Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-26T18:13:24.873Z Has data issue: false hasContentIssue false

Part I - Transport of Radioactive Materials in the Environment

Published online by Cambridge University Press:  16 August 2019

Teruyuki Nakajima
Affiliation:
University of Tokyo
Toshimasa Ohara
Affiliation:
National Institute for Environmental Studies, Japan
Mitsuo Uematsu
Affiliation:
University of Tokyo
Yuichi Onda
Affiliation:
University of Tsukuba, Japan
Get access

Summary

The accident of the Fukushima Daiichi (First) Nuclear Power Station (FDNPS) of the Tokyo Electric Power Company (hereafter, Fukushima accident) transpired after the Tohoku Region Pacific Coast Earthquake occurred in March 2011. Table 1.1 summarises the main events of the accident. After the earthquake occurred at 14:46 on 11 March 2011, tsunami waves of 13 m in height arrived at the FDNPS (TEPCO, 2011); the diesel power engine stopped at 15:41. Due to this electricity loss, the nuclear reaction became uncontrollable. The Fukushima Daini (Second) Power Station was able to make a controlled stop for cooling even after the intrusion of seawater from a tsunami wave with a height of 9 m. The estimated maximum height in the design of the Daiichi and Daini Power Stations was 5.1 m. In contrast, the estimated maximum tsunami height in the design of the Onagawa Nuclear Power Station of the Tohoku Electric Power Company, which avoided serious damage, was 14.8 m (Matsumoto, 2007).

