., & Walhovd, K. B. (2010). Structural brain changes in aging: Courses, causes, and cognitive consequences. Reviews in the Neurosciences, 21, 187221.CrossRefGoogle ScholarPubMed
Frank, S. M., Raja, S. N., Bulcao, C., & Goldstein, D. S. (2000). Age-related thermoregulatory differences during core cooling in humans. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 279, R349R354.CrossRefGoogle ScholarPubMed
Frontera, W. R. (2017). Physiologic changes of the musculoskeletal system with aging: A brief review. Physical Medicine and Rehabilitation Clinics of North America, 28, 705711.CrossRefGoogle ScholarPubMed
Galvez-Pol, A., Antoine, S., Li, C., & Kilner, J. M. (2022). People can identify the likely owner of heartbeats by looking at individuals’ faces. Cortex, 151, 176187.CrossRefGoogle ScholarPubMed
Gates, K. M., Gatzke-Kopp, L. M., Sandsten, M., & Blandon, A. Y. (2015). Estimating time-varying RSA to examine psychophysiological linkage of marital dyads. Psychophysiology, 52, 10591065.CrossRefGoogle ScholarPubMed
Ginty, A. T., Kraynak, T. E., Fisher, J. P., & Gianaros, P. J. (2017). Cardiovascular and autonomic reactivity to psychological stress: Neurophysiological substrates and links to cardiovascular disease. Autonomic Neuroscience, 207, 29.CrossRefGoogle ScholarPubMed
Global Burden of Cardiovascular Diseases Collaboration (2018). The burden of cardiovascular diseases among US states, 1990–2016. JAMA Cardiology, 3, 375.CrossRefGoogle Scholar
Grossman, P., & Taylor, E. W. (2007). Toward understanding respiratory sinus arrhythmia: Relations to cardiac vagal tone, evolution and biobehavioral functions. Biological Psychology, 74, 263285.CrossRefGoogle ScholarPubMed
Guardia, T., Geerligs, L., Tsvetanov, K. A., Ye, R., & Campbell, K. L. (2022). The role of the arousal system in age‐related differences in cortical functional network architecture. Human Brain Mapping, 43, 985997.CrossRefGoogle ScholarPubMed
Gunzelmann, T., Kupfer, J., & Brauhler, E. (2002). Alexithymia in the elderly general population. Comprehensive Psychiatry, 43, 7480.CrossRefGoogle ScholarPubMed
Gurera, J. W., & Isaacowitz, D. M. (2022). Arousal reappraisal in younger and older adults. Psychology and Aging, 37, 350356.CrossRefGoogle ScholarPubMed
He, X., Qin, W., Liu, Y., et al. (2014). Abnormal salience network in normal aging and in amnestic mild cognitive impairment and Alzheimer’s disease. Human Brain Mapping, 35, 34463464.CrossRefGoogle ScholarPubMed
Herman, A. M., Esposito, G., & Tsakiris, M. (2021). Body in the face of uncertainty: The role of autonomic arousal and interoception in decision‐making under risk and ambiguity. Psychophysiology, 58, e13840.CrossRefGoogle ScholarPubMed
Hesp, C., Smith, R., Parr, T., et al. (2021). Deeply felt affect: The emergence of valence in deep active inference. Neural Computation, 33, 398446.CrossRefGoogle ScholarPubMed
Hoemann, K., & Barrett, L. F. (2019). Concepts dissolve artificial boundaries in the study of emotion and cognition, uniting body, brain, and mind. Cognition and Emotion, 33, 6776.CrossRefGoogle Scholar
Hoemann, K., Xu, F., & Barrett, L. F. (2019). Emotion words, emotion concepts, and emotional development in children: A constructionist hypothesis. Developmental Psychology, 55, 18301849.CrossRefGoogle ScholarPubMed
Hsu, Y.-F., Waszak, F., Strömmer, J., & Hämäläinen, J. A. (2021). Human brain ages with hierarchy-selective attenuation of prediction errors. Cerebral Cortex, 31, 21562168.CrossRefGoogle ScholarPubMed
Isaacowitz, D. M., Livingstone, K. M., & Castro, V. L. (2017). Aging and emotions: Experience, regulation, and perception. Current Opinion in Psychology, 17, 7983.CrossRefGoogle ScholarPubMed
