[1] A., Akbary and K., Hambrook, A variant of the Bombieri–Vinogradov theorem with explicit constants and applications, Math. Comp. 84 (2015), 1901–1932.
[2] N. I., Akhiezer, The Classical Moment Problem and Some Related Questions in Analysis, Hafner, 1965.
[3] N. I., Akhiezer, Elements of the Theory of Elliptic Functions, American Mathematical Society, 1990.
[4] S., Alaca and K. S., Williams, Introductory Algebraic Number Theory, Cambridge University Press, 2004.
[5] L., Alfors, Complex Analysis, 2nd edn, McGraw-Hill, 1966.
[6] H., Alzer, On some inequalities for the gamma and psi functions, Math. Comp. 66 (1997), 273–389.
[7] H., Alzer, Sharp inequalities for the digamma and polygamma functions, Forum Math. 16 (2004), 181–221.
[8] F., Amoroso, On the heights of the product of cyclotomic polynomials, Rend. Sem. Mat. Univ. Politec. Torino
53 (1995), 183–191.
[9] F., Amoroso, Algebraic numbers close to 1 and variants ofMahler's measure, J. Number Theory
60 (1996), 80–96.
[10] J., Anderson, Hyperbolic Geometry, 2nd edn, Springer, 2005.
[11] J., Andrade, A., Chang and S. J., Miller, Newman's conjecture in various settings, J. Number Theory
144 (2014), 70–91.
[12] G. E., Andrews, R., Askey and R., Roy, Special Functions, Encyclopedia of Mathematics and its Applications, vol. 71, Cambridge University Press, 1999.,
[13] T. M., Apostol, Mathematical Analysis, 2nd edn, Addison-Wesley, 1974.
[14] T. M., Apostol, Modular Functions and Dirichlet Series in Number Theory, Springer, 1976.
[15] T. M., Apostol, Introduction to Analytic Number Theory, 2nd edn, Springer, 1990.
[16] J., Arias de Reyna, Asymptotics of Keiper–Li coefficients, Funct. Approx. Comment. Math. 45 (2011), 7–21.
[17] L., Báez-Duarte, M., Balazard, B., Landreau and E., Saias, Notes on the Riemann zeta function III, Adv. Math. 149 (2000), 130–144.
[18] L., Báez-Duarte, A strengthening of the Nyman–Beurling criterion for the Riemann hypothesis, Atti Accad. Naz. Lincei Cl. Sci Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 14 (2003), 5–11.
[19] L., Báez-Duarte, A sequential Riesz-like criterion for the Riemann hypothesis, Int. J. Math. Math. Sci. 21 (2005), 3527–3537.
[20] L., Báez-Duarte, Möbius convolutions and the Riemann hypothesis, Int. J. Math.Math. Sci. 22 (2005), 3599–3608.
[21] B., Bagchi, On Nyman, Beurling and Báez-Duarte's Hilbert space reformulation of the Riemann hypothesis, Proc. Indian Acad. Sci. Math. Sci. 116 (2006), 137–146.
[22] R., Balasubramanian, A note on Dirichlet's L-functions, Acta. Arith. 38 (1980), 273–283.
[23] R., Balasubramanian and V., Kumar Murty, Zeros of Dirichlet L-functions, Ann. Sci. Ecole Norm. Sup. 25 (1992), 567–615.
[24] B., Beckman, Arne Beurling and the Swedish Crypto Program During World War II, American Mathematical Society, 2003.
[25] J., Bertrand, P., Bertrand and J.-P., Ovarlez, The Mellin transform, in The Transforms and Applications Handbook, Ed. A. D. Poularikas, chapter 11, CRC Press, 1996.
[26] A., Beurling, A closure problem related to the Riemann zeta-function, Proc. Natl. Acad. Sci. USA
41 (1955), 312–314.
[27] M., Balazard and E., Saias, Notes on the Riemann zeta function I, Adv.Math. 139 (1998), 310–321.
[28] M., Balazard, E., Saias and M., Yor, Notes sur la fonction ζ de Riemann, 2, Adv. Math. 143
(1999)
284–287.
[29] E., Bombieri, On the large sieve, Mathematika
12 (1965), 201–225.