Type
Chapter
Information
Environmental Contamination from the Fukushima Nuclear Disaster
Dispersion, Monitoring, Mitigation and Lessons Learned
, pp. 1 - 212
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Abe, Y., Iizawa, Y., Terada, Y., et al. (2014). Detection of uranium and chemical state analysis of individual radioactive microparticles emitted from the Fukushima nuclear accident using multiple synchrotron radiation X-ray analyses. Anal. Chem., 86(17), 8521–5, doi:10.1021/ac501998d.CrossRefGoogle ScholarPubMed
Adachi, K., Kajino, M., Zaizen, Y. and Igarashi, Y. (2013). Emission of spherical cesium-bearing particles from an early stage of the Fukushima nuclear accident. Sci. Rep., 3, 2554, doi:10.1038/srep02554.CrossRefGoogle ScholarPubMed
Andoh, M, Nakahara, Y., Tsuda, S., et al. (2015). Measurement of air dose rates over a wide area around the Fukushima Dai-ichi Nuclear Power Plant through a series of car-borne surveys. J. Radiat. Res., 139, 266–80.Google Scholar
Aoyama, M., Hirose, K., Suzuki, Y., Inoue, H. and Sugimura, Y. (1986). High-level radioactive nuclides in Japan in May. Nature, 321, 819–20.CrossRefGoogle ScholarPubMed
Aoyama, M., Ohara, T. and Komura, K. (1999). Spread to the Kanto plains of the radiocesium by the Power Reactor and Nuclear Fuel Development Corporation Tokai accident. Kagaku, 69(1), 1621 (in Japanese).Google Scholar
Aoyama, M., Hirose, K. and Igarashi, Y. (2006). Re-construction and updating our understanding on the global weapons tests 137Cs fallout. J. Environ. Monit., 8, 431–8.Google Scholar
Aoyama, M., Tsumune, D. and Hamajima, Y. (2012). Distribution of 137Cs and 134Cs in the North Pacific Ocean: Impacts of the TEPCO Fukushima-Daiichi NPP accident. J. Radioanal. Nucl. Chem., 296, 535–9, doi:10.1007/s10967-012-2033-2.Google Scholar
Aoyama, M., Kajino, M., Tanaka, T., et al. (2016). 134Cs and 137Cs in the North Pacific Ocean derived from the March 2011 TEPCO Fukushima Dai-ichi Nuclear Power Plant accident, Japan: Part two. Estimation of 134Cs and 137Cs inventories in the North Pacific Ocean. J. Oceanogr., 72, 6776, doi:10.1007/s10872.Google Scholar
Barescut, J., Ikäheimonen, T. K., Mustonen, R. and Saxén, R. (2009). Half a century of radioecological research and surveillance at STUK. Radioprotection, 44, 607–12.Google Scholar
Bourcier, L., Sellegri, K., Masson, O., et al. (2010). Experimental evidence of biomass burning as a source of atmospheric 137Cs, puy de Dome (1465 m a.s.l.), France. Atmos. Environ., 44, 2280–6.CrossRefGoogle Scholar
CSIC (2012). Final Report, Investigation Committee on the Accident at the Fukushima Nuclear Power Stations of Tokyo Electric Power Company. Cabinet Secretariat, 23 July. www.kantei.go.jp/jp/noda/actions/201207/23kenshou.html (accessed 19 September 2018).Google Scholar
Estournel, C., Bosc, E., Bocquet, M., et al. (2012). Assessment of the amount of cesium-137 released into the Pacific Ocean after the Fukushima accident and analysis of its dispersion in Japanese coastal waters. J. Geophys. Res. Oceans, 117, C11014, doi:10.1029/2012JC007933.CrossRefGoogle Scholar
Froidevaux, P., Haldimann, M. and Bochud, F. (2012). Long-term effects of exposure to low-levels of radioactivity: a retrospective study of 239Pu and 90Sr from nuclear bomb tests on the Swiss population. In Tsvetkov, P. (ed.) Nuclear Power: Operation, Safety and Environment. London: InTech Open, chapter 14, doi:10.5772/19058.Google Scholar
Fukushima Prefectural Government (2018). Steps on revitalization in Fukushima. www.pref.fukushima.lg.jp/uploaded/attachment/264747.pdf (accessed 19 September 2018).Google Scholar
Furuki, G., Imoto, J., Ochiai, A., et al. (2017). Caesium-rich micro-particles: a window into the meltdown events at the Fukushima Daiichi Nuclear Power Plant. Sci. Rep., 7, 42731, doi:10.1038/srep42731.CrossRefGoogle ScholarPubMed
Garger, E. K., Kuzmenko, Y. I., Sickinger, S. and Tschiersch, J. (2012). Prediction of the 137Cs activity concentration in the atmospheric surface layer of the Chernobyl exclusion zone. J. Environ. Radioact., 110, 53–8.CrossRefGoogle ScholarPubMed
Hirose, K., Takatani, S. and Aoyama, M. (1993). Wet deposition of radionuclides derived from the Chernobyl accident. J. Atmos. Chem., 17(1), 6171.Google Scholar
Honda, M. C., Aono, T., Aoyama, M., et al. (2012). Dispersion of artificial cesium-134 and -137 in the western North Pacific one month after the Fukushima accident. Geochem. J., 46, e1e9.CrossRefGoogle Scholar
Igarashi, Y. (2004). Atmospheric cycles of materials and radioactive fallout. Isotope News, May, 2–8 (in Japanese).Google Scholar
Igarashi, Y. (2009). Anthropogenic radioactivity in aerosol: a review focusing on studies during the 2000s. Japanese Journal of Health Physics (Hoken Butsuri), 44(3), 315–25. www.jstage.jst.go.jp/article/jhps/44/3/44_3_313/_pdf (accessed 19 September 2018).Google Scholar
Igarashi, Y., Aoyama, M., Miyao, T., et al. (1999). Air concentration of radiocaesium in Tsukuba, Japan following the release from the Tokai waste treatment plant: comparisons of observations with predictions. Appl. Radiat. Isotopes, 50, 1063–73.Google Scholar
Igarashi, Y., Aoyama, M., Hirose, K., Povinec, P. and Yabuki, S. (2005). What anthropogenic radionuclides (90Sr and 137Cs) in atmospheric deposition, surface soils and Aeolian dusts suggest for dust transport over Japan. Water Air Soil Poll. Focus, 5, 569.CrossRefGoogle Scholar
Igarashi, Y., Fujiwara, H. and Jugder, D. (2011). Change of the Asian dust source region deduced from the composition of anthropogenic radionuclides in surface soil in Mongolia. Atmos. Chem. Phys., 11, 7069–80.CrossRefGoogle Scholar
Igarashi, Y., Kajino, M., Zaizen, K., Adachi, K. and Mikami, M. (2015). Atmospheric radioactivity over Tsukuba, Japan: a summary of three years of observations after the FDNPP accident. Prog. Earth Planet. Sci., 2, 44, doi:10.1186/s40645-015-0066-1.CrossRefGoogle Scholar
Imamura, N., Komatsu, M., Ohashi, S., et al. (2017). Temporal changes in the radiocesium distribution in forests over the five years after the Fukushima Daiichi Nuclear Power Plant accident. Sci. Rep., 7, 8179.Google Scholar
Ishihara, M. and Tadono, T. (2017). Land cover changes induced by the great east Japan earthquake in 2011. Sci. Rep., 7, 45769, doi:10.1038/srep45769.Google Scholar
Itoh, S., Eguchi, T., Kato, N. and Takahashi, S. (2014). Radioactive particles in soil, plant, and dust samples after the Fukushima nuclear accident. Soil Sci. Plant Nutr., doi:10.1080/00380768.2014.907735.CrossRefGoogle Scholar
JAEA (Japan Atomic Energy Agency) (2012). JAEA Open Workshop ‘Reconstruction of the Emission and Diffusion Processes of Materials Released by the Fukushima Daiichi Atomic Power Plant Accident’, 6 March 2012, Tokyo. http://bit.ly/2Vo00Lf (accessed 19 September 2018).Google Scholar
JAEA (Japan Atomic Energy Agency) (2017). Database for Radioactive Substance Monitoring Data. http://emdb.jaea.go.jp/emdb/en/ (accessed 19 September 2018).Google Scholar
Kajino, M., Ishizuka, M., Igarashi, Y., et al. (2016). Long-term assessment of airborne radiocesium after the Fukushima nuclear accident: re-suspension from bare soil and forest ecosystems. Atmos. Chem. Phys. 16, 13149–72, doi:10.5194/acp-2016-270.Google Scholar
Kaneyasu, N., Ohashi, H., Suzuki, F., Okuda, T. and Ikemori, F. (2012). Sulfate aerosol as a potential transport medium of radiocesium from the Fukushima nuclear accident. Environ. Sci. Technol., 46, 5720–6.CrossRefGoogle ScholarPubMed
Katata, G, Chino, M., Kobayashi, T., et al. (2015). Detailed source term estimation of the atmospheric release for the Fukushima Daiichi Nuclear Power Station accident by coupling simulations of an atmospheric dispersion model with an improved deposition scheme and oceanic dispersion model. Atmos. Chem. Phys., 15, 1029–70.CrossRefGoogle Scholar
Kato, H., Onda, Y. and Tesfaye, T. (2012a). Depth distribution of 137Cs, 134Cs, and 131I in soil profile after Fukushima Dai-ichi Nuclear Power Plant Accident. J. Environ. Radioact., 111, 5964.Google Scholar
Kato, H., Onda, Y. and Gomi, T. (2012b). Interception of the Fukushima reactor accident-derived 137Cs, 134Cs and 131I by coniferous forest canopies. Geophys. Res. Lett., 39, L20403, doi:10.1029/2012GL052928.CrossRefGoogle Scholar
Kato, H., Onda, Y., Hisadome, K., Loffredo, N. and Kawamori, A. (2017). Temporal changes in radiocesium deposition in various forest stands following the Fukushima Dai-ichi Nuclear Power Plant accident. J. Environ. Radioact., 166, 449–57.CrossRefGoogle ScholarPubMed
Katsuragi, Y. (1983). A study of 90Sr fallout in Japan. Pap. Met. Geophys., 33, 277–91.Google Scholar
Kawamura, H., Kobayashi, T., Furuno, A., et al. (2011). Preliminary numerical experiments on oceanic dispersion of 131I and 137Cs discharged into the ocean because of the Fukushima Daiichi Nuclear Power Plant disaster. J. Nucl. Sci. Technol., 48, 1349–56, doi:80/18811248.2011.9711826.Google Scholar
Kinase, S., Takahashi, T., Sato, S., Sakamoto, R. and Saito, K. (2014). Development of prediction models for radioactive caesium distribution within the 80 km radius of the Fukushima Daiichi Nuclear Power Plant. Radiat. Prot. Dosim., 160(4), 318–21.CrossRefGoogle ScholarPubMed
Kinoshita, N., Sueki, K., Sasa, K., et al. (2011). Assessment of individual radionuclide distributions from the Fukushima nuclear accident covering central-east Japan. Proc. Natl. Acad. Sci. USA, 108(49),19526–9, doi:10.1073/pnas.1111724108.Google Scholar
Knolls Atomic Power Laboratory (2010). Nuclides and Isotopes: Chart of Nuclides, 17th edition. Niskayuna, NY: Knolls Atomic Power Laboratory.Google Scholar
Kogure, T., Yamaguchi, N., Segawa, H., et al. (2016). Constituent elements and their distribution in the radioactive Cs-bearing silicate glass microparticles released from Fukushima nuclear plant. Microscopy (Oxf), 65(5), 451–9, doi:10.1093/jmicro/dfw030.Google ScholarPubMed
Komura, K., Yamamoto, M., Muroyama, T., et al. (2000). The JCO criticality accident at Tokai-mura, Japan: an overview of the sampling campaign and preliminary results. J. Environ. Radioact., 50, 314.CrossRefGoogle Scholar
Kulan, A. (2006). Seasonal 7Be and 137Cs activities in surface air before and after the Chernobyl event. J. Environ. Radioact., 90(2), 140–50, doi:10.1016/j.jenvrad.2006.06.010.Google Scholar
Maki, T., Tanaka, T. Y., Sekiyama, T. T., et al. (2013). Radioactive Nuclei Emission Analysis from Fukushima Dai-ichi Nuclear Power Plant by Inverse Model. 93rd American Meteorological Society Annual Meeting, Austin, Texas, USA, 6 January 2013, http://bit.ly/2Vp2Tvl (accessed 19 September 2019).Google Scholar
Masson, O. (2005). Radioecological Impact of Saharan Dusts Fallout: Case Study of a Major Event on the 21 of February 2004 in South Part of France (INIS-FR--08-1275). http://bit.ly/2Vpozrl (accessed 19 September 2019).Google Scholar