Isaacowitz, D. M., Livingstone, K. M., Harris, J. A., & Marcotte, S. L. (2015). Mobile eye tracking reveals little evidence for age differences in attentional selection for mood regulation. Emotion, 15, 151161.CrossRefGoogle ScholarPubMed
Isaacowitz, D. M., & Ossenfort, K. L. (2017). Aging, attention and situation selection: Older adults create mixed emotional environments. Current Opinion in Behavioral Sciences, 15, 69.CrossRefGoogle ScholarPubMed
Katsumi, Y., Theriault, J. E., Quigley, K. S., & Barrett, L. F. (2022). Allostasis as a core feature of hierarchical gradients in the human brain. Network Neuroscience, 6, 122.CrossRefGoogle Scholar
Khalsa, S. S., Rudrauf, D., & Tranel, D. (2009). Interoceptive awareness declines with age. Psychophysiology, 46, 11301136.CrossRefGoogle ScholarPubMed
Kircanski, K., Notthoff, N., DeLiema, M., et al. (2018). Emotional arousal may increase susceptibility to fraud in older and younger adults. Psychology and Aging, 33, 325337.CrossRefGoogle ScholarPubMed
Kleckner, I. R., Zhang, J., Touroutoglou, A., et al. (2017). Evidence for a large-scale brain system supporting allostasis and interoception in humans. Nature Human Behaviour, 1, 0069.CrossRefGoogle ScholarPubMed
Kunzmann, U., & Grühn, D. (2005). Age differences in emotional reactivity: The sample case of sadness. Psychology and Aging, 20, 4759.CrossRefGoogle ScholarPubMed
Labouvie-Vief, G. (2003). Dynamic integration: Affect, cognition, and the self in adulthood. Current Directions in Psychological Science, 12, 201206.CrossRefGoogle Scholar
Labouvie-Vief, G., DeVoe, M., & Bulka, D. (1989). Speaking about feelings: Conceptions of emotion across the life span. Psychology and Aging, 4, 425437.CrossRefGoogle ScholarPubMed
Lakatta, E. G. (1993). Cardiovascular regulatory mechanisms in advanced age. Physiological Reviews, 73, 413467.CrossRefGoogle ScholarPubMed
Lalley, P. M. (2013). The aging respiratory system: Pulmonary structure, function and neural control. Respiratory Physiology & Neurobiology, 187, 199210.CrossRefGoogle ScholarPubMed
Lane, R. D., Sechrest, L., & Riedel, R. (1998). Sociodemographic correlates of alexithymia. Comprehensive Psychiatry, 39, 377385.CrossRefGoogle ScholarPubMed
Lasch, H., Castell, D. O., & Castell, J. A. (1997). Evidence for diminished visceral pain with aging: Studies using graded intraesophageal balloon distension. American Journal of Physiology-Gastrointestinal and Liver Physiology, 272, G1G3.CrossRefGoogle ScholarPubMed
Lebois, L. A.M., Hertzog, C., Slavich, G. M., Barrett, L. F., & Barsalou, L. W. (2016). Establishing the situated features associated with perceived stress. Acta Psychologica, 169, 119132.CrossRefGoogle ScholarPubMed
Liebherr, M., Schiebener, J., Averbeck, H., & Brand, M. (2017). Decision making under ambiguity and objective risk in higher age: A review on cognitive and emotional contributions. Frontiers in Psychology, 8, 2128.CrossRefGoogle ScholarPubMed
Lima, C. F., Alves, T., Scott, S. K., & Castro, S. L. (2014). In the ear of the beholder: How age shapes emotion processing in nonverbal vocalizations. Emotion, 14, 145160.CrossRefGoogle ScholarPubMed
Lindquist, K. A., MacCormack, J. K., & Shablack, H. (2015). The role of language in emotion: Predictions from psychological constructionism. Frontiers in Psychology, 6, 115.CrossRefGoogle ScholarPubMed
Lindquist, K. A., Satpute, A. B., Wager, T. D., Weber, J., & Barrett, L. F. (2016). The brain basis of positive and negative affect: Evidence from a meta-analysis of the human neuroimaging literature. Cerebral Cortex, 26, 19101922.CrossRefGoogle ScholarPubMed