[30] E., Bombieri, Le Grand Crible dans la Théorie Analytique des Nombres, Astérisque, no. 18, Société Mathématiques de France, 1974.
[31] E., Bombieri, J.B., Friedlander and H., Iwaniec, Primes in arithmetic progressions to large moduli, Acta Math. 156 (1986), 203–251.
[32] E., Bombieri and J. C., Lagarias, Complements to Li's criterion for the Riemann hypothesis, J. Number Theory
77 (1999), 274–287.
[33] E., Bombieri, Remarks on Weil's quadratic functional in the theory of prime numbers I, Rend. Mat. Accad. Lincei
11 (2000), 183–233.
[34] E., Bombieri, The Riemann Hypothesis: Official Problem Description, Clay Mathematics Institute, 2000.
[35] E., Bombieri, A variational approach to the explicit formula, Comm. Pure Appl. Math. 56 (2003), 1151–1164.
[36] E., Bombieri, The classical theory of zeta and L-functions, Milan J. Math. 78 (2010), 11–59.
[37] P., Borwein, S., Choi, B., Rooney and A., Weirathmueller, The Riemann Hypothesis: A Resource for the Afficionado and Virtuoso Alike, CMS Books in Mathematics, Springer, 2008.
[38] K. A., Broughan, Holomorphic flow of the Riemann xi function, Nonlinearity
18 (2005), 1269–1294.
[39] K. A., Broughan, Equivalents of the Riemann Hypothesis I: Arithmetic Equivalents, Cambridge University Press, 2017.
[40] F. C. S., Brown, Li's criterion and the zero-free regions of L-functions, J. Number Theory
111 (2005), 1–32.
[41] A. M., Bruckner, J.B., Bruckner and B. S., Thomson, Real Analysis, 2nd edn, ClassicalRealAnalysis.com, 2008.
[42] N. G., de Bruijn, The roots of trigonometric integrals, Duke Math. J. 17 (1950), 197–226.
[43] J.-F., Burnol, A lower bound in an approximation problem involving the zeros of the Riemann zeta function, Adv. Math. 170 (2002), 56–70.
[44] D. A., Cardon and S. A., Roberts, An equivalence for the Riemann hypothesis in terms of orthogonal polynomials, J. Approx. Theory
138 (2006), 54–64.
[45] T., Carleman, Uber die Approximation analytischer Funktionen durch lineare Aggregate von vorgegebenen Potenzen, Arkiv Mat. Astron. Fys. 17 (1922), no. 9.
[46] T., Carleman, Fonctions Quasi Analytiques, Gauthier-Villars, 1926.
[47] J. W. S., Cassels, Lectures on Elliptic Curves, London Mathematical Society Student Texts, vol. 24, Cambridge University Press, 1991.
[48] A., Chang, D., Mehrle, S.J., Miller, T., Reiter, J., Stahl and D., Yott, Newman's conjecture in function fields, J. Number Theory
157 (2015), 154–169.
[49] J. R., Chen, On the representation of a larger even integer as the sum of a prime and the product of at most two primes, Sci. Sinica
16 (1973), 157–176.
[50] E. W., Cheney, Analysis for Applied Mathematics, Springer, 2001.
[51] T. S., Chihara, An Introduction to Orthogonal Polynomials, Gordon and Breach, 1978.
[52] J., Cislo and M., Wolf, Equivalence of Riesz and Báez-Duarte criterion for the Riemann hypothesis, Preprint, 2006.
[53] M. W., Coffey, Relations and positivity results for the derivatives of the Riemann ξ-function, J. Comput. Appl. Math. 166 (2004), 525–534.
[54] H., Cohen and H. W., Lenstra, Jr., Heuristics on class groups, in Number Theory (New York, 1982), Lecture Notes in Mathematics, vol. 1052, pp. 26–36. Springer, 1984.
[55] A., Connes, An essay on the Riemann hypothesis, Preprint, arXiv:1509.05576v1, 2015.
[56] J. B., Conrey and K., Soundararajan, Real zeros of quadratic Dirichlet L-functions, Invent. Math. 150 (2002), 1–44.
[57] J. B., Conrey, The Riemann hypothesis, Notices Amer. Math. Soc. 50 (2003), 341–353.