Matsuda, N, Mikami, S., Shimoura, S., et al. (2015). Depth profiles of radioactive cesium in soil using a scraper plate over a wide area surrounding the Fukushima Dai-ichi Nuclear Power Plant, Japan. J. Environ. Radioact., 139, 427–34.CrossRefGoogle Scholar
Matsumoto, Y. (2007). Safety assessment and disaster prevention measures against the tsunami at Onagawa Nuclear Power Station. IAEA/JNES/NIED Seminar on Nuclear Disaster Prevention and General Disaster Prevention Against Earthquakes and Tsunamis, Tokyo, 4 December 2007. http://bit.ly/2VpoX9h (accessed 19 September 2019).Google Scholar
MEXT (2011). Measurement results of aircraft monitoring in Iwate, Shizuoka, Nagano, Yamanashi, Gifu and Toyama prefectures, and revision of the monitoring results considering the influence of natural nuclides. Ministry of Education, Culture, Sports, Science and Technology, http://bit.ly/2VtToeC (accessed 19 September 2019).Google Scholar
Mikami, S., Maeyama, T., Hoshide, Y., et al. (2015a). The air dose rate around the Fukushima Dai-ichi Nuclear Power Plant: its spatial characteristics and temporal changes until December 2012. J. Environ. Radioact., 139, 250–9.Google Scholar
Mikami, S., Maeyama, T., Hoshide, Y., et al. (2015b). Spatial distributions of radionuclides deposited onto ground soil around the Fukushima Dai-ichi Nuclear Power Plant and their temporal change until December 2012. J. Environ. Radioact., 139, 320–43.Google Scholar
Miyake, Y. (1954a). Anthropogenic radioactive rain fell in Japan (during May to July in 1954). Tenmon to Kishou, 20, 18 (in Japanese).Google Scholar
Miyake, Y. (1954b). The artificial radioactivity in rain water observed in Japan from May to August, 1954. Pap. Met. Geophys., 5, 173–7.Google Scholar
Miyazawa, Y., Masumoto, Y., Varlamov, S. M., et al. (2013). Inverse estimation of source parameters of oceanic radioactivity dispersion models associated with the Fukushima accident. Biogeosciences, 10, 2349–63.CrossRefGoogle Scholar
NERH (2011a). Completion report of the roadmap step 2 towards convergence of accident, Tokyo Electric Power Company Fukushima Daiichi Nuclear Power Station. Nuclear Emergency Response Headquarters, 19 July 2011.Google Scholar
NERH (2011b). Completion report of the roadmap step 2 towards convergence of accident, Tokyo Electric Power Company Fukushima Daiichi Nuclear Power Station. Nuclear Emergency Response Headquarters, 16 December 2011.Google Scholar
NERH (2012). Report of the government of Japan to the IAEA Ministerial Conference on Nuclear Safety: on the accident of TEPCO Fukushima Nuclear Power Station. Nuclear Emergency Response Headquarters, www.kantei.go.jp/jp/topics/2011/iaea_houkokusho.html (accessed 19 September 2019).Google Scholar
Niimura, N., Kikuchi, K., Tuyen, N. D., Komatsuzaki, M. and Motohashi, Y. (2015). Physical properties, structure, and shape of radioactive Cs from the Fukushima Daiichi Nuclear Power Plant accident derived from soil, bamboo and shiitake mushroom measurements. J. Environ. Radioact., 139, 234–9.Google Scholar
NISA (2011). About some errors of radioactive material emission inventory data, http://bit.ly/2VppnMT (accessed 19 September 2018) (in Japanese).Google Scholar
NRA (Nuclear Regulation Authority) (2013). On implementation of aircraft monitoring in FY2013. Nuclear Regulatory Commission, http://bit.ly/2VkAiHw (accessed 19 September 2018).Google Scholar
NRA (Nuclear Regulation Authority) (2017). Extension site of distribution map of radiation dose, etc. http://ramap.jmc.or.jp/map/eng/ (accessed 19 September 2018).Google Scholar
NSC (2012). A series of Nuclear Safety Commission documents. Nuclear Safety Commission, http://bit.ly/2VkAvui (accessed 19 September 2018) (in Japanese).Google Scholar
Outola, I. and Saxén, R. (2012). Radionuclide Deposition in Finland 1961–2006. Helsinki: Radiation and Nuclear Safety Authority.Google Scholar
Paatero, J., Hämeri, K., Jaakkola, T., et al. (2010). Airborne and deposited radioactivity from the Chernobyl accident: a review of investigations in Finland. Boreal Env. Res. 15, 1933.Google Scholar
Preston, D. L., Shimizu, Y., Pierce, D. A., Suyama, A. and Mabuchi, K. (2003). Studies of mortality of atomic bomb survivors: Report 13. Solid cancer and noncancer disease mortality: 1950–1997. Radiat. Res., 160, 381407.Google Scholar
RERF (Radiation Effects Research Foundation) (2013). Solid cancer risks among atomic-bomb survivors, http://bit.ly/2VpqnR9 (accessed 19 September 2018).Google Scholar
Saito, K. and Onda, Y. (2015). Outline of the national mapping projects implemented after the Fukushima accident. J. Environ. Radioact., 139, 240–9.Google Scholar
Saito, K., Tanihata, I., Fujiwara, M., et al. (2015). Detailed deposition density maps constructed by large-scale soil sampling for gamma-ray emitting radioactive nuclides from the Fukushima Dai-ichi Nuclear Power Plant accident. J. Environ. Radioact., 139, 308–19.Google Scholar
Sanada, Y. and Torii, T. (2015). Aerial radiation monitoring around the Fukushima Dai-ichi nuclear power plant using an unmanned helicopter. J. Environ. Radioact., 139, 294–9.CrossRefGoogle ScholarPubMed
Sanada, Y., Sugita, T., Nishizawa, Y., Kondo, A. and Torii, T. (2014). The aerial radiation monitoring in Japan after the Fukushima Daiichi nuclear power plant accident. Progress in Nuclear Science and Technology, 4, 7680, doi:10.15669/pnst.4.76.Google Scholar
Satou, Y., Sueki, K., Sasa, K., Adachi, K. and Igarashi, Y. (2016). First successful isolation of radioactive particles from soil near the Fukushima Daiichi Nuclear Power Plant. Anthropocene, 14, 71–6, doi:10.1016/j.ancene.2016.05.001.Google Scholar
Satou, Y., Sueki, K., Sasa, K., et al. (2018). Two different types of radioactive cesium particles emitted at the early stage of the Fukushima Dai-ichi Nuclear Power Station accident. Geochem. J., 52, doi:10.2343/geochemj.2.0514.Google Scholar
Saunier, O., Mathieu, A., Didier, D., et al. (2013). An inverse modeling method to assess the source term of the Fukushima Nuclear Power Plant accident using gamma dose rate observations. Atmos. Chem. Phys., 13, 11403–21, doi:10.5194/acp-13-11403-2013.Google Scholar
SCJ (Japan Science Council) (2012). Recommendations ‘To take a new step of radiation countermeasure: actions based on the scientific search of facts’, 9 April 2012.Google Scholar
SCJ (2014). A review of the model comparison of transportation and deposition of radioactive materials released to the environment as a result of the Tokyo Electric Power Company’s Fukushima Daiichi Nuclear Power Plant accident. Report of Committee on Comprehensive Synthetic Engineering, Science Council of Japan, www.scj.go.jp/ja/info/kohyo/pdf/kohyo-22-h140902-e1.pdf to www.scj.go.jp/ja/info/kohyo/pdf/kohyo-22-h140902-e7.pdf (accessed 19 September 2018).Google Scholar
Stallen, P. and Coppock, R. (1987). About risk communication and risky communication. Risk Analysis 7, 413414.CrossRefGoogle ScholarPubMed
Stohl, A., Seibert, P., Wotawa, G., et al. (2012). Xenon-133 and caesium-137 releases into the atmosphere from the Fukushima Dai-ichi nuclear power plant: determination of the source term, atmospheric dispersion, and deposition. Atmos. Chem. Phys., 12, 2313–43, doi:10.5194/acp-12-2313-2012.Google Scholar
Takahashi, J., Tamura, K., Suda, T., Matsumura, R. and Onda, Y. (2015). Vertical distribution and temporal changes of 137Cs in soil profiles under various land uses after the Fukushima Dai-ichi Nuclear Power Plant Accident. J. Environ. Radioact., 139, 351–61.CrossRefGoogle ScholarPubMed
Takemura, T., Nakamura, H., Takigawa, M., et al. (2011). A numerical simulation of global transport of atmospheric particles emitted from the Fukushima Daiichi Nuclear Power Plant. SOLA, 7, 101–4, doi:10.2151/sola/2011-026.Google Scholar
TEPCO (2011). On the submission of a report on the results of the tsunami survey at the Fukushima Daiichi Nuclear Power Station and Fukushima Daini Nuclear Power Station to the Nuclear and Industrial Safety Agency, Ministry of Economy, Trade and Industry. Press release, 8 July, www.tepco.co.jp/cc/press/11070802-j.html (accessed 19 September 2018).Google Scholar
TEPCO (2012). Results of nuclide analysis of fishes and shellfishes, inland waters within Fukushima Daiichi Nuclear Power Station. Supplement document, 21 August, http://bit.ly/2EABrVO (accessed 19 September 2018).Google Scholar
Terada, H., Katata, G., Chino, M. and Nagai, H. (2012). Atmospheric discharge and dispersion of radionuclides during the Fukushima Dai-ichi Nuclear Power Plant accident: Part II. Verification of the source term and analysis of regional-scale atmospheric dispersion. J. Environ. Radioact., 112, 141–54, doi:10.1016/j. jenvrad. 2012.05.023.Google Scholar
Torii, T., Sugita, T., Okada, C. E., Reed, M. S. and Blumenthal, D. J. (2013). Enhanced analysis methods to derive the spatial distribution of 131I deposition on the ground by air-borne surveys at an early stage after the Fukushima Daiichi Nuclear Power Plant accident. Health Phys., 105(2), 192200.Google Scholar
Tsumune, D., Tsubono, T., Aoyama, M. and Hirose, K. (2012). Distribution of oceanic 137Cs from the Fukushima Daiichi Nuclear Power Plant simulated numerically by a regional ocean model. J. Environ. Radioact., 111, 100–8, doi:10.1016/j. jenvrad. 2011.10.007.CrossRefGoogle ScholarPubMed
Tsumune, D., Tsubono, T., Aoyama, M., et al. (2013). One-year, regional-scale simulation of 137Cs radioactivity in the ocean following the Fukushima Daiichi Nuclear Power Plant accident. Biogeosciences, 10, 5601–17.Google Scholar
UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation) (2000). UNSCEAR 2000 report to the General Assembly, with scientific annexes, www.unscear.org/unscear/en/publications/2000_1.html (accessed 19 September 2018).Google Scholar
UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation) (2013). UNSCEAR 2013 report to the General Assembly, with scientific annexes, www.unscear.org/unscear/en/publications/2013_1.html (accessed 19 September 2018).Google Scholar
Yamaguchi, N., Mitome, M., Akiyama-Hasegawa, K., et al. (2016). Internal structure of cesium-bearing radioactive microparticles released from Fukushima nuclear power plant. Sci. Rep., 6, 20548, doi:10.1038/srep20548.Google Scholar
Yoshimura, K., Onda, Y. and Kato, H. (2015). Evaluation of radiocaesium wash-off by soil erosion from various land uses using USLE plots. J. Environ. Radioact., 139, 362–9.Google Scholar
Yoshimura, K., Onda, Y. and Wakahara, T. (2016). Time dependence of the 137Cs concentration in particles discharged from rice paddies to freshwater bodies after the Fukushima Daiichi NPP accident. Environ. Sci. Technol. 50, 4186−93, doi:10.1021/acs.est.5b05513.Google Scholar
Yumimoto, K., Morino, Y., Ohara, T., et al. (2016). Inverse modeling of the 137Cs source term of the Fukushima Dai-ichi Nuclear Power Plant accident constrained by a deposition map monitored by aircraft. J. Environ. Radioact., 164, 112, doi:10.1016/j.jenvrad.2016.06.018.Google Scholar