Lindquist, K. A., Wager, T. D., Kober, H., Bliss-Moreau, E., & Barrett, L. F. (2012). The brain basis of emotion: A meta-analytic review. The Behavioral and Brain Sciences, 35, 121143.CrossRefGoogle ScholarPubMed
Livingstone, K. M., Castro, V. L., & Isaacowitz, D. M. (2020). Age differences in beliefs about emotion regulation strategies. The Journals of Gerontology: Series B, 75, 316326.CrossRefGoogle ScholarPubMed
Livingstone, K. M., & Isaacowitz, D. M. (2015). Situation selection and modification for emotion regulation in younger and older adults. Social Psychological and Personality Science, 6, 904910.CrossRefGoogle ScholarPubMed
Lohani, M., Payne, B. R., & Isaacowitz, D. M. (2018). Emotional coherence in early and later adulthood during sadness reactivity and regulation. Emotion, 18, 789804.CrossRefGoogle ScholarPubMed
MacCormack, J. K., Armstrong-Carter, E. L., Humphreys, K. L., & Muscatell, K. A. (2021a). Neurophysiological contributors to advantageous risk-taking: An experimental psychopharmacological investigation. Social Cognitive and Affective Neuroscience, 16, 926936.CrossRefGoogle ScholarPubMed
MacCormack, J. K., Henry, T. R., Davis, B. M., Oosterwijk, S., & Lindquist, K. A. (2021b). Aging bodies, aging emotions: Interoceptive differences in emotion representations and self-reports across adulthood. Emotion, 21, 227246.CrossRefGoogle ScholarPubMed
MacCormack, J. K., & Lindquist, K. A. (2017). Bodily contributions to emotion: Schachter’s legacy for a psychological constructionist view on emotion. Emotion Review, 9, 3645.CrossRefGoogle Scholar
MacCormack, J. K., Stein, A. G., Giovanello, K. S., et al. (2020). Affect in the aging brain: A neuroimaging meta-analysis of functional activation and connectivity differences in older vs. Younger adult affective experience and perception. Affective Science, 1, 128154.CrossRefGoogle Scholar
Magai, C., Consedine, N. S., Krivoshekova, Y. S., Kudadjie-Gyamfi, E., & McPherson, R. (2006). Emotion experience and expression across the adult life span: Insights from a multimodal assessment study. Psychology and Aging, 21, 303317.CrossRefGoogle ScholarPubMed
Mather, M. (2020). How arousal-related neurotransmitter systems compensate for age-related decline. In Thomas, A. K. & Gutchess, A. (eds.), The Cambridge handbook of cognitive aging (pp. 101120). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Mattila, A. K., Kronholm, E., Jula, A., et al. (2008). Alexithymia and somatization in general population. Psychosomatic Medicine, 70, 716722.CrossRefGoogle ScholarPubMed
McEwen, B. S. (2017). Allostasis and the epigenetics of brain and body health over the life course. JAMA Psychiatry, 74, 551552.CrossRefGoogle ScholarPubMed
Melcangi, R. C., Magnaghi, V., & Martini, L. (2000). Aging in peripheral nerves: Regulation of myelin protein genes by steroid hormones. Progress in Neurobiology, 60, 291308.CrossRefGoogle ScholarPubMed
Mendes, W. B. (2010). Weakened links between mind and body in older age: The case for maturational dualism in the experience of emotion. Emotion Review, 2, 240244.CrossRefGoogle Scholar
Menon, V. (2015). Salience network. In A. W. Toga (ed.), Brain mapping: An encyclopedic reference, vol. 2 (pp. 597611). Cambridge, MA: Academic Press.CrossRefGoogle Scholar
Mikkelsen, M. B., O’Toole, M. S., Lyby, M. S., Wallot, S., & Mehlsen, M. (2019). Emotional reactivity and interoceptive sensitivity: Exploring the role of age. Psychonomic Bulletin & Review, 26, 14401448.CrossRefGoogle ScholarPubMed