[58] J. B., Conrey and N. C., Snaith, Applications of the L-functions ratios conjecture, Proc. London Math. Soc. (3)
94 (2007), 497–522.
[59] J. B., Conrey, D.W., Farmer and M. R., Zirnbauer, Autocorrelation of ratios of L-functions, Commun. Number Theory Phys. 2 (2008), 593–636.
[60] G., Csordas, T.S., Norfolk and R. S., Varga, The Riemann hypothesis and the Turán inequalities, Trans. Amer. Math. Soc. 296 (1986), 521–541.
[61] G., Csordas, T.S., Norfolk and R. S., Varga, A lower bound for the de Bruijn–Newman constant Λ, Numer. Math. 52 (1988), 483–497.
[62] G., Csordas, A., Ruttan and R. S., Varga, The Laguerre inequalities with applications to a problem associated with the Riemann hypothesis, Numer. Algorithms
1 (1991), 305–329.
[63] G., Csordas, A., Odlyzko, W., Smith and R. S., Varga, A new Lehmer pair of zeros and a new lower bound for the de Bruijn–Newman constant Λ, Electron. Trans. Numer. Anal. 1 (1993), 104–111.
[64] G., Csordas, W., Smith and R. S., Varga, Lehmer pairs of zeros, the de Bruijn–Newman constant, and the Riemann hypothesis, Constr. Approx. 10 (1994), 107–129.
[65] G., Csordas, W., Smith and R. S., Varga, Lehmer pairs of zeros and the Riemann ξ-function, Proc. Symp. Appl. Math. 48 (1994), 553–556.
[66] B., Dacorogna, Direct Methods in the Calculus of Variations, Springer, 1989.
[67] H., Davenport, Multiplicative Number Theory, 3rd edn, Springer, 2000.
[68] B., Davies, Integral Transforms and Their Applications, 3rd edn, Springer, 2002.
[69] P., Deligne, La Conjecture de Weil I, Publ. Math. IHES
43 (1974), 273–308.
[70] P., Deligne, La Conjecture de Weil II, Publ. Math. IHES
52 (1980), 137–252.
[71] J.-M., Deshouillers, G., Effinger, H., te Riele and D., Zinoviev, A complete Vinogradov 3-primes theorem under the Riemann hypothesis, Electron. Res. Announc. Amer. Math. Soc. 3 (1997), 99–104.
[72] M., Deuring, Zetafunktionen quadratischer formen, J. reine angew. Math. 1972 (1935), 226–252.
[73] K., Dickman, On the frequency of numbers containing prime factors of a certain relative magnitude, Ark. Mat. Astron. Fys. 22 (1930), 1–14.
[74] J. A., Dieudonné, On the history of the Weil conjectures, Math. Intelligencer
10 (1975), 7–21.
[75] W. F., Donoghue, Jr., Distributions and Fourier Transforms, Academic Press, 1969.
[76] A. D., Droll, Variations of Li's criterion for an extension of the Selberg class, Thesis, Queen's University, Kingston, ON, 2012.
[77] H. M., Edwards, Riemann's Zeta Function, Academic Press, 1974; reprinted by Dover, 2001.
[78] P. D. T. A., Elliott and H., Halberstam, A conjecture in prime number theory, Symposia Mathematica, Vol. IV, INDAM, Rome, 1968/69, pp. 59–72, Academic Press, 1970.
[79] W., Ellison and F., Ellison, Prime Numbers, John Wiley, 1985.
[80] B., Epstein, Linear Functional Analysis, W. B. Saunders, 1970.
[81] A., Erdélyi, W., Magnus, F., Oberhettinger and F. G., Tricomi, Tables of Integral Transforms, vol. I, Bateman Manuscript Project, McGraw-Hill, 1954.
[82] S., Estala-Arias, Distribution of cusp sections in the Hilbert modular orbifold, J. Number Theory
155 (2015), 202–225.
[83] K. J., Falconer, The Geometry of Fractal Sets, Cambridge University Press, 1985.
[84] D., Fiorilli, On the non-vanishing of Dirichlet L-functions at the central point, Quart. J. Math. 66 (2015), 517–528.
[85] J., Franel, Les suites de Farey et le probléme des nombres premiers, Göttinger Nachrichten (1924), 198–201.