References

Aoyama, M., Kajino, M., Tanaka, T., et al. (2015). 134Cs and 137Cs in the North Pacific Ocean derived from the March 2011 TEPCO Fukushima Dai‑ichi Nuclear Power Plant accident, Japan. Part two: estimation of 134Cs and 137Cs inventories in the North Pacific Ocean. J. Oceanogr., 72, 5365, doi:10.1007/s10872-015-0332-2.CrossRefGoogle Scholar
Bailly du Bois, P., Laguionie, P., Boust, D., et al. (2012). Estimation of marine source-term following Fukushima Dai-ichi accident. J. Environ. Radioact., 114, 29, doi:10.1016/j.jenvrad.2011.11.015.Google Scholar
Buesseler, K., Aoyama, M. and Fukasawa, M. (2011). Impacts of the Fukushima nuclear power plants on marine radioactivity. Environ. Sci. Technol., 45, 9931–5, doi:10.1021/es202816c.CrossRefGoogle ScholarPubMed
Chino, M., Nakayama, H., Nagai, H., et al. (2011). Preliminary estimation of release amounts of 131I and 137Cs accidentally discharged from the Fukushima Daiichi nuclear power plant into atmosphere. J. Nucl. Sci. Technol., 48(7), 1129–34.Google Scholar
Chino, M., Terada, H., Nagai, H., et al. (2016). Utilization of 134Cs/137Cs in the environment to identify the reactor units that caused atmospheric releases during the Fukushima Daiichi accident. Sci. Rep., 6, 31376, doi:10.1038/srep31376.CrossRefGoogle Scholar
Dietze, H. and Kriest, I. (2012). 137Cs off Fukushima Dai-ichi, Japan: model based estimates of dilution and fate. Ocean Sci., 8, 319–32, doi:10.5194/os-8-319-2012.Google Scholar
Estournel, C., Bosc, E., Bocquet, M., et al. (2012). Assessment of the amount of Cesium-137 released into the Pacific Ocean after the Fukushima accident and analysis of its dispersion in Japanese coastal waters. J. Geophys. Res. Oceans, 117, C11014, doi:10.1029/2012JC007933.Google Scholar
JAEA (2012). ‘Reconstruction of Atmospheric Release and Dispersion Processes’, JAEA workshop, Tokyo (6 March 2012). http://bit.ly/2Vo00Lf (accessed 19 September 2018).Google Scholar
Japanese Government (2011). Report of Japanese Government to the IAEA Ministerial Conference on Nuclear Safety: the accident at TEPCO’s Fukushima nuclear power stations. http://bit.ly/2VkB4nU (accessed 19 September 2018).Google Scholar
Kanda, J. (2013). Continuing 137Cs release to the sea from the Fukushima Dai-ichi Nuclear Power Plant through 2012. Biogeosciences, 10(9), 6107–13, doi:10.5194/bg-10-6107-2013.Google Scholar
Katata, G., Ota, M., Terada, H., Chino, M. and Nagai, H. (2012). Atmospheric discharge and dispersion of radionuclides during the Fukushima Dai-ichi Nuclear Power Plant accident, Part I: source term estimation and local-scale atmospheric dispersion in early phase of the accident. J. Environ. Radioact., 109, 103–13.Google Scholar
Katata, G., Chino, M., Kobayashi, T., et al. (2015). Detailed source term estimation of the atmospheric release for the Fukushima Daiichi Nuclear Power Station accident by coupling simulations of an atmospheric dispersion model with an improved deposition scheme and oceanic dispersion model. Atmos. Chem. Phys., 15, 1029–70.CrossRefGoogle Scholar
Kawamura, H., Kobayashi, T., Furuno, A., et al. (2011). Preliminary numerical experiments on oceanic dispersion of 131I and 137Cs discharged into the ocean because of the Fukushima Daiichi nuclear power plant disaster. J. Nucl. Sci. Technol., 48(11), 1349–56, doi:80/18811248.2011.9711826.Google Scholar
Kobayashi, T., Nagai, H., Chino, M. and Kawamura, H. (2013). Source term estimation of atmospheric release due to the Fukushima Dai-ichi Nuclear Power Plant accident by atmospheric and oceanic dispersion simulations. J. Nucl. Sci. Technol., 50, 255–64.Google Scholar
Miyazawa, Y., Masumoto, Y., Varlamov, S. M., et al. (2013). Inverse estimation of source parameters of oceanic radioactivity dispersion models associated with the Fukushima accident. Biogeosciences, 10, 2349–63, doi:10.5194/bg-10-2349-2013.Google Scholar
NISA (2011). Results of the emergency environmental monitoring around TEPCO’s Fukushima Daiichi Nuclear Power Station and Fukushima Daini Nuclear Power Station. http://bit.ly/2VpUyHJ (accessed 19 September 2018).Google Scholar
Rypina, I. I., Jayne, S. R., Yoshida, S., et al. (2013). Short-term dispersal of Fukushima-derived radionuclides off Japan: modeling efforts and model–data intercomparison. Biogeosciences, 10(7), 4973–90, doi:10.5194/bg-10-4973-2013.CrossRefGoogle Scholar
Saunier, O., Mathieu, A., Didier, D., et al. (2013). An inverse modeling method to assess the source term of the Fukushima Nuclear Power Plant accident using gamma dose rate observations. Atmos. Chem. Phys., 13, 11403–21.CrossRefGoogle Scholar
Stohl, A., Seibert, P., Wotawa, G., et al. (2012). Xenon-133 and caesium-137 releases into the atmosphere from the Fukushima Dai-ichi nuclear power plant: determination of the source term, atmospheric dispersion, and deposition. Atmos. Chem. Phys., 12, 2313–43.CrossRefGoogle Scholar
TEPCO (2012). The Fukushima Nuclear Accidents Investigation Report. http://bit.ly/2VxgfWH (accessed 19 September 2018).Google Scholar
Terada, H. and Chino, M. (2008). Development of an atmospheric dispersion model for accidental discharge of radionuclides with the function of simultaneous prediction for multiple domains and its evaluation by application to the Chernobyl nuclear accident. J. Nucl. Sci. Technol., 45, 920–31.Google Scholar
Terada, H., Katata, G., Chino, M. and Nagai, H. (2012). Atmospheric discharge and dispersion of radionuclides during the Fukushima Dai-ichi Nuclear Power Plant accident, Part II: verification of the source term and analysis of regional-scale atmospheric dispersion. J. Environ. Radioactiv., 112, 141–54.Google Scholar
Tsumune, D., Tsubono, T., Aoyama, M. and Hirose, K. (2012). Distribution of oceanic 137Cs from the Fukushima Dai-ichi Nuclear Power Plant simulated numerically by a regional ocean model. J. Environ. Radioact., 111, 100–8, doi:10.1016/j.jenvrad.2011.10.007.Google Scholar
Tsumune, D., Tsubono, T., Aoyama, M., et al. (2013). One-year, regional-scale simulation of 137Cs radioactivity in the ocean following the Fukushima Dai-ichi Nuclear Power Plant accident. Biogeosciences, 10(8), 5601–17, doi:10.5194/bg-10-5601-2013.CrossRefGoogle Scholar
UNSCEAR (2014). Levels and effects of radiation exposure due to the nuclear accident after the 2011 great east-Japan earthquake and tsunami. In Effects and Risks of Ionizing Radiation. UNSCEAR 2013 Report, Vol. 1. New York: United Nations.Google Scholar