Moran, R. J., Symmonds, M., Dolan, R. J., & Friston, K. J. (2014). The brain ages optimally to model its environment: Evidence from sensory learning over the adult lifespan. PLoS Computational Biology, 10, e1003422.CrossRefGoogle ScholarPubMed
Murphy, J., Geary, H., Millgate, E., Catmur, C., & Bird, G. (2018). Direct and indirect effects of age on interoceptive accuracy and awareness across the adult lifespan. Psychonomic Bulletin & Review, 25, 11931202.CrossRefGoogle ScholarPubMed
Neiss, M. B., Leigland, L. A., Carlson, N. E., & Janowsky, J. S. (2009). Age differences in perception and awareness of emotion. Neurobiology of Aging, 30, 13051313.CrossRefGoogle ScholarPubMed
Nusser, L., Pollatos, O., & Zimprich, D. (2020). Age-related effects on interoceptive accuracy, general interoceptive sensibility, and specific interoceptive sensibility. European Journal of Health Psychology, 27, 154170.CrossRefGoogle Scholar
Ong, A. D., & Bergeman, C. S. (2004). The complexity of emotions in later life. The Journals of Gerontology: Series B, 59, 117122.CrossRefGoogle ScholarPubMed
Palve, S. S., & Palve, S. B. (2018). Impact of aging on nerve conduction velocities and late responses in healthy individuals. Journal of Neurosciences in Rural Practice, 9, 112116.Google ScholarPubMed
Paneni, F., Diaz, C. C., Libby, P., Lüscher, T. F., & Camici, G. G. (2017). The aging cardiovascular system. Journal of the American College of Cardiology, 69, 19521967.CrossRefGoogle ScholarPubMed
Pellicer, A., Simón, C., & Remohí, J. (1995). Effects of aging on the female reproductive system. Human Reproduction, 10, 7783.CrossRefGoogle ScholarPubMed
Polidori, M. C. (2021). Physiology of aging as a basis of complexity in aging medicine and geriatrics. In Gu, D. & Dupre, M. E. (eds.), Encyclopedia of gerontology and population aging (pp. 38243829). New York: Springer International.CrossRefGoogle Scholar
Quigley, K. S., Kanoski, S., Barrett, L. F., & Tsakiris, M. (2021). Functions of interoception: From energy regulation to experience of self. Trends in Neurosciences, 44, 2938.CrossRefGoogle ScholarPubMed
Riediger, M., Voelkle, M. C., Ebner, N. C., & Lindenberger, U. (2011). Beyond “happy, angry, or sad?”: Age-of-poster and age-of-rater effects on multidimensional emotion perception. Cognition and Emotion, 24, 968982.CrossRefGoogle Scholar
Ruffman, T., Henry, J. D., Livingstone, V., & Phillips, L. H. (2008). A meta-analytic review of emotion recognition and aging: Implications for neuropsychological models of aging. Neuroscience & Biobehavioral Reviews, 32, 863881.CrossRefGoogle ScholarPubMed
Ruffman, T., Murray, J., Halberstadt, J., & Vater, T. (2012). Age-related differences in deception. Psychology and Aging, 27, 543549.CrossRefGoogle ScholarPubMed
Russell, R. M. (1992). Changes in gastrointestinal function attributed to aging. The American Journal of Clinical Nutrition, 55, 1203S1207S.CrossRefGoogle ScholarPubMed
Ruzzoli, M., Pirulli, C., Brignani, D., Maioli, C., & Miniussi, C. (2012). Sensory memory during physiological aging indexed by mismatch negativity. Neurobiology of Aging, 33, 625.e21–625.e30.CrossRefGoogle ScholarPubMed
Sands, M., Garbacz, A., & Isaacowitz, D. M. (2016). Just change the channel? Studying effects of age on emotion regulation using a TV watching paradigm. Social Psychological and Personality Science, 7, 788795.CrossRefGoogle Scholar
Sands, M., & Isaacowitz, D. M. (2017). Situation selection across adulthood: The role of arousal. Cognition and Emotion, 31, 791798.CrossRefGoogle ScholarPubMed
Sands, M., Livingstone, K. M., & Isaacowitz, D. M. (2018). Characterizing age-related positivity effects in situation selection. International Journal of Behavioral Development, 42, 396404.CrossRefGoogle ScholarPubMed