[86] P., Freitas, A Li-type criterion for zero-free half planes of Riemann's zeta function, J. London Math. Soc. (2)
73 (2006), 399–414.
[87] J., Friedlander and A., Granville, Limitations to the equi-distribution of primes I, Ann. Math. 129 (1989), 363–382.
[88] J. B., Friedlander and H., Iwaniec, What is the parity phenomenon?, Notices Amer.Math. Soc. 56 (2009), 817–818.
[89] J. B., Friedlander and H., Iwaniec, Opera de Cribro, American Mathematical Society, 2010.
[90] W., Fulton, Algebraic Curves: An Introduction to Algebraic Geometry,W. A. Benjamin, 1969.
[91] S. D., Galbraith, The Mathematics of Public Key Cryptography, Cambridge University Press, 2012.
[92] P. X., Gallagher, The large sieve, Mathematika
14 (1967), 14–20.
[93] P. X., Gallagher, Bombieri's mean value theorem, Mathematika
15 (1968), 1–6.
[94] R., Garunkstis, On a positivity property of the Riemann ξ-function, Lithuanian Math. J. 43 (2002), 140–145.
[95] C. F., Gauss, Disquisitiones Arithmeticae, 1801; English transl., Yale University Press, 1966.
[96] I. M., Gelfand and S. V., Fomin, Calculus of Variations, Prentice-Hall, 1965.
[97] D., Goldfeld, An asymptotic formula relating the Siegel zero and the class number of quadratic fields, Ann. Scu. Norm. Sup. Pisa (4)
2 (1975), 611–615.
[98] D., Goldfeld, The class number of quadratic fields and the conjectures of Birch and Swinnerton-Dyer, Ann. Scu. Norm. Sup. Pisa (4)
3 (1976), 623–663.
[99] D., Goldfeld, Gauss’ class number problem for imaginary quadratic fields, Bull. Amer. Math. Soc. 13 (1985), 23–37. References 477
[100] D., Goldfeld, Automorphic Forms and L-Functions for the Group GL(n,R), Cambridge University Press, 2006.
[101] D. A., Goldston, J., Pintz and C. Y., Yildirim, Primes in tuples I, Ann. Math. (2)
170 (2009), 819–862.
[102] T., Gowers (Ed.), The Princeton Companion to Mathematics, Princeton University Press, 2008.
[103] I. S., Gradshteyn and I. M., Ryzhik, Tables of Integrals, Series and Products, 6th edn, Academic Press, 2000.
[104] A., Granville, Least Primes in Arithmetic Progressions, Théorie des Nombres, Quebec, 1987, pp. 306–321, Walter de Gruyter, 1989.
[105] A., Granville and H. M., Stark, ABC implies no “Siegel zeros” for L-functions of characters with negative discriminant, Invent. Math. 139 (2000), 509–523.
[106] A., Granville, Smooth numbers: computational number theory and beyond, Algorithmic Number Theory
42 (2008), 267–323.
[107] A., Granville, Primes in intervals of bounded length, Bull. Amer. Math. Soc. 52 (2015), 171–222.
[108] R., Gupta and M., Ram Murty, A remark on Artin's conjecture, Invent. Math. 78 (1984), 127–130.
[109] L., Habsieger, On the Nyman–Beurling criterion for the Riemann hypothesis, Funct. Approx. Comment. Math. 37 (2007), 187–201.
[110] G. H., Hardy and J. E., Littlewood, Contributions to the theory of the Riemann zetafunction and the theory of the distribution of primes, Acta Math. 41 (1918), 119–196.
[111] G. H., Hardy, Remarks in addition to Dr. Widder's note on inequalities, J. London Math. Soc. 4 (1929), 199–202.
[112] G. H., Hardy, A Mathematician's Apology, Cambridge University Press, 1940.
[113] G. H., Hardy, J.E., Littlewood and G., Pólya, Inequalities, Cambridge University Press, 1964.
[114] M., Harris, Mathematics Without Apologies, Princeton University Press, 2015.
[115] D. R., Heath-Brown, Simple zeros of the Riemann zeta function on the critical line, Bull. London Math. Soc
11 (1979), 17–18.