References

Achim, P., Monfort, M., Le Petit, G., et al. (2014). Analysis of radionuclide releases from the Fukushima Dai-ichi Nuclear Power Plant accident part II. Pure Appl. Geophys., 171, 645–67, doi:10.1007/s00024-012-0578-1.Google Scholar
Adachi, K., Kajino, M., Zaizen, Y. and Igarashi, Y. (2013). Emission of spherical cesium-bearing particles from an early stage of the Fukushima nuclear accident. Sci. Rep., 3, 2554.Google Scholar
Chino, M., Nakayama, H., Nagai, H., et al. (2011). Preliminary estimation of release amounts of 131I and 137Cs accidentally discharged from the Fukushima Daiichi nuclear power plant into the atmosphere. J. Nucl. Sci. Technol., 48(7), 1129–34, doi:10.1080/18811248.2011.9711799.Google Scholar
CTBTO (2011). Fukushima-related measurements by CTBTO. Comprehensive Nuclear-Test-Ban Treaty Organization, Preparatory Commission.Google Scholar
Draxler, R. R., Arnold, D., Chino, M., et al. (2015). World Meteorological Organization’s model simulations of the radionuclide dispersion and deposition from the Fukushima Daiichi nuclear power plant accident. J. Environ. Radioact., 139, 172–84.Google Scholar
Farchi, A., Bocquet, M., Roustan, Y., Mathieu, A. and Quérel, A. (2016). Using the Wasserstein distance to compare fields of pollutants: application to the radionuclide atmospheric dispersion of the Fukushima-Daiichi accident. Tellus B, 68, 31682, doi:10.3402/tellusb.v68.31682.CrossRefGoogle Scholar
Girard, S., Korsakissok, I. and Mallet, V. (2014). Screening sensitivity analysis of a radionuclides atmospheric dispersion model applied to the Fukushima disaster. Atmos. Environ., 95, 490500, doi:10.1016/j.atmosenv.2014.07.010.Google Scholar
Girard, S., Mallet, V., Korsakissok, I. and Mathieu, A. (2016). Emulation and Sobol’ sensitivity analysis of an atmospheric dispersion model applied to the Fukushima nuclear accident. J. Geophys. Res. Atmospheres, 121, 3484–96, doi:10.1002/2015JD023993.CrossRefGoogle Scholar
Hernández-Ceballos, M. A., Hong, G. H., Lozano, R. L., et al. (2012). Tracking the complete revolution of surface westerlies over Northern Hemisphere using radionuclides emitted from Fukushima. Sci. Total Environ., 438, 80–5.CrossRefGoogle ScholarPubMed
Hirao, S., Yamazawa, H. and Nagae, T. (2013). Estimation of release rate of iodine-131 and cesium-137 from the Fukushima Daiichi nuclear power plant: Fukushima NPP accident related. J. Nucl. Sci. Technol. 50, 139147.CrossRefGoogle Scholar
Hirose, K. (2016). Fukushima Daiichi Nuclear Plant accident: atmospheric and oceanic impacts over the five years. J. Environ. Radioact., 157, 113–30, doi:10.1016/j.jenvrad.2016.01.011.Google Scholar
IAEA (ed.) (2015). The Fukushima Daiichi Accident, Vol. 4, Radiological Consequences. Vienna: International Atomic Energy Agency.Google Scholar
Inomata, Y., Aoyama, M., Tsubono, T., Tsumune, D. and Hirose, K. (2016). Spatial and temporal distributions of Cs-134 and Cs-137 derived from the TEPCO Fukushima Daiichi Nuclear Power Plant accident in the North Pacific Ocean by using optimal interpolation analysis. Env. Sci. Process. Impacts, 18, 126–36, doi:10.1039/C5EM00324E.Google Scholar
Ishizuka, M., Mikami, M., Tanaka, T. Y., et al. (2017). Use of a size-resolved 1-D resuspension scheme to evaluate resuspended radioactive material associated with mineral dust particles from the ground surface. J. Environ. Radioact., 116, 436–48, doi:10.1016/j.envrad.2015.12.023.Google Scholar
Kajino, M., Ishizuka, M., Igarashi, Y., et al. (2016). Long-term assessment of airborne radiocesium after the Fukushima nuclear accident: re-suspension from bare soil and forest ecosystems. Atmos. Chem. Phys., 16, 13149–72, doi:10.5194/acp-16-13149-2016.Google Scholar
Kaneyasu, N, Ohashi, H., Suzuki, F., Okuda, T. and Ikemori, F. (2012). Sulfate aerosol as a potential transport medium of radiocesium from the Fukushima nuclear accident. Environ. Sci. Technol., 46(11), 5720–6, doi:10.1021/es204667h.Google Scholar
Katata, G., Ota, M., Terada, H., Chino, M. and Nagai, H. (2012). Atmospheric discharge and dispersion of radionuclides during the Fukushima Dai-ichi Nuclear Power Plant accident. Part I: source term estimation and local-scale atmospheric dispersion in early phase of the accident. J. Environ. Radioact., 109, 103–13, doi:10.1016/j.jenvrad.2012.02.006.CrossRefGoogle ScholarPubMed
Katata, G., Chino, M., Kobayashi, T., et al. (2015). Detailed source term estimation of the atmospheric release for the Fukushima Daiichi Nuclear Power Station accident by coupling simulations of atmospheric dispersion model with improved deposition scheme and oceanic dispersion model. Atmos. Chem. Phys., 15, 1029–70, doi:10.5194/acp-15-1029-2015.CrossRefGoogle Scholar
Kinoshita, N., Sueki, K., Sasa, K., et al. (2011). Assessment of individual radionuclide distributions from the Fukushima nuclear accident covering central-east Japan. Proc. Natl. Acad. Sci., 108, 19526–9, doi:10.1073/pnas.111172410.Google Scholar
Kitayama, K., Morino, Y., Takigawa, M., et al. (2018). Model inter-comparison of transport and deposition of atmospheric 137Cs from the Fukushima Dai-ichi Nuclear Power Plant. J. Geophys. Res. Atmos., 123, 7754–70, doi:10.1038/2017JD028230.CrossRefGoogle Scholar
Kobayashi, T., Nagai, H., Chino, M. and Kawamura, H. (2013). Source term estimation of atmospheric release due to the Fukushima Dai-ichi Nuclear Power Plant accident by atmospheric and oceanic dispersion simulations: Fukushima NPP accident related. J. Nucl. Sci. Technol., 50, 255–64, doi:10.1080/00223131.2013.772449.Google Scholar
Korsakissok, I., Mathieu, A. and Didier, D. (2013). Atmospheric dispersion and ground deposition induced by the Fukushima Nuclear power plant accident: a local-scale simulation and sensitivity study. Atmos. Environ., 70, 267–79, doi:10.1016/j.atmosenv.2013.01.002.CrossRefGoogle Scholar
Leadbetter, S. J., Hort, M. C., Jones, A. R., Webster, H. N. and Draxler, R. R. (2015). Sensitivity of the modelled deposition of caesium-137 from the Fukushima Dai-ichi nuclear power plant to the wet deposition parameterisation in NAME. J. Environ. Radioact., 139, 200–11, doi:10.1016/j.jenvrad.2014.03.018.Google Scholar
Liu, Y., Haussaire, J.-M., Bocquet, M., et al. (2017). Uncertainty quantification of pollutant source retrieval: comparison of Bayesian methods with application to the Chernobyl and Fukushima Daiichi accidental releases of radionuclides. Q. J. R. Meteorol. Soc., 143, 2886–90, doi:10.1002/qj.3138.Google Scholar
Marzo, G. A. (2014). Atmospheric transport and deposition of radionuclides released after the Fukushima Dai-chi accident and resulting effective dose. Atmos. Environ., 94, 709–22, doi:10.1016/j.atmosenv.2014.06.009.Google Scholar
Mathieu, A., Korsakissok, I., Quélo, D., et al. (2012). Fukushima Daiichi: atmospheric dispersion and deposition of radionuclides from the Fukushima Daiichi Nuclear Power Plant accident. Elements, 8, 195200, doi:10.2113/gselements.8.3.195.CrossRefGoogle Scholar
Mathieu, A., Kajino, M., Korsakissok, I., et al. (2018). Fukushima Daiichi-derived radionuclides in the atmosphere, transport and deposition in Japan: a review. Appl. Geochem., 91, 122–39.CrossRefGoogle Scholar
METI (2011). Results of urgent monitoring of radioactive materials around Fukushima Daiich and Daini Nuclear Power Stations. http://bit.ly/2VpUGXJ (accessed 19 September 2018) (in Japanese).Google Scholar
MEXT (2011) Results of the fourth airborne monitoring survey by MEXT. http://bit.ly/2VlOIag (accessed 19 September 2018).Google Scholar
MEXT (2012) Readings of dust sampling by MEXT, as of Sep. 12, 2012. http://bit.ly/2VqRjjy (accessed 19 September 2018) (in Japanese).Google Scholar
Morino, Y., Ohara, T. and Nishizawa, M. (2011). Atmospheric behavior, deposition, and budget of radioactive materials from the Fukushima Daiichi nuclear power plant in March 2011. Geophys. Res. Lett., 38, L00G11, doi:10.1029/2011gl048689.Google Scholar
Morino, Y., Ohara, T., Watanabe, M., Hayashi, S. and Nishizawa, M. (2013). Episode analysis of deposition of radiocesium from the Fukushima Daiichi nuclear power plant accident. Environ. Sci. Technol., 47, 2314–22, doi:10.1021/es304620x.CrossRefGoogle ScholarPubMed
Nakajima, T., Misawa, S., Morino, Y., et al. (2017). Model depiction of the atmospheric flows of radioactive cesium emitted from the Fukushima Daiichi Nuclear Power Station accident. Prog. Earth Planet. Sci., 4, 18, doi:10.1186/s40645-017-0117-x.CrossRefGoogle Scholar
Nishihara, K., Iwamoto, H. and Suyama, K. (2012). Estimation of fuel compositions in Fukushima-Daiichi nuclear power plant. JAEA-Data/Code 2012-018, Japan Atomic Energy Agency.Google Scholar
Nuclear Regulation Authority (2011) Reading of radioactivity level in fallout by prefecture. https://radioactivity.nsr.go.jp/en/list/194/list-1.html (accessed 22 March 2019).Google Scholar
Ohkura, T., Oishi, T., Taki, M., et al. (2012). Emergency monitoring of environmental radiation and atmospheric radionuclides at Nuclear Science Research Institute, JAEA following the accident of Fukushima Daiichi Nuclear Power Plant. JAEA/Data Code 2012-010.Google Scholar
Oura, Y., Ebihara, M., Tsuruta, H., et al. (2015). A database of hourly atmospheric concentrations of radiocesium (134Cs and 137Cs) in suspended particulate matter collected in March 2011 at 99 air pollution monitoring stations in eastern Japan. J. Nucl. Radiochem. Sci., 15, 112.Google Scholar
Périllat, R., Korsakissok, I., Mallet, V., et al. (2016). Using meteorological ensembles for atmospheric dispersion modeling of the Fukushima nuclear accident. Presented at the 17th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes, Budapest, Hungary, 9 May 2016.Google Scholar
Quérel, A., Roustan, Y., Quélo, D. and Benoit, J.-P. (2015). Hints to discriminate the choice of wet deposition models applied to an accidental radioactive release. Int. J. Environ. Pollut., 58, 268–79.Google Scholar
Quérel, A., Quélo, D., Roustan, Y., et al. (2016). Impact of changing the wet deposition schemes in ldX on 137-Cs atmospheric deposits after the Fukushima accident. Presented at the 17th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes, Budapest, Hungary, 9 May 2016.Google Scholar
Saito, K., Shimbori, T. and Draxler, R. (2015). JMA’s regional atmospheric transport model calculations for the WMO technical task team on meteorological analyses for Fukushima Daiichi Nuclear Power Plant accident. J. Environ. Radioact., 139, 185–99, doi:10.1016/j.jenvrad.2014.02.007.CrossRefGoogle Scholar
Saunier, O., Mathieu, A., Didier, D., et al. (2013). An inverse modelling method to assess the source term of the Fukushima Nuclear Power Plant accident using gamma dose rate observations. Atmos. Chem. Phys., 13, 11403–21, doi:10.5194/acp-13-11403-2013.Google Scholar
Saunier, O., Mathieu, A., Sekiyama, T. T., et al. (2016). A new perspective on the Fukushima releases brought by newly available 137Cs air concentration observations and reliable meteorological fields. Presented at the 17th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes, Budapest, Hungary, 9 May 2016.Google Scholar
SCJ (2014). A review of the model comparison of transportation and deposition of radioactive materials released to the environment as a result of the Tokyo Electric Power Company’s Fukushima Daiichi Nuclear Power Plant accident, Committee on Comprehensive Synthetic Engineering, Science Council of Japan. Science Council of Japan.Google Scholar
Sekiyama, T., Kajino, M., and Kunii, M.. (2013). Ensemble Simulation of the Atmospheric Radionuclides Discharged by the Fukushima Nuclear Accident. Vienna: EGU General Assembly.Google Scholar
Sekiyama, T. T., Kunii, M., Kajino, M. and Shimbori, T. (2015). Horizontal resolution dependence of atmospheric simulations of the Fukushima nuclear accident using 15 km, 3 km, and 500m grid models, J. Meteor. Soc. Japan 93, 4964.CrossRefGoogle Scholar
Solazzo, E. and Galmarini, S. (2015). The Fukushima-137Cs deposition case study: properties of the multi-model ensemble. J. Environ. Radioact., 139, 226–33, doi:10.1016/j.jenvrad.2014.02.017.CrossRefGoogle ScholarPubMed
Sørensen, J. H., Amstrup, B., Feddersen, H., et al. (2015). Fukushima accident: uncertainty of atmospheric dispersion modelling (FAUNA). Nordic Nuclear Safety Research.Google Scholar
Stohl, A., Seibert, P., Wotawa, G., et al. (2012). Xenon-133 and caesium-137 releases into the atmosphere from the Fukushima Dai-ichi nuclear power plant: determination of the source term, atmospheric dispersion, and deposition. Atmos. Chem. Phys., 12, 2313–43, doi:10.5194/acp-12-2313-2012.CrossRefGoogle Scholar
Sugiyama, G., Nasstrom, J., Pobanz, B., et al. (2012). Atmospheric dispersion modeling: challenges of the Fukushima Daiichi response. Health Phys., 102, 493508, doi:10.1097/HP.0b013e31824c7bc9.Google Scholar
Takemura, T., Nakamura, H., Takigawa, M., et al. (2011). A numerical simulation of global transport of atmospheric particles emitted from the Fukushima Daiichi Nuclear Power Plant. SOLA, 7, 101–4, doi:10.2151/sola.2011-026.Google Scholar
Tanaka, K., Sakaguchi, A., Kanai, Y., et al. (2013). Heterogeneous distribution of radiocesium in aerosols, soil and particulate matters emitted by the Fukushima Daiichi Nuclear Power Plant accident: retention of micro-scale heterogeneity during the migration of radiocesium from the air into ground and river systems. J. Radioanal. Nucl. Chem., 295, 1927–37.Google Scholar
TEPCO (2013). Influence to surrounding environment | Archives.Air, 2011, March. The results of nuclide analyses of radioactive materials in the air at the site of Fukushima Daiichi Nuclear Power Station (from the first to the tenth releases). www.tepco.co.jp/en/nu/fukushima-np/f1/index2-e.html (accessed 19 September 2018).Google Scholar
TEPCO (2017). Evaluation of additional release from nuclear reactor building www.tepco.co.jp/nu/fukushima-np/handouts/2017/index-j.html (accessed 19 September 2018) (in Japanese).Google Scholar
Terada, H., Katata, G., Chino, M. and Nagai, H. (2012). Atmospheric discharge and dispersion of radionuclides during the Fukushima Dai-ichi Nuclear Power Plant accident. Part II: verification of the source term and analysis of regional-scale atmospheric dispersion. J. Environ. Radioact., 112, 141–54, doi:10.1016/j.envrad.2012.05.023.Google Scholar
Tsuruta, H., Takigawa, M., and Nakajima, T. (2012). ‘Summary of atmospheric measurements and transport pathways of radioactive materials released by the Fukushima Daiichi Nuclear Power Plant accident’. Proceedings of The First NIRS Symposium on Reconstruction of Early Internal Dose the TEPCO Fukushima Daiichi Nuclear Power Station Accident, pp. 101–111, National Institute of Radiological Sciences, Japan, 1011 July 2012.Google Scholar
Tsuruta, H., Arai, T., Shiba, K., et al. (2013). Atmospheric 131I and 137Cs measured in the east coast of Kanto area and the east Fukushima area in an early period after the Fukushima Dai-ichi Nuclear Power Plant accident. In Proceedings of the 14th Workshop on Environmental Radioactivity. High Energy Accelerator Research Organization, pp. 90–8 (in Japanese).Google Scholar
Tsuruta, H., Oura, Y., Ebihara, M., Ohara, T. and Nakajima, T. (2014). First retrieval of hourly atmospheric radionuclides just after the Fukushima accident by analyzing filter-tapes of operational air pollution monitoring stations. Sci. Rep., 4, 6717, doi:10.1038/srep06717.CrossRefGoogle ScholarPubMed
Tsuruta, H., Oura, Y., Ebihara, M., Moriguchi, Y. and Nakajima, T. (2016). Comprehensive retrieval of spatio-temporal distribution of atmospheric radionuclides just after the Fukushima accident by analyzing filter-tapes of operational air pollution monitoring stations. Abstract, Goldschmidt Abstracts, p. 3198.Google Scholar
Tsuruta, H., Oura, Y., Ebihara, M., et al. (2017) Spatio-temporal distribution of atmospheric radiocesium in eastern Japan just after the TEPCO Fukushima Daiichi Nuclear Power Plant accident: analysis of used filter-tapes of SPM monitors in air quality monitoring stations. Earozoru kenkyu, 32, 244–54 (in Japanese).Google Scholar
Tsuruta, H., Oura, Y., Ebihara, M., et al. (2018). Time-series analysis of atmospheric radiocesium at two SPM monitoring sites near the Fukushima Daiichi Nuclear Power Plant just after the Fukushima accident on March 11, 2011. Geochemical J., 52(2), 103–21, doi:10.2343/geochemj.2.0520.Google Scholar
University of Tokyo (2011). The University of Tokyo environmental radiation info (provisional values). http://bit.ly/2UeTgze (accessed 19 September 2018).Google Scholar
UNSCEAR (2013). Sources, effects and risks of ionizing radiation. In UNSCEAR 2013 Report to the General Assembly with Scientific Annexes, Vol. 2, Scientific Annex B. New York: United Nations.Google Scholar
UNSCEAR (2015). Developments since the 2013 UNSCEAR report on the levels and effects of radiation exposure to the nuclear accident following the great east-Japan earthquake and tsunami: a 2015 white paper to guide the Scientific Committee’s future programme of work.Google Scholar
UNSCEAR (2016). Developments since the 2013 UNSCEAR report on the levels and effects of radiation exposure to the nuclear accident following the great east-Japan earthquake and tsunami: a 2016 white paper to guide the Scientific Committee’s future programme of work.Google Scholar
Winiarek, V., Bocquet, M., Saunier, O. and Mathieu, A. (2012). Estimation of errors in the inverse modeling of accidental release of atmospheric pollutant: application to the reconstruction of the cesium-137 and iodine-131 source terms from the Fukushima Daiichi power plant. J. Geophys. Res., 117, D05122, doi:10.1029/2011JD016932.Google Scholar
Winiarek, V., Bocquet, M., Duhanyan, N., et al. (2014). Estimation of the caesium-137 source term from the Fukushima Daiichi nuclear power plant using a consistent joint assimilation of air concentration and deposition observations. Atmos. Environ., 82, 268–79, doi:10.1016/j.atmosenv.2013.10.017.Google Scholar
WMO (2013). Third meeting of WMO task team on meteorological analyses for Fukushima-Daiichi nuclear power plant accident. http://bit.ly/2ECN7HS.Google Scholar
Yashima, M., Ono, M., Takaya, M. and Ashida, T. (2010). JNIOSH-SRR, 40, 1926.Google Scholar
Yumimoto, K., Morino, Y., Ohara, T., et al. (2016). Inverse modeling of the 137Cs source term of the Fukushima Dai-ichi Nuclear Power Plant accident constrained by a deposition map monitored by aircraft. J. Environ. Radioact., 164, 112, doi:10.1016/j.jenvrad.2016.06.018.CrossRefGoogle ScholarPubMed