Sato, A., Sato, Y., & Suzuki, H. (1985). Aging effects on conduction velocities of myelinated and unmyelinated fibers of peripheral nerves. Neuroscience Letters, 53, 1520.CrossRefGoogle ScholarPubMed
Satpute, A. B., Kragel, P. A., Barrett, L. F., Wager, T. D., & Bianciardi, M. (2019). Deconstructing arousal into wakeful, autonomic and affective varieties. Neuroscience Letters, 693, 1928.CrossRefGoogle ScholarPubMed
Schacter, D. L., Koutstaal, W., & Norman, K. A. (1997). False memories and aging. Trends in Cognitive Sciences, 1, 229236.CrossRefGoogle ScholarPubMed
Schlegel, K., Vicaria, I. M., & Isaacowitz, D. M. (2020). Facets of interpersonal accuracy across the lifespan: Is there a single skill in older age? Journal of Nonverbal Behavior, 44, 253278.CrossRefGoogle Scholar
Schulkin, J. (2011). Social allostasis: Anticipatory regulation of the internal milieu. Frontiers in Evolutionary Neuroscience, 2, 111.CrossRefGoogle ScholarPubMed
Seeley, W. W., Menon, V., Schatzberg, A. F., et al. (2007). Dissociable intrinsic connectivity networks for salience processing and executive control. Journal of Neuroscience, 27, 23492356.CrossRefGoogle ScholarPubMed
Sennesh, E., Theriault, J., Brooks, D., et al. (2022). Interoception as modeling, allostasis as control. Biological Psychology, 167, 108242.CrossRefGoogle ScholarPubMed
Seth, A. K., & Friston, K. J. (2016). Active interoceptive inference and the emotional brain. Philosophical Transactions of the Royal Society B: Biological Sciences, 371, 20160007.CrossRefGoogle ScholarPubMed
Shaffer, C., Westlin, C., Quigley, K. S., Whitfield-Gabrieli, S., & Barrett, L. F. (2022). Allostasis, action, and affect in depression: Insights from the theory of constructed emotion. Annual Review of Clinical Psychology, 18, 553580.CrossRefGoogle ScholarPubMed
Shallcross, A. J., Ford, B. Q., Floerke, V. A., & Mauss, I. B. (2013). Getting better with age: The relationship between age, acceptance, and negative affect. Journal of Personality and Social Psychology, 104, 734749.CrossRefGoogle ScholarPubMed
Shao, J., Du, W., Lin, T., et al. (2019). Credulity rather than general trust may increase vulnerability to fraud in older adults: A moderated mediation model. Journal of Elder Abuse & Neglect, 31, 146162.CrossRefGoogle ScholarPubMed
Simmons, W. K., Avery, J., Barcalow, J. C., et al. (2013). Keeping the body in mind: Insula functional organization and functional connectivity integrate interoceptive, exteroceptive, and emotional awareness. Human Brain Mapping, 34, 29442958.CrossRefGoogle ScholarPubMed
Stanley, J. T., & Isaacowitz, D. M. (2015). Caring more and knowing more reduces age-related differences in emotion perception. Psychology and Aging, 30, 383395.CrossRefGoogle ScholarPubMed
Steenhaut, P., Demeyer, I., De Raedt, R., & Rossi, G. (2018). The role of personality in the assessment of subjective and physiological emotional reactivity: A comparison between younger and older adults. Assessment, 25, 285301.CrossRefGoogle ScholarPubMed
Steppan, J., Barodka, V., Berkowitz, D. E., & Nyhan, D. (2011). Vascular stiffness and increased pulse pressure in the aging cardiovascular system. Cardiology Research and Practice, 2011, e263585.CrossRefGoogle ScholarPubMed
Sterling, P., & Laughlin, S. (2015). Principles of neural design. Cambridge, MA: MIT Press Books.Google Scholar
Sullivan, M. D., Huang, R., Rovetti, J., Sparrow, E. P., & Spaniol, J. (2021). Associations between phasic arousal and decisions under risk in younger and older adults. Neurobiology of Aging, 105, 262271.CrossRefGoogle ScholarPubMed