[116] D. R., Heath-Brown, Zero-free regions for Dirichlet L-functions, and the least prime in an arithmetic progression, Proc. London Math. Soc
64 (1992), 265–338.
[117] H., Heilbronn, On the class number of imaginary quadratic fields, Quart. J. Math. 5 (1934), 150–160.
[118] H. A., Helfgott, Minor arcs for Goldbach's problem, Preprint, arXiv:1205.5252, 2012.
[119] H. A., Helfgott, Major arcs for Goldbach's problem, Preprint, arXiv:1305.2897, 2013.
[120] H. A., Helfgott, The ternary Goldbach conjecture (transl. by M. Bilu, rev. by author), Gaz. Math. 140 (2014), 5–18.
[121] A., Hildebrand, Integers free of large prime factors and the Riemann hypothesis, Mathematika
31 (1984), 258–271.
[122] A., Hildebrand and G., Tenenbaum, Integers without large prime factors, J. Théor. Nombres Bordeaux
5 (1993), 411–484.
[123] J., Hoffstein, J., Pipher and J. H., Silverman, An Introduction to Mathematical Cryptography, Springer, 2008.
[124] C., Hooley, On Artin's conjecture, J. reine angew. Math. 225 (1967), 209–220.
[125] L., Hörmander, Linear Partial Differential Operators, Academic Press, 1964.
[126] L., Hörmander, The Analysis of Linear Partial Differential Operators, Springer, 1983.
[127] J., Horváth, Topological Vector Spaces and Distributions, Addison-Wesley, 1966.
[128] K., Ireland and M., Rosen, A Classical Introduction toModern Number Theory, Springer, 1993.
[129] A., Ivić, Riemann Zeta Function: Theory and Applications, Dover, 2003.
[130] H., Iwaniec, Spectral Methods of Automorphic Forms, 2nd edn, American Mathematical Society, 2002.
[131] H., Iwaniec and E., Kowalski, Analytic Number Theory, AmericanMathematical Society, 2004.
[132] H., Iwaniec, Conversations on the exceptional character, in Analytic Number Theory, Lecture Notes in Mathematics, vol. 1891, pp. 97–132, Springer, 2006.
[133] H., Iwaniec, Prime numbers and L-functions, in Proceedings of the International Congress of Mathematicians, Madrid, 2006, vol. 1, pp. 280–306, European Mathematical Society, 2007.
[134] N., Jacobson, Basic Algebra I, 2nd edn, Dover, 2009.
[135] G. J. O., Jameson, Topology and Normed Spaces, Chapman and Hall, 1974.
[136] J., Jost and X., Li-Jost, Calculus of Variations, Cambridge University Press, 1998.
[137] M., Jutila, On character sums and class numbers, J. Number Theory
5 (1973), 203–214.
[138] A. A., Karatsuba and S. M., Voronin, Riemann Zeta Function (transl. from Russian by N. Koblitz), Walter de Gruyter, 1994.
[139] N., Katz, L-functions and monodromy: four lectures on Weil II, Adv. Math. 160 (2001), 81–132.
[140] H., Ki and Y.-O., Kim, On the de Bruijn–Newman constant, Adv. Math. 222 (2009), 281–306.
[141] N., Koblitz, Introduction to Elliptic Curves and Modular Forms, 2nd edn, Springer, 1993.
[142] J.-M., De Koninck and F., Luca, Analytic Number Theory: Exploring the Anatomy of Integers, American Mathematical Society, 2012.
[143] E., Kowalski, A survey of algebraic exponential sums and some applications, in Motivic Integration and its Interactions with Model Theory and Non-Archimedean Geometry, vol. II, London Mathematical Society Lecture Note Series 384, pp. 178–201, Cambridge University Press, 2011.
[144] T., Kubota, Elementary Theory of Eisenstein Series, Halsted, 1973.
[145] J. C., Lagarias, On a positivity property of the Riemann ξ-function, Acta Arith. 99 (1999) 217–213.
[146] J. C., Lagarias, The Riemann hypothesis: arithmetic and geometry, in Surveys in Noncommutative Geometry, Clay Mathematics Proceedings, vol. 6, pp. 127–141, American Mathematical Society and Clay Mathematics Institute, 2006.