References

Aoyama, M., Kajino, M., Tanaka, T. Y., et al. (2016). 134Cs and 137Cs in the North Pacific Ocean derived from the March 2011 TEPCO Fukushima Dai-ichi Nuclear Power Plant accident, Japan. Part two: estimation of 134Cs and 137Cs inventories in the North Pacific Ocean. J. Oceanogr., 72, 6776, doi:10.1007/s10872-015-0332-2.CrossRefGoogle Scholar
Becker, M. (2011). Wind bläst radioaktive Wolke nach Tokio. Spiegel Online, 14 March.Google Scholar
Bowyer, T. W., Biegalski, S. R., Cooper, M., et al. (2011). Elevated radioxenon detected remotely following the Fukushima nuclear accident. J. Environ. Radioact., 102, 681–7, doi:10.1016/j.jenvrad.2011.04.009.Google Scholar
Cabinet Office, Government of Japan (2011). Press conference by the chief cabinet secretary (4 April at 16:02). http://nettv.gov-online.go.jp/eng/prg/prg2065.html (accessed 19 September 2018).Google Scholar
Chino, M., Nakayama, H., Nagai, H., et al. (2011). Preliminary estimation of release amounts of 131I and 137Cs accidentally discharged from the Fukushima Daiichi Nuclear Power Plant into the atmosphere. J. Nucl. Sci. Technol., 48, 1129–34, doi:10.1080/18811248.2011.9711799.CrossRefGoogle Scholar
Christoudias, T. and Lelieveld, J. (2013). Modelling the global atmospheric transport and deposition of radionuclides from the Fukushima Dai-ichi nuclear accident. Atmos. Chem. Phys., 13, 1425–38, doi:10.5194/acp-13-1425-2013.Google Scholar
Christoudias, T., Proestos, Y. and Lelieveld, J. (2014). Global risk from the atmospheric dispersion of radionuclides by nuclear power plant accidents in the coming decades. Atmos. Chem. Phys., 14, 4607–16, doi:10.5194/acp-14-4607-2014.Google Scholar
Comprehensive Nuclear-Test-Ban Treaty Organization Preparatory Commission (2011). The 11 March Japan disaster. http://bit.ly/2NxZ5W2 (accessed 19 September 2018).Google Scholar
Hsu, S.-C., Huh, C.-A., Chan, C.-Y., et al. (2012). Hemispheric dispersion of radioactive plume laced with fission nuclides from the Fukushima nuclear event. Geophys. Res. Lett., 39, doi:10.1029/2011GL049986.CrossRefGoogle Scholar
Huh, C.-A., Hsu, S.-C. and Lin, C.-Y. (2012). Fukushima-derived fission nuclides monitored around Taiwan: free tropospheric versus boundary layer transport. Earth Planet. Sci. Lett., 319 -320, 914, doi:10.1016/j.epsl.2011.12.004.CrossRefGoogle Scholar
Husar, R. B., Tratt, D. M., Schichtel, B. A., et al. (2001). Asian dust events of April 1998. J. Geophys. Res. Atmospheres, 106, 18317–30, doi:10.1029/2000JD900788.CrossRefGoogle Scholar
Icelandic Radiation Safety Authority (2011). Summary of radionuclide concentrations in air: March 19th–April 13th, Reykjavik, Iceland. http://bit.ly/2Vxhy83Google Scholar
Japan Meteorological Agency (2011). On WMO GDPFS RSMC on the provision of transport model products for Environmental Emergency Response. www.jma.go.jp/jma/kokusai/kokusai_eer.html (accessed 19 September 2018) (in Japanese).Google Scholar
Katata, G., Chino, M., Kobayashi, T., et al. (2015). Detailed source term estimation of the atmospheric release for the Fukushima Daiichi Nuclear Power Station accident by coupling simulations of an atmospheric dispersion model with an improved deposition scheme and oceanic dispersion model. Atmos. Chem. Phys., 15, 1029–70, doi:10.5194/acp-15-1029-2015.Google Scholar
Kim, C. K., Byun, J. I., Chae, J. S., et al. (2012). Radiological impact in Korea following the Fukushima nuclear accident. J. Environ. Radioact., 111, 7082, doi:10.1016/j.jenvrad.2011.10.018.Google Scholar
Kobayashi, T., Nagai, H., Chino, M. and Kawamura, H. (2013). Source term estimation of atmospheric release due to the Fukushima Dai-ichi Nuclear Power Plant accident by atmospheric and oceanic dispersion simulations. J. Nucl. Sci. Technol., 50, 255–64, doi:10.1080/00223131.2013.772449.Google Scholar
Kristiansen, N. I., Stohl, A. and Wotawa, G. (2012). Atmospheric removal times of the aerosol-bound radionuclides 137Cs and 131I measured after the Fukushima Dai-ichi nuclear accident: a constraint for air quality and climate models. Atmos. Chem. Phys., 12, 10759–69, doi:10.5194/acp-12-10759-2012.CrossRefGoogle Scholar
Kristiansen, N. I., Stohl, A., Olivié, D. J. L., et al. (2016). Evaluation of observed and modelled aerosol lifetimes using radioactive tracers of opportunity and an ensemble of 19 global models. Atmos. Chem. Phys., 16, 3525–61, doi:10.5194/acp-16-3525-2016.Google Scholar
Lelieveld, J., Kunkel, D. and Lawrence, M. G. (2012). Global risk of radioactive fallout after major nuclear reactor accidents. Atmos. Chem. Phys., 12, 4245–58, doi:10.5194/acp-12-4245-2012.Google Scholar
Leon, J. D., Jaffe, D. A., Kaspar, J., et al. (2011). Arrival time and magnitude of airborne fission products from the Fukushima, Japan, reactor incident as measured in Seattle, WA, USA. J. Environ. Radioact., 102, 1032–8, doi:10.1016/j.jenvrad.2011.06.005.Google Scholar
Long, N. Q., Truong, Y., Hien, P. D., et al. (2012). Atmospheric radionuclides from the Fukushima Dai-ichi nuclear reactor accident observed in Vietnam. J. Environ. Radioact., 111, 53–8, doi:10.1016/j.jenvrad.2011.11.018.Google Scholar
Maki, T. (2015). Emission source estimation by an inverse model. In Contribution of JMA to the WMO Technical Task Team on Meteorological Analyses for Fukushima Daiichi Nuclear Power Plant Accident and Relevant Atmospheric Transport Modeling at MRI. Tsukuba: Meteorological Research Institute, pp. 150–3.Google Scholar
Masson, O., Baeza, A., Bieringer, J., et al. (2011). Tracking of airborne radionuclides from the damaged Fukushima Dai-Ichi nuclear reactors by European networks. Environ. Sci. Technol., 45 (18), 7670–7, doi:10.1021/es2017158.Google Scholar
Medici, F. (2001). The IMS radionuclide network of the CTBT. Rad. Phys. Chem., 61, 689–90, doi:10.1016/S0969-806X(01)00375-9.CrossRefGoogle Scholar
Mészáros, R., Leelőssy, Á., Kovács, T. and Lagzi, I. (2016). Predictability of the dispersion of Fukushima-derived radionuclides and their homogenization in the atmosphere. Sci. Rep., 6, 19915, doi:10.1038/srep19915.Google Scholar
Ohara, T. and Morino, Y. (2012). Current status and issues of the atmospheric transport and deposition models of radioactive substances. In Abstracts of the symposium of the 2012 spring meeting of Meteorological Society of Japan, 2012, 2–8.Google Scholar
Okada, K., Ikegami, M., Uchino, O., et al. (1992). Kuwaiti soot over Japan. Nature, 355, 120.Google Scholar
Philippine Nuclear Research Institute (2011). Fukushima-Daiichi Nuclear Power Plant accident in Japan. Information Bulletin No. 29 (19 May 2011 update as of 11:00 AM). http://bit.ly/2VmSpMX (accessed 19 September 2018).Google Scholar
Priyadarshi, A., Dominguez, G. and Thiemens, M. H. (2011). Evidence of neutron leakage at the Fukushima nuclear plant from measurements of radioactive 35S in California. Proc. Natl. Acad. Sci. USA, 108, 14422–5, doi:10.1073/pnas.1109449108.Google Scholar
Sarkar, T., Anand, S., Singh, K. D., et al. (2017). Simulating long range transport of radioactive aerosols using a global aerosol transport model. Aerosol and Air Quality Research, 17, 2631–42, doi:10.4209/aaqr.2017.01.0049.Google Scholar
Saunier, O., Mathieu, A., Didier, D., et al. (2013). An inverse modeling method to assess the source term of the Fukushima Nuclear Power Plant accident using gamma dose rate observations. Atmos. Chem. Phys., 13, 11403–21, doi:10.5194/acp-13-11403-2013.Google Scholar
Sectional Committee on Nuclear Accident Committee on Comprehensive Synthetic Engineering, Science Council of Japan (2014). A review of the model comparison of transportation and deposition of radioactive materials released to the environment as a result of the Tokyo Electric Power Company’s Fukushima Daiichi Nuclear Power Plant Accident. Report, 2 September.Google Scholar
Stohl, A., Seibert, P., Wotawa, G., et al. (2012). Xenon-133 and caesium-137 releases into the atmosphere from the Fukushima Dai-ichi nuclear power plant: determination of the source term, atmospheric dispersion, and deposition. Atmos. Chem. Phys., 12, 2313–43, doi:10.5194/acp-12-2313-2012.Google Scholar
Takemura, T., Nakamura, H., Takigawa, M., et al. (2011). A numerical simulation of global transport of atmospheric particles emitted from the Fukushima Daiichi Nuclear Power Plant. SOLA, 7, 101–4, doi:10.2151/sola.2011-026.Google Scholar
Tanaka, T. Y., Inomata, Y., Igarashi, Y., et al. (2012). Current status and issues of the atmospheric transport simulation of radioactive materials in Meteorological Research Institute. Tenki, 59, 239–50 (in Japanese).Google Scholar
Ten Hoeve, J. E. and Jacobson, M. Z. (2012). Worldwide health effects of the Fukushima Daiichi nuclear accident. Energy Environ. Sci., 5, 8743, doi:10.1039/c2ee22019a.Google Scholar
Terada, H., Katata, G., Chino, M. and Nagai, H. (2012). Atmospheric discharge and dispersion of radionuclides during the Fukushima Dai-ichi Nuclear Power Plant accident. Part II: verification of the source term and analysis of regional-scale atmospheric dispersion. J. Environ. Radioact., 112, 141–54, doi:10.1016/j.jenvrad.2012.05.023.Google Scholar
Torii, T., Sanada, Y., Sugita, T., et al. (2012). Investigation of radionuclide distribution using aircraft for surrounding environmental survey from Fukushima Dai-ichi Nuclear Power Plant. JAEA-Technology, 36, doi:10.11484/jaea-technology-2012-036.Google Scholar
Uno, I., Eguchi, K., Yumimoto, K., et al. (2009). Asian dust transported one full circuit around the globe. Nature Geosci., 2, 557–60, doi:10.1038/ngeo583.Google Scholar
Wetherbee, G. A., Gay, D. A., Debey, T. M., Lehmann, C. M. and Nilles, M. A. (2012). Wet deposition of fission-product isotopes to North America from the Fukushima Dai-ichi incident, March 2011. Environ. Sci. Technol., 46, 2574–82, doi:10.1021/es203217u.Google Scholar
Winiarek, V., Bocquet, M., Saunier, O. and Mathieu, A. (2012). Estimation of errors in the inverse modeling of accidental release of atmospheric pollutant: application to the reconstruction of the cesium-137 and iodine-131 source terms from the Fukushima Daiichi power plant. J. Geophys. Res., 117, doi:10.1029/2011jd016932.Google Scholar
Winiarek, V., Bocquet, M., Duhanyan, N., et al. (2014). Estimation of the caesium-137 source term from the Fukushima Daiichi nuclear power plant using a consistent joint assimilation of air concentration and deposition observations. Atmos. Environ., 82, 268–79, doi:10.1016/j.atmosenv.2013.10.017.Google Scholar
World Meteorological Organization (2011). No. 909: WMO monitoring meteorological conditions in quake-hit area. http://bit.ly/2GMBoIP (accessed 19 September 2018).Google Scholar
Wotawa, G. (2011). Accident in the Japanese NPP Fukushima: spread of radioactivity/first source estimates from CTBTO data show large source terms at the beginning of the accident/weather currently not favourable/low level radioactivity meanwhile observed over U.S. East Coast and Hawaii (update: 22 March 2011 15:00). www.zamg.ac.at/docs/aktuell/Japan2011-03-22_1500_E.pdf (accessed 19 September 2018)Google Scholar
Yonezawa, C. and Yamamoto, Y. (2011). Measurements of artificial radionuclides in the atmosphere by nuclear test monitoring for radioactive nuclides networks. Bunseki, 440, 451–8 (in Japanese).Google Scholar