Sze, J. A., Goodkind, M. S., Gyurak, A., & Levenson, R. W. (2012). Aging and emotion recognition: Not just a losing matter. Psychology and Aging, 27, 940950.CrossRefGoogle ScholarPubMed
Tomaka, J., Blascovich, J., Kelsey, R. M., & Leitten, C. L. (1993). Subjective, physiological, and behavioral effects of threat and challenge appraisal. Journal of Personality and Social Psychology, 65, 248260.CrossRefGoogle Scholar
Touroutoglou, A., Zhang, J., Andreano, J. M., Dickerson, B. C., & Barrett, L. F. (2018). Dissociable effects of aging on salience subnetwork connectivity mediate age-related changes in executive function and affect. Frontiers in Aging Neuroscience, 10, 410.CrossRefGoogle ScholarPubMed
Tsai, J. L., Levenson, R. W., & Carstensen, L. L. (2000). Autonomic, subjective, and expressive responses to emotional films in older and younger Chinese Americans and European Americans. Psychology and Aging, 15, 684693.CrossRefGoogle ScholarPubMed
Tsakiris, M., & De Preester, H. (eds.). (2018). The interoceptive mind: From homeostasis to awareness. Oxford: Oxford University Press.CrossRefGoogle Scholar
Uchino, B. N., Birmingham, W., & Berg, C. A. (2010). Are older adults less or more physiologically reactive? A meta-analysis of age-related differences in cardiovascular reactivity to laboratory tasks. The Journals of Gerontology: Series B, 65B, 154162.CrossRefGoogle ScholarPubMed
Uchino, B. N., Holt-Lunstad, J., Bloor, L. E., & Campo, R. A. (2005). Aging and cardiovascular reactivity to stress: Longitudinal evidence for changes in stress reactivity. Psychology and Aging, 20, 134143.CrossRefGoogle ScholarPubMed
Umetani, K., Singer, D. H., McCraty, R., & Atkinson, M. (1998). Twenty-four hour time domain heart rate variability and heart rate: Relations to age and gender over nine decades. Journal of the American College of Cardiology, 31, 593601.CrossRefGoogle ScholarPubMed
Urry, H. L., & Gross, J. J. (2010). Emotion regulation in older age. Current Directions in Psychological Science, 19, 352357.CrossRefGoogle Scholar
Verdú, E., Ceballos, D., Vilches, J. J., & Navarro, X. (2000). Influence of aging on peripheral nerve function and regeneration. Journal of the Peripheral Nervous System, 5, 191208.CrossRefGoogle ScholarPubMed
Volynets, S., Glerean, E., Hietanen, J. K., Hari, R., & Nummenmaa, L. (2020). Bodily maps of emotions are culturally universal. Emotion, 20, 11271136.CrossRefGoogle ScholarPubMed
Von Mohr, M., Finotti, G., Esposito, G., Bahrami, B., & Tsakiris, M. (2022). Individuals with higher interoceptive accuracy are less suggestible to other people’s judgements. PsyArXiv. https://doi.org/10.31234/osf.io/d3wsfCrossRefGoogle Scholar
Wolpe, N., Ingram, J. N., Tsvetanov, K. A., et al. (2016). Ageing increases reliance on sensorimotor prediction through structural and functional differences in frontostriatal circuits. Nature Communications, 7, 13034.CrossRefGoogle ScholarPubMed
Wu, D. J., Svoboda, R. C., Bae, K. K., & Haase, C. M. (2021). Individual differences in sadness coherence: Associations with dispositional affect and age. Emotion, 21, 465477.CrossRefGoogle ScholarPubMed
Xia, C., Touroutoglou, A., Quigley, K. S., Barrett, L. F., & Dickerson, B. C. (2017). Salience network connectivity modulates skin conductance responses in predicting arousal experience. Journal of Cognitive Neuroscience, 29, 827836.CrossRefGoogle ScholarPubMed
Xu, F., & Griffiths, T. L. (2011). Probabilistic models of cognitive development: Towards a rational constructivist approach to the study of learning and development. Cognition, 120, 299301.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×