[147] J. C., Lagarias and K., Soundararajan, Smooth solutions to the abc equation: the xyz conjecture, J. Théor. Nombres Bordeaux
23 (2011) 209–234.
[148] J. C., Lagarias and K., Soundararajan, Counting smooth solutions to the equation A+B = C, Proc. London Math. Soc. (3)
104 (2012), 770–798.
[149] E., Landau, Handbuch der lehre von der Verteilung der Primzahlen, 2nd edn, vols 1 and 2, Chelsea, 1953.
[150] E., Landau, Bemerkungen zu der vorstehenden Abhandlung von Herrn Franel, Göttinger Nachrichten (1924), 202–206.
[151] B., Landreau and F., Richard, The Beurling–Nyman criterion for the Riemann hypothesis: numerical aspects, Exp. Math. 11 (2002), 349–360.
[152] S., Lang, Analysis I, Addison-Wesley, 1968.
[153] N., Levinson, On closure problems and zeros of the Riemann zeta function, Proc. Amer. Math. Soc. 7 (1956), 838–845.
[154] X.-J., Li, The positivity of a sequence of numbers and the Riemann hypothesis, J. Number Theory
65 (1997), 325–333.
[155] U. V., Linnik, The large sieve, C. R. (Dokl.) Acad. Sci. URSS, N.S. 30 (1941), 292–294.
[156] U. V., Linnik, A remark on the least quadratic non-residue, C. R. (Dokl.) Acad. Sci. URSS, N.S. 36 (1942), 119–120.
[157] U. V., Linnik, On the least prime in an arithmetic progression. I. The basic theorem; II. The Deuring–Heilbronn phenomenon, Mat. Sbornik
15 (1947), 139–178. 347–368.
[158] E. R., Lorch, Spectral Theory, Oxford University Press, 1962.
[159] M., Low, Real zeros of the Dedekind zeta function of an imaginary quadratic field, Acta Arith. 14 (1868), 117–140.
[160] D. A., Marcus, Number Fields, Springer, 1977.
[161] D. W., Masser, On abc and discriminants, Proc. Amer. Math. Soc. 130 (2002) 3141–3150.
[162] Mathematics Genealogy Project, http://genealogy.math.ndsu.nodak.edu/index.php.
[163] Y., Matiyasevich, F., Saidak and P., Zvengrowski, Horizontal monotonicity of the modulus of the zeta function, L-functions, and related functions, Acta Arith. 166 (2014), 189–200.
[164] J., Maynard, Small gaps between primes, Ann. Math. (2)
181 (2015), 383–413.
[165] K., Mazhouda and S., Omar, The Cardon and Roberts’ criterion for the Riemann hypothesis, Analysis (Berlin)
33 (2013), 309–318.
[166] K., Mazhouda, Reformulation of the Li criterion for the Selberg class, Preprint, arXiv:1405.7354v3, 2015.
[167] B., Mazur and W. A., Stein, The Riemann Hypothesis, Cambridge University Press, 2016.
[168] H., Mellin, U berden Zusammenhang zwischen den linearen Differential- und Differenzengleichungen, Acta Math. 25 (1902), 139–164.
[169] F., Mertens, Uber einize asymptotische Gesetse der Zahlentheorie, J. reine angew. Math. 77 (1874), 46–62.
[170] S. J., Miller, A symplectic test of the L-functions ratios conjecture, Int. Math. Res. Notices
2008 (2008), art. 146 (36pp.).
[171] J., Milne, Elliptic Curves, BookSurge, 2006.
[172] H. L., Montgomery and R. C., Vaughan, Multiplicative Number Theory I: Classical Theory, Cambridge University Press, 2007.
[173] P., Moree, Artin's primitive root conjecture, a survey, Integers
10 (2012), 1305–1416.
[174] P., Moree, Nicolaas Govert de Bruijn, the enchanter of friable integers, Indag. Math. (N.S.)
24 (2013), 224–801.
[175] G. L., Mullen and C., Mummert, Finite Fields and Applications I, Student Mathematical Library, American Mathematical Society, 2007.