References

Aono, T., Ito, Y., Sohtome, T., et al. (2014). Observation of radionuclides in marine biota off the coast of Fukushima Prefecture after TEPCO’s Fukushima Daiichi Nuclear Power Station accident. In Takahashi, S. (ed.) Radiation Monitoring and Dose Estimation of the Fukushima Nuclear Accident. New York: Springer, pp. 115–23.Google Scholar
Aoyama, M. and Hirose, K. (1995). The temporal and spatial variation of 137Cs concentration in the Western North Pacific and its marginal seas during the period from 1979 to 1988. J. Environ. Radioact., 29, 5774.Google Scholar
Aoyama, M., Hirose, K., Miyao, T. and Igarashi, Y. (2000). Low level Cs measurements in deep seawater samples. Applied Radiation and Isotopes, 53(1), 159–62, doi:10.1016/S0969-8043(00)00128-7.Google Scholar
Aoyama, M., Fukasawa, M., Hirose, K., et al. (2011). Cross equator transport of 137Cs from North Pacific Ocean to South Pacific Ocean (BEAGLE2003 cruises). Prog. Oceanogr., 89, 716.CrossRefGoogle Scholar
Aoyama, M., Tsumune, D. and Hamajima, Y. (2012a). Distribution of 137Cs and 134Cs in the North Pacific Ocean: impacts of the TEPCO Fukushima-Daiichi NPP accident. J. Radioanal. Nucl. Chem., 296, 535–9.Google Scholar
Aoyama, M., Tsumune, D., Uematsu, M., Kondo, F. and Hamajima, Y. (2012b). Temporal variation of 134Cs and 137Cs activities in surface water at stations along coastal line near the Fukushima Dai-ichi Nuclear Power Plant accident site. Japan. Geochem. J., 46, 321–5.Google Scholar
Aoyama, M., Uematsu, M., Tsumune, D. and Hamajima, Y. (2013). Surface pathway of radioactive plume of TEPCO Fukushima NPP1 released 134Cs and 137Cs. Biogeosciences, 10, 3067–78.Google Scholar
Aoyama, M., Hamajima, Y., Hult, M., et al. (2016a). 134Cs and 137Cs in the North Pacific Ocean derived from the March 2011 TEPCO Fukushima Dai-ichi Nuclear Power Plant accident, Japan. Part one: surface pathway and vertical distributions. J. Oceanogr., 72, 5365.Google Scholar
Aoyama, M., Kajino, M., Tanaka, T. Y., et al. (2016b). 134Cs and 137Cs in the North Pacific Ocean derived from the March 2011 TEPCO Fukushima Dai-ichi Nuclear Power Plant accident, Japan. Part two: estimation of 134Cs and 137Cs inventories in the North Pacific Ocean. J. Oceanogr., 72, 6776.Google Scholar
Aoyama, M., Hamajima, Y., Inomata, Y. and Oka, E. (2017). Recirculation of FNPP-1-derived radiocesium observed in winter 2015/2016 in coastal regions of Japan. Appl. Radiat. Isotopes, 126, 83–7.Google Scholar
Aoyama, M., Hamajima, Y., Inomata, Y., et al. (2018). Radiocaesium derived from the TEPCO Fukushima accident in the North Pacific Ocean: surface transport processes until 2017. J. Environ. Radioact., 189, 93102.CrossRefGoogle ScholarPubMed
Baumann, H., Wells, R. D. J., Rooker, J. R., et al. (2015). Combining otolith microstructure and trace elemental analyses to infer the arrival of juvenile Pacific bluefin tuna in the California current ecosystem. ICES Journal of Marine Science, 72(7), 2128–38.Google Scholar
Buesseler, K., Aoyama, M. and Fukasawa, M. (2011). Impacts of the Fukushima nuclear power plants on marine radioactivity. Environ. Sci. Technol., 45, 9931–5.Google Scholar
Buesseler, K., Dai, M., Aoyama, M., et al. (2017). Fukushima Daiichi-derived radionuclides in the ocean: transport, fate, and impacts. Ann Rev Mar Sci, 9, 173203.Google Scholar
Chen, K. S., Crone, P., and Hsu, C. C. (2006). Reproductive biology of female Pacific bluefin tuna Thunnus orientalis from south-western North Pacific Ocean. Fisheries Science, 72(5), 985–94.Google Scholar
Chino, M., Nakayama, H., Nagai, H., et al. (2011). Preliminary estimation of release amounts of 131I and 137Cs accidentally discharged from the Fukushima Daiichi nuclear power plant into the atmosphere. J. Nucl. Sci. Technol., 48 (7), 1129–34, doi:10.1080/18811248.2011.9711799.Google Scholar
Department of Food Safety, Pharmaceutical and Food Safety Bureau, Ministry of Health, Labour and Welfare (2011a). Notice No. 0317 Article 3 of the Department of Food Safety, 17 March. http://bit.ly/2VsVECJ (accessed 19 September 2018).Google Scholar
Department of Food Safety, Pharmaceutical and Food Safety Bureau, Ministry of Health, Labour and Welfare (2011b). New standard limits for radionuclides in foods. www.mhlw.go.jp/english/topics/2011eq/dl/new_standard.pdf (accessed 19 September 2018).Google Scholar
Estournel, C., Bosc, E., Bocquet, M., et al. (2012) Assessment of the amount of Cesium-137 released into the Pacific Ocean after the Fukushima accident and analysis of its dispersion in Japanese coastal waters. J. Geophys. Res. Oceans 117, C11.Google Scholar
Fisher, N. S., Beaugelin-Seiller, K., Hinton, T. G., et al. (2013). Evaluation of radiation doses and associated risk from the Fukushima nuclear accident to marine biota and human consumers of seafood. Proc. Natl. Acad. Sci. USA, 110, (26), 10670–5.Google Scholar
Fisher, N. S., Fowler, S. W. and Madigan, D. J. (2015). Perspectives and reflections on the public reaction to recent Fukushima‐related radionuclide studies and a call for enhanced training in environmental radioactivity. Environ. Toxicol. Chem. 34(4), 707709.Google Scholar
Fisheries Agency (2012). Results of the inspection on radioactive materials in fisheries products. Press releases, March 2011–March, 2012. www.jfa.maff.go.jp/e/inspection/pdf/e120330_2.pdf (accessed 19 September 2018).Google Scholar
Fisheries Agency (2015). Report on the monitoring of radionuclides in fishery products. http://bit.ly/2Vp7uhd (accessed 19 September 2018).Google Scholar
Folsom, T. R., Grismore, R. and Young, D. R. (1970). Long-lived gamma-ray emitting nuclide silver-108m found in Pacific marine organisms and used for dating. Nature, 227, 941–3, doi:10.1038/227941a0Google Scholar
Honda, M. C., Aono, T., Aoyama, M., et al. (2012). Dispersion of artificial caesium-134 and -137 in the western North Pacific one month after the Fukushima accident. Geochem. J., 46(1), e1e9.Google Scholar
IAEA (International Atomic Energy Agency) (2004). Sediment Distribution Coefficients and Concentration Factors for Biota in the Marine Environment. Vienna: IAEA.Google Scholar
Inomata, Y., Aoyama, M. and Hirose, K. (2009). Analysis of 50-y record of surface 137Cs concentrations in the global ocean using the HAM-global database. J. Environ. Monitor, 11, 116–25.Google Scholar
Inoue, M., Kofuji, H., Hamajima, Y., et al. (2012a). 134Cs and 137Cs activities in coastal seawater along northern Sanriku and Tsugaru Strait, northeastern Japan, after Fukushima Dai-ichi Nuclear Power Plant accident. J. Environ. Radioactiv., 111, 116–19, doi:10.1016/j-jenvrad. 2011.09.012.Google Scholar
Inoue, M., Kofuji, H., Nagao, S., et al. (2012b). Lateral variation of 134Cs and 137Cs concentrations in surface seawater in and around the Japan Sea after the Fukushima Dai-ichi Nuclear Power Plant accident. J. Environ. Radioactiv., 109, 4551, doi:10.1016/j.jenvrad.2012.01.004.CrossRefGoogle ScholarPubMed
Ishimaru, T., Aono, T., Watanabe, Y. W., et al. (2012). Distribution and ecological transfer of radiocesium in the coastal waters of Fukushima Prefecture. 2012 spring meeting of the Oceanographic Society of Japan, Tsukuba, 27 March.Google Scholar
Ishimaru, T., Ito, Y., Otsuki, M., et al. (2016). Cesium radioactivity of plankton samples collected in the coastal waters of Fukushima Prefecture and the highly radioactive cesium-bearing particles. 2016 autumn meeting of the Oceanographic Society of Japan, Kagoshima, 13 September.Google Scholar
Itoh, T., Nitta, A. and Tsuji, S. (2003). Migration patterns of young Pacific bluefin tuna (Thunnus orientalis) determined with archival tags. Fishery Bulletin, 101 (3), 514–34.Google Scholar
Kaeriyama, H., Ambe, D., Shimizu, Y., et al. (2013). Direct observation of 134Cs and 137Cs in surface seawater in the western and central North Pacific after the Fukushima Dai-ichi nuclear power plant accident. Biogeosciences, 10, 4287–95, doi:10.5194/bg-10-4287-2013.Google Scholar
Kaeriyama, H., Shimizu, Y., Setou, T., et al. (2016). Intrusion of Fukushima-derived radiocaesium into subsurface water due to formation of mode waters in the North Pacific. Sci. Rep., 6, 22010.Google Scholar
Kanda, J. (2013). Continuing 137Cs release to the sea from the Fukushima Dai-ichi Nuclear Power Plant through 2012. Biogeosciences, 10, 6107–13.Google Scholar
Kasamatsu, F. and Ishikawa, Y. (1997). Natural variation of radionuclide 137 Cs concentration in marine organisms with special reference to the effect of food habits and trophic level. Mar. Ecol. Prog. Ser., 160, 109–20.Google Scholar
Kawamura, H., Kobayashi, T., Furuno, A., et al. (2011). Preliminary numerical experiments on oceanic dispersion of 131I and 137Cs discharged into the ocean because of the Fukushima Daiichi nuclear power plant disaster. J. Nucl. Sci. Tech., 48, 1349–56.Google Scholar
Kumamoto, Y., Aoyama, M., Hamajima, Y., et al. (2014). Southward spreading of the Fukushima-derived radiocesium across the Kuroshio Extension in the North Pacific. Sci. Rep., 4, 4276.Google Scholar
Kusakabe, M., Inatomi, N., Takata, H., and Ikenoue, T. (2017). Decline in radiocesium in seafloor sediments off Fukushima and nearby prefectures. J. Oceanogr., 73(5), 529–45.Google Scholar
Madigan, D. J., Baumann, Z. and Fisher, N. S. (2012). Pacific bluefin tuna transport Fukushima-derived radionuclides from Japan to California. Proc. Natl. Acad. Sci. USA, 109 (24), 9483–6.Google Scholar
Madigan, D. J., Baumann, Z., Snodgrass, O. E., et al. (2013). Radiocesium in Pacific bluefin tuna Thunnus orientalis in 2012 validates new tracer technique. Environ. Sci. Technol., 47, 2287–94.Google Scholar
Madigan, D. J., Baumann, Z., Carlisle, A. B., et al. (2014). Reconstructing transoceanic migration patterns of Pacific bluefin tuna using a chemical tracer toolbox. Ecology, 95, 1674–83.Google Scholar
Madigan, D. J., Chiang, W.-C., Wallsgrove, N. J., et al. (2016). Intrinsic tracers reveal recent foraging ecology of giant Pacific bluefin tuna at their primary spawning grounds. Mar. Ecol. Prog. Ser., 553, 253–66.Google Scholar
Madigan, D. J., Baumann, Z., Carlisle, A. B., et al. (2017a). Isotopic insights into migration patterns of Pacific bluefin tuna in the eastern Pacific Ocean. Can. J. Fish. Aquat. Sci., 75, 260–70, doi: 10.1139/cjfas-2016-0504.Google Scholar
Madigan, D. J., Baumann, Z., Snodgrass, O. E., et al. (2017b). Assessing Fukushima-derived radiocesium in migratory Pacific predators. Environ. Sci. Technol., 51, 8962–71.CrossRefGoogle ScholarPubMed
Matsumoto, A., Shigeoka, Y., Arakawa, H., et al. (2015). Biological half-life of radioactive cesium in Japanese rockfish contaminated by the Fukushima Daiichi nuclear power plant accident. J. Environ. Radioact., 150, 6874, doi:10.1016/j.jenvrad.2015.08.003.CrossRefGoogle ScholarPubMed
Masumoto, Y., Miyazawa, Y., Tsumune, D., et al. (2012). Oceanic dispersion simulation of cesium-137 from Fukushima Daiichi Nuclear Power Plant. Elements, 8(3), 207–12.CrossRefGoogle Scholar
MEXT (Ministry of Education, Culture, Sports, Science and Technology) (1992). Radioactivity Measurement Methods No.24: ‘Pretreatment Methods of Gamma-Ray Spectrometer Samples in an Emergency Event’. Tokyo: MEXT (in Japanese).Google Scholar
MEXT (2010). Annual Report of the Marine Environmental Radioactivity Comprehensive Evaluation Project, 2009. Tokyo: MEXT (in Japanese).Google Scholar
MEXT (2012). Readings of marine soil monitoring in sea area. http://radioactivity.nsr.go.jp/en/list/260/list-1.html (accessed 19 September 2018).Google Scholar
Nagao, S. (2015) Transport behavior of radiocesium in river systems after the Fukushima Dai-ichi Nuclear Power Plant accident. Chikyukagaku (Geochemistry), 49, 217–26 (in Japanese).Google Scholar
Nagao, S., Kanamori, M., Ochiai, S., et al. (2013). Export of 134Cs and 137Cs in the Fukushima river systems at heavy rains by Typhoon Roke in September 2011. Biogeosci., 10, 6215–23.Google Scholar
Nagao, S., Kanamori, M., Ochiai, S., Inoue, M. and Yamamoto, M. (2015). Migration behavior of 134Cs and 137Cs in the Niida River water in Fukushima Prefecture, Japan during 2011–2012. J. Radioanalytical Nuclear Chem., 303, 1617–21.Google Scholar
Nakagawa, R., Ishida, M., Baba, D., et al. (2012). Spatiotemporal distribution of radioactive cesium released from Fukushima Daiichi Nuclear Power Station in the sediment of Tokyo Bay, Japan. In Proceedings of the International Symposium on Environmental Monitoring and Dose Estimation of Residents After Accident of TEPCO’s Fukushima Daiichi Nuclear Power Stations. Osaka: Kyoto University Research Reactor Institute, pp. 133–6.Google Scholar
Neville, D. R., Phillips, A. J., Brodeur, R. D. and Higley, K. A. (2014). Trace levels of Fukushima disaster radionuclides in East Pacific albacore. Environ. Sci. Technol., 48(9), 4739–43.Google Scholar
Nuclear Regulation Authority (2017a). Readings of sea area monitoring. http://radioactivity.nsr.go.jp/en/list/205/list-1.html (accessed 19 September 2018).Google Scholar
Nuclear Regulation Authority, (2017b). Change of the radioactivity concentration of the sediment in off-shore sea area. http://bit.ly/2VkiGf0 (accessed 19 September 2018).Google Scholar
Ohara, T., Morino, Y. and Nishizawa, M. (2011). Where and how did radioactive materials emitted to the air from Fukushima nuclear power plant deposit?. Kagaku, 81(12), 1254–8. (in Japanese).Google Scholar
Radioactive Waste Management Center (1996). Concentration Factors of Radionuclides in the Marine Organisms. Tokyo: Radioactive Waste Management Center (in Japanese).Google Scholar
Science Council of Japan (2014). A Review of the Model Comparison of Transportation and Deposition of Radioactive Materials Released to the Environment as a Result of the Tokyo Electric Power Company’s Fukushima Daiichi Nuclear Power Plant Accident. Tokyo: Science Council of Japan. www.scj.go.jp/en/report/index.html.Google Scholar
Smith, J. N., Brown, R. M., Williams, W. J., et al. (2015). Arrival of the Fukushima radioactivity plume in North American continental waters. Proc. Natl. Acad. Sci. USA, 112, 1310–15.Google Scholar
Sohtome, T., Wada, T., Mizuno, T., et al. (2014). Radiological impact of TEPCO’s Fukushima Dai-ichi Nuclear Power Plant accident on invertebrates in the coastal benthic food web. J. Environ. Radioact., 138, 106–15, doi:10.1016/j.jenvrad.2014.08.008.Google Scholar
Takata, H., Aono, T., Tagami, K. and Uchida, S. (2010a). Sediment–water distribution coefficients of stable elements in four estuarine areas in Japan. J. Nuclear Sci. Tech., 47(1), 111–22, doi:10.3327/jnst.47.111.Google Scholar
Takata, H., Aono, T., Tagami, K. and Uchida, S. (2010b). Concentration ratios of stable elements for selected biota in Japanese estuarine areas. Radiat. Environ. Biophys., 49(4), 591601, doi:10.1007/s00411-010-0317-x.Google Scholar
TEPCO (2011a). Past Measurement Result by Seawater Radiation Monitor near Fukushima Daiichi Nuclear Power Station, Archives, www.tepco.co.jp/en/nu/fukushima-np/f1/index2-e.html (accessed 19 September 2018)Google Scholar
TEPCO (2011b). Out flow of fluid containing radioactive materials to the ocean from areas near intake channel of Fukushima Daiichi Nuclear Power Station Unit 2 (continued report). Press release, 5 April. www.tepco.co.jp/en/press/corp-com/release/11040506-e.html (accessed 19 September 2018).Google Scholar
TEPCO (2011c). Submission of a report to Ministry of Economy, Trade and Industry, Nuclear and Industrial Safety Agency, on the tsunami investigation at Fukushima Daiichi and Daini Atomic Power Plants. Press release, 8 July. www.tepco.co.jp/cc/press/11070802-j.html (accessed 19 September 2018) (in Japanese).Google Scholar
TEPCO (2012). Results of radionuclide analysis of marine organisms within the 20-km zone of the Fukushima Daiichi Nuclear Power Station, September 28. http://bit.ly/2VqDMIu (accessed 19 September 2018).Google Scholar
Tsubono, T., Misumi, K., Tsumune, D., et al. (2016). Evaluation of radioactive cesium impact from atmospheric deposition and direct release fluxes into the North Pacific from the Fukushima Daiichi nuclear power plant. Deep Sea Res. Part 1 Oceanogr. Res. Pap., 115, 1021.Google Scholar
Tsumune, D., Tsubono, T., Aoyama, M. and Hirose, K. (2012). Distribution of oceanic 137Cs from the Fukushima Dai-ichi Nuclear Power Plant simulated numerically by a regional ocean model. J. Environ. Radioact., 111, 100–8.Google Scholar
Yamashiki, Y., Onda, Y., Smith, H. G., et al. (2014). Initial flux of sediment-associated radiocesium to the ocean from the largest river impacted by Fukushima Daiichi Nuclear Power Plant. Sci. Rep., 4, 3714.Google Scholar
Yoshida, N. and Kanda, J. (2012). Tracking the Fukushima radionuclides. Science, 336, 1115–16.CrossRefGoogle ScholarPubMed

References

Abe, Y., Iizawa, Y., Terada, Y., et al. (2014). Detection of uranium and chemical state analysis of individual radioactive microparticles emitted from the Fukushima nuclear accident using multiple synchrotron radiation X-ray analyses. Anal. Chem., 17, 8521–5.Google Scholar
Adachi, K., Kajino, M., Zaizen, Y. and Igarashi, Y. (2013). Emission of spherical cesium-bearing particles from an early stage of the Fukushima nuclear accident. Sci. Rep., 3, 2554.Google Scholar
ANR (2012). Appel à projets ‘Recherche en matière de sûreté nucléaire et de radioprotection’. http://bit.ly/2BXZhZV (accessed 19 September 2018) (in French).Google Scholar
Banwart, S., Chorover, J., Gaillardet, J., et al. (2013). Sustaining Earth’s Critical Zone: Basic Science and Interdisciplinary Solutions for Global Challenges. Sheffield: University of Sheffield.Google Scholar
Broadley, M. R., Willey, N. J. and Mead, A. (1999). A method to assess taxonomic variation in shoot caesium concentration among flowering plants. Environ. Pollut., 106, 341–9.Google Scholar
Cao, L., Zheng, J., Tsukada, H., et al. (2016). Simultaneous determination of radiocesium (135Cs, 137Cs) and plutonium (239Pu, 240Pu) isotopes in river suspended particles by ICP-MS/MS and SF-ICP-MS. Talanta, 159, 5563.Google Scholar
Chagvardieff, P. (2014). La phytoremédiation des sols contaminés par des éléments chimiques radioactifs. Revue Générale Nucléaire, 5, 4951.Google Scholar
Chartin, C., Evrard, O., Onda, Y., et al. (2013). Tracking the early dispersion of contaminated sediment along rivers draining the Fukushima radioactive pollution plume. Anthropocene, 1, 2334.Google Scholar
Chartin, C., Evrard, O., Laceby, J. P., et al. (2017). The impact of typhoons on sediment connectivity: lessons learnt from contaminated coastal catchments of the Fukushima Prefecture (Japan). Earth Surf. Process. Landf., 42(2), 306–17.Google Scholar
Chino, M., Nakayama, H., Nagai, H., et al. (2011). Preliminary estimation of release amounts of 131I and 137Cs accidentally discharged from the Fukushima Daiichi Nuclear Power Plant into the atmosphere. J. Nucl. Sci. Technol., 48, 1129–34.Google Scholar
Christoudias, T., Proestos, Y. and Lelieveld, J. (2014). Global risk from the atmospheric dispersion of radionuclides by nuclear power plant accidents in the coming decades. Atmos. Chem. Phys., 14(9), 4607–16.Google Scholar
Coppin, F., Hurtevent, P., Loffredo, N., et al. (2016). Radiocaesium partitioning in Japanese cedar forests following the ‘early’ phase of Fukushima fallout redistribution. Sci. Rep., 6, 37618.Google Scholar
Delmas, M., Garcia-Sanchez, L., Nicoulaud-Gouin, V. and Onda, Y. (2017). Improving transfer functions to describe radiocesium wash-off fluxes for the Niida River by a Bayesian approach. J. Environ. Radioact., 167, 100–9.Google Scholar
Evrard, O., Pointurier, F., Onda, Y., et al. (2014). Novel insights into Fukushima nuclear accident from isotopic evidence of plutonium spread along coastal rivers. Environ. Sci. Technol., 48(16), 9334–40.Google Scholar
Evrard, O., Laceby, J. P., Lepage, H., et al. (2015). Radiocesium transfer from hillslopes to the Pacific Ocean after the Fukushima Nuclear Power Plant accident: a review. J. Environ. Radioact., 148, 92110.Google Scholar
Evrard, O., Laceby, J. P., Onda, Y., et al. (2016). Quantifying the dilution of the radiocesium contamination in Fukushima coastal river sediment (2011–2015). Sci. Rep., 6, 34828.Google Scholar
Fan, Q. H., Tanaka, M., Tanaka, K., Sakaguchi, A. and Takahashi, Y. (2014). An EXAFS study on the effect of natural organic matter and the expansibility of clay mineral on cesium adsorption and mobility. Geochim. Cosmochim. Acta, 135, 4965.Google Scholar
Fuhrmann, M., Lasat, M., Ebbs, S., Cornish, J. and Kochian, L. (2003). Uptake and release of cesium-137 by five plant species as influenced by soil amendments in field experiments. J. Environ. Qual., 32, 2272–9.Google Scholar
Garcia-Sanchez, L. and Konoplev, A. V. (2009). Watershed wash-off of atmospherically deposited radionuclides: a review of normalized entrainment coefficients. J. Environ. Radioact., 100(9), 774–8.Google Scholar
Garnier-Laplace, J., Beaugelin-Seiller, K. and Hinton, T. G.. (2011). Fukushima wildlife dose reconstruction signals ecological consequences. Environ. Sci. Technol., 45(12), 5077–8.Google Scholar
Hansen, V., Roos, P., Aldahan, A., Hou, X. L. and Possnert, G. (2011). Partition of iodine (129I and 127I) isotopes in soils and marine sediments. J. Environ. Radioact., 102, 1096–104.CrossRefGoogle ScholarPubMed
He, Q. and Walling, D. E. (1996). Interpreting particle size effects in the adsorption of 137Cs and unsupported 210Pb by mineral soils and sediments. J. Environ. Radioact., 30, 117–37.Google Scholar
Hou, X. L., Fogh, C. L., Kucera, J., et al. (2003). Iodine-129 and cesium-137 in Chernobyl contamination soil and their chemical fractionation. Sci. Total Environ., 308, 97109.Google Scholar
Hou, X. L., Povinec, P. P., Zhang, L. Y., et al. (2013). Iodine-129 in seawater offshore Fukushima: distribution, inorganic speciation, sources, and budget. Environ. Sci. Technol., 47, 3091–8.Google Scholar
Jacob, P., Goulko, G., Heidenreich, W. F., et al. (1998). Thyroid cancer risk to children calculated. Nature, 392, 31–2.Google Scholar
JST (2012). J-RAPID Strategic International Research Cooperative Program. Japan Science and Technology Agency. www.jst.go.jp/inter/english/sicp/country/j-rapid.html (accessed 19 September 2018).Google Scholar
Kakehi, S., Kaeriyama, H., Ambe, D., et al. (2016). Radioactive cesium dynamics derived from hydrographic observations in the Abukuma River Estuary, Japan. J. Environ. Radioact., 153, 19.Google Scholar
Katata, G., Ota, M., Terada, H., Chino, M. and Nagai, H. (2012). Atmospheric discharge and dispersion of radionuclides during the Fukushima Dai-ichi Nuclear Power Plant accident. Part I: source term estimation and local-scale atmospheric dispersion in early phase of the accident. J. Environ. Radioact., 109, 103–13.Google Scholar
Kato, H., Onda, Y. and Tesfaye, T. (2012a). Depth distribution of 137Cs, 134Cs, and 131I in soil profile after Fukushima Daiichi Nuclear Power Plant accident. J. Environ. Radioact., 111, 5964.Google Scholar
Kato, H., Onda, Y. and Gomi, T. (2012b). Interception of the Fukushima reactor accident-derived 137Cs, 134Cs and 131I by coniferous forest canopies. Geophys. Res. Lett., 39 (20), L20403, doi:10.1029/2012GL052928.Google Scholar
Kato, H., Onda, Y., Hisadome, K., Loffredo, N. and Kawamori, A. (2017). Temporal changes in radiocesium deposition in various forest stands following the Fukushima Dai-ichi Nuclear Power Plant accident. J. Environ. Radioact., 166, 449–57.Google Scholar
Kato, H., Onda, Y., Wakahara, T. and Kawamori, A. (2018). Spatial pattern of atmospherically deposited radiocesium on the forest floor in the early phase of the Fukushima Daiichi Nuclear Power Plant accident. Sci. Total Environ., 615, 187–96.Google Scholar
Kazakov, V. S., Demidchik, E. P. and Astakhova, L. N. (1992). Thyroid cancer after Chernobyl. Nature, 359, 21–2.Google Scholar
Kinoshita, N., Sueki, K., Sasa, K., et al. (2011). Assessment of individual radionuclide distributions from the Fukushima nuclear accident covering central-east Japan. Proc. Natl. Acad. Sci. USA, 108, 19526–9.Google Scholar
Kitamura, A., Yamaguchi, M., Kurikami, H., Yui, M. and Onishi, Y. (2014). Predicting sediment and cesium-137 discharge from catchments in eastern Fukushima. Anthropocene, 5, 2231.Google Scholar
Kobayashi, T., Nagai, H., Chino, M. and Kawamura, H. (2013). Source term estimation of atmospheric release due to the Fukushima Dai-ichi Nuclear Power Plant accident by atmospheric and oceanic dispersion simulations. J. Nucl. Sci. Technol., 50, 255–64.Google Scholar
Konoplev, A., Golosov, V., Laptev, G., et al. (2016). Behavior of accidentally released radiocesium in soil–water environment: looking at Fukushima from a Chernobyl perspective. J. Environ. Radioact., 151(3), 568–78.Google Scholar
Kurikami, H., Funaki, H., Malins, A., Kitamura, A. and Onishi, Y. (2016). Numerical study of sediment and 137Cs discharge out of reservoirs during various scale rainfall events. J. Environ. Radioact., 164, 7383.Google Scholar
Laceby, J. P., Chartin, C., Evrard, O., et al. (2016a). Rainfall erosivity in catchments contaminated with fallout from the Fukushima Daiichi nuclear power plant accident. Hydrol. Earth Syst. Sci., 20(6), 2467–82.Google Scholar
Laceby, J. P., Huon, S., Onda, Y., Vaury, V. and Evrard, O. (2016b). Do forests represent a long-term source of contaminated particulate matter in the Fukushima Prefecture? J. Environ. Manage., 183(3), 742–53.Google Scholar
Lasat, M. M., Fuhrmann, M., Ebbs, S. D., Cornish, J. E. and Kochian, L. V. (1998). Phytoremediation of a radiocesium-contaminated soil: evaluation of cesium-137 bioaccumulation in the shoots of three plant species. J. Environ. Qual., 27, 165–9.Google Scholar
Loffredo, N., Onda, Y., Kawamori, A. and Kato, H. (2014). Modeling of leachable 137Cs in throughfall and stemflow for Japanese forest canopies after Fukushima Daiichi Nuclear Power Plant accident. Sci. Total Environ, 493, 701–7.Google Scholar
Matsunaga, T., Koarashi, J., Atarashi, M. A., et al. (2013). Comparison of the vertical distributions of Fukushima nuclear accident radiocesium in soil before and after the first rainy season, with physicochemical and mineralogical interpretations. Sci. Total Environ., 447, 301–14.Google Scholar
Matsunaka, T., Sasa, K., Sueki, K., et al. (2015). Post-accident response of near-surface 129I levels and 129I/127I ratios in areas close to the Fukushima Dai-ichi Nuclear Power Plant. Japan. Nucl. Instrum. Methods Phys. Res. Sect. B, 361, 569–73.Google Scholar
Matsunaka, T., Sasa, K., Sueki, K., et al. (2016). Pre- and post-accident 129I and 137Cs levels, and 129I/137Cs ratios in soil near the Fukushima Dai-ichi Nuclear Power Plant. Japan. J. Environ. Radioact., 151, 209–17.Google Scholar
Matsuzaki, H., Muramatsu, Y., Kato, K., Yasumoto, M. and Nakano, C. (2007). Development of 129I-AMS system at MALT and measurements of 129I concentrations in several Japanese soils. Nucl. Instrum. Methods Phys. Res. B, 259(1), 721–6.Google Scholar
MEXT (Ministry of Education, Culture, Sports, Science and Technology) (2011a). Extension site of distribution map of radiation dose, etc. http://ramap.jmc.or.jp/map/eng (accessed 19 September 2018).Google Scholar
MEXT (2011b). 4th Airborne monitoring, http://bit.ly/2VrjJtA (accessed 19 September 2018).Google Scholar
Mikami, S., Maeyama, T., Hoshide, Y., et al. (2015). Spatial distributions of radionuclides deposited onto ground soil around the Fukushima Dai-ichi Nuclear Power Plant and their temporal change until December 2012. J. Environ. Radioact., 139, 320–43.Google Scholar
Mironov, V., Kudrjashova, V., Yioub, F. and Raisbeck, G. M. (2002). Use of 129I and 137Cs in soils for the estimation of 131I deposition in Belarus as a result of the Chernobyl accident. J. Environ. Radioact., 59, 293307.Google Scholar
Miyake, Y., Matsuzaki, H., Fujiwara, T., et al. (2012). Isotopic ratio of radioactive iodine (129I/131I) released from Fukushima Daiichi NPP accident. Geochem. J., 46, 327–33.Google Scholar
Miyake, Y., Matsuzaki, H., Sasa, K. and Takahashi, T. (2015). Measurement of long-lived radionuclides in surface soil around F1NPP accident site by accelerator mass spectrometry. Nucl. Instr. Meth. B, 361, 627–31.Google Scholar
Muramatsu, Y., Takada, Y., Matsuzaki, H. and Yoshida, S. (2008). AMS analysis of 129I in Japanese soil samples collected from background areas far from nuclear facilities. Quat. Geochro., 3, 291–7.Google Scholar
Muramatsu, Y., Matsuzaki, H., Toyama, C. and Ohno, T. (2015). Analysis of 129I in the soils of Fukushima Prefecture: preliminary reconstruction of 131I deposition related to the accident at Fukushima Daiichi Nuclear Power Plant (FDNPP). J. Environ. Radioact., 139, 5964.CrossRefGoogle Scholar
Nagao, S., Kanamori, M., Ochiai, S., et al. (2013). Export of 134Cs and 137Cs in the Fukushima river systems at heavy rains by Typhoon Roke in September 2011. Biogeosciences, 10(10), 6215–23.CrossRefGoogle Scholar
Naulier, M., Eyrolle-Boyer, F., Boyer, P., Metivier, J. M. and Onda, Y. (2017). Particulate organic matter in rivers of Fukushima: an unexpected carrier phase for radiocesiums. Sci. Total Environ., 579, 1560–71.Google Scholar
Nishihara, K., Iwamoto, H. and Suyama, K. (2012). Estimation of Fuel compositions in Fukushima-Daiichi Nuclear Power Plant. In JAEA-Data/Code 012-018. Ibaraki: Japan Atomic Energy Agency, pp. 1190.Google Scholar
Onda, Y., Kato, H., Hoshi, M., et al. (2015). Soil sampling and analytical strategies for mapping fallout in nuclear emergencies. J. Environ. Radioact., 139, 300–7.Google Scholar
Qin, H., Yokoyama, Y., Fan, Q., et al. (2012). Investigation of cesium adsorption on soil and sediment samples from Fukushima Prefecture by sequential extraction and EXAFS technique. Geochem. J., 46, 355–60.Google Scholar
Saito, K. and Onda, Y. (2015). Outline of the national mapping projects implemented after the Fukushima accident. J. Environ. Radioact., 139, 240–9.Google Scholar
Saito, K., Tanihata, I., Fujiwara, M., et al. (2015). Detailed deposition density maps constructed by large-scale soil sampling for gamma-ray emitting radioactive nuclides from the Fukushima Daiichi Nuclear Power Plant accident. J. Environ. Radioact., 139, 308–19.Google Scholar
Sakaguchi, A., Tanaka, K., Iwatani, H., et al. (2015). Size distribution studies of 137Cs in river water in the Abukuma Riverine system following the Fukushima Dai-ichi Nuclear Power Plant accident. J. Environ. Radioact., 139, 379–89.Google Scholar
Sato, M., Takata, D., Tanoi, K., Ohtsuki, T. and Muramatsu, Y. (2015). Radiocesium transfer into the fruit of deciduous fruit trees contaminated during dormancy. Soil Sci. Plant Nutr., 61(1), 156–64, doi:10.1080/00380768.2014.975103.Google Scholar
Shimamoto, Y. S., Itai, T. and Takahashi, Y. (2010). Soil column experiments for iodate and iodide using K-edge XANES and HPLC-ICP-MS. J. Geochem. Exploration, 107, 117–23.Google Scholar
Shimamoto, Y. S., Takahashi, Y. and Terada, Y. (2011). Formation of organic iodine supplied as iodide in a soil–water system in Chiba. Japan. Environ. Sci. Technol., 45, 2086–91.Google Scholar
Steinhauser, G. (2014). Fukushima’s forgotten radionuclides: a review of the understudied radioactive emissions. Environ. Sci. Technol., 48(9), 4649–63.Google Scholar
Steinhauser, G., Brandl, A. and Johnson, T. E. (2014). Comparison of the Chernobyl and Fukushima nuclear accidents: a review of the environmental impacts. Sci. Total Environ., 470 –471, 800–17.Google Scholar
Sugiura, Y., Shibata, M., Ogata, Y., et al. (2016). Evaluation of radiocesium concentrations in new leaves of wild plants two years after the Fukushima Dai-ichi Nuclear Power Plant accident. J. Environ. Radioact., 160, 824.Google Scholar
Syvitski, J. P. M., Kettner, A. J., Peckham, S. D. and Kao, S.-J. (2005). Predicting the flux of sediment to the coastal zone: application to the Lanyang Watershed, Northern Taiwan. J. Coast. Res., 213, 580–7.Google Scholar
Takahashi, J., Tamura, K., Suda, T., Matsumura, R. and Onda, Y. (2015). Vertical distribution and temporal changes of 137Cs in soil profiles under various land uses after Fukushima Dai-ichi Nuclear Power Plant Accident. J. Environ. Radioact., 139, 351–61.Google Scholar
Takata, Y., Kohyama, K., Obara, H., et al. (2014). Spatial prediction of radioactive Cs concentration in agricultural soil in eastern Japan. Soil Sci. Plant Nutr., 60, 393403.Google Scholar
Takenaka, C. and Kiyono, Y. (2012). Redistribution of radionuclides through pollen dispersion. Shinringijutu, 840,189–23 (in Japanese).Google Scholar
Tanaka, K., Takahashi, Y., Sakaguchi, A., et al. (2012). Vertical profiles of iodine-131 and cesium-137 in soils in Fukushima prefecture related to the Fukushima Daiichi Nuclear Power Station accident. Geochem. J., 46, 73–6.Google Scholar
Tanaka, K., Sakaguchi, A., Kanai, Y., , H., et al. (2013). Heterogeneous distribution of radiocesium in aerosols, soil and particulate matters emitted by the Fukushima Daiichi Nuclear Power Plant accident: retention of micro-scale heterogeneity during the migration of radiocesium from the air into ground and river systems. J. Radioanal. Nucl. Chem., 295, 1927–37.Google Scholar
Terada, H., Katata, G., Chino, M. and Nagai, H. (2012). Atmospheric discharge and dispersion of radionuclides during the Fukushima Dai-ichi Nuclear Power Plant accident. Part II: verification of the source term and analysis of regional-scale atmospheric dispersion. J. Environ. Radioact., 112, 141–54.Google Scholar
Ueda, S., Hasegawa, H., Kakiuchi, H., et al. (2013). Fluvial discharges of radiocaesium from watersheds contaminated by the Fukushima Dai-ichi Nuclear Power Plant accident, Japan. J. Environ. Radioact., 118, 96104.Google Scholar
Vandenhove, H., VanHees, M., DeBrouwer, S. and Vandecasteele, C. M. (1996). Transfer of radiocaesium from podzol to ryegrass as affected by AFCF concentration. Sci. Total Environ., 187, 237–45.Google Scholar
Wakahara, T., Onda, Y., Kato, H., Sakaguchi, A. and Yoshimura, K. (2014). Radiocesium discharge from paddy fields with different initial scrapings for decontamination after the Fukushima Dai-ichi Nuclear Power Plant accident. Environ. Sci. Process. Impact, 16 (11), 2580–91.Google Scholar
Wang, W., Hanai, Y., Takenaka, C., et al. (2016). Cesium adsorption and absorption through bark of Japanese cedar (Cryptomeria japonica). J. Forest Res., 21, 251–8.Google Scholar
Yamashiki, Y., Onda, Y., Smith, H., et al. (2014). Initial flux of sediment-associated radiocaesium to the ocean from the largest river impacted by Fukushima Daiichi Nuclear Power Plant. Sci. Rep., 4, 3714, doi:10.1038/srep03714.Google Scholar
Yoshida, S., Muramatsu, Y. and Ogawa, M. (1994). Radiocesium concentrations in mushrooms collected in Japan. J. Environ. Radioactiv., 22,141–54.Google Scholar
Yoshimura, K., Onda, Y. and Kato, H. (2015). Evaluation of radiocaesium wash-off by soil erosion from various land uses using USLE plots. J. Environ. Radioact., 139, 362–9.Google Scholar
Zhang, L. Y. and Hou, X. L. (2013). Speciation analysis of 129I and its applications in environmental research. Radiochim. Acta, 101, 525–40.Google Scholar
Zheng, J., Tagami, K., Bu, W., et al. (2014). 135Cs/137Cs isotopic ratio as a new tracer of radiocesium released from the Fukushima nuclear accident. Environ. Sci. Technol., 48(10), 5433–8.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×