[176] M. R., Murty and V. K., Murty, A variant of the Bombieri–Vinogradov theorem, in Number Theory, Montreal, 1985, Canadian Mathematical Society Conference Proceedings, vol. 7, pp. 243–272, American Mathematical Society, 1987.
[177] M. R., Murty and V. K., Murty, Non-Vanishing of L-Functions and Applications, Birkhauser, 1997.
[178] M. R., Murty and K. L., Petersen, A Bombieri–Vinogradov theorem for all number fields, Trans. Amer. Math. Soc. 365 (2013), 4987–5032.
[179] D., Naccache and I. E., Shparlinski, Divisibility, smoothness and cryptographic applications, in Algebraic Aspects of Digital Communications, NATO Science for Peace and Security Series – D: Information and Communication Security, vol. 24, pp. 115–173, IOS Press, 2009.
[180] W., Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers, Springer, 1989.
[181] M. B., Nathanson, Elementary Methods in Number Theory, Springer, 2000.
[182] C. M., Newman, Fourier transforms with only real zeros, Proc. Amer. Math. Soc. 61 (1976), 245–251.
[183] T. S., Norfolk, A., Ruttan and R. S., Varga, A lower bound for the de Bruijn–Newman constant Λ II, in Progress in Approximation Theory, eds A. A. Gonchar and E. B. Saff, pp. 403–418, Springer, 1992.
[184] K. K., Norton, Numbers with Small Prime Factors, and the Least kth Power Non-Residue, Memoirs of the American Mathematical Society, No. 106, American Mathematical Society, 1971.
[185] B., Nyman, On the one dimensional translation group and semi-group in certain function spaces, Thesis, University of Uppsala, 1950.
[186] F., Oberhettinger, Tables of Mellin Transforms, Springer, 1974.
[187] A., Odlyzko, An improved lower bound for the de Bruijn–Newman constant, Numer. Algorithms
25 (2000), 293–303.
[188] F. W. J., Olver, D.W., Lozier, R.F., Boisvert and C. W., Clark (eds), NIST Handbook of Mathematical Functions, U.S. Department of Commerce, National Institute of Standards and Technology, Cambridge University Press, 2010.
[189] J., Oesterlé, Nouvelles Approches du “Théor`eme” de Fermat, Sém. Bourbake, Exp. No. 694, Astérisque, no. 161–162, pp. 165–186, Société Mathématiques de France, 1988.
[190] S., Omar and K., Mazhouda, Le crit`ere de Li et l'hypoth`ese de Riemann pour la classe de Selberg, J. Number Theory
125 (2007), 50–58.
[191] S., Omar and K., Mazhouda, The Li criterion and the Riemann hypothesis for the Selberg class II, J. Number Theory
130 (2010), 1098–1108.
[192] K., Ono and K., Soundararajan, Ramanujan's ternary quadratic form, Invent. Math. 130 (1997), 415–454.
[193] M. L., Patrick, Extensions of inequalities of the Laguerre and Turán type, Pacific J. Math. 44 (1973), 675–682.
[194] S. J., Patterson, An Introduction to the Theory of the Riemann Zeta-Function, Cambridge Studies in Advanced Mathematics, vol. 14, Cambridge University Press, 1988.
[195] A., Perelli, J., Pintz and S., Salerno, Bombieri's theorem in short intervals, Ann. Scu. Norm. Sup. Pisa Cl. Sci. (4)
11 (1984), 529–539.
[196] A., Perelli, J., Pintz and S., Salerno, Bombieri's theorem in short intervals. II, Invent. Math. 79 (1985), 1–9.
[197] G., Pólya, George Pólya: Collected Papers, Vol. II, ed. R. P. Boas, MIT Press, 1974.
[198] G., Purdy, The real zeros of the Epstein zeta function, Ph.D. Thesis, University of Illinois, 1972.
[199] L. D., Pustyl'nikov, On a property of the classical zeta-function associated with the Riemann hypothesis, Russian Math. Surveys
55 (1999), 262–263.
[200] O., Ramaré, On Snirel'man's constant, Ann. Scu. Norm. Sup. Pisa Cl. Sci. 22 (1995), 645–706.
[201] A., Rényi, On the representation of an even number as the sum of a prime and of an almost prime, Amer. Math. Soc. Transl. (2)
19 (1962), 299–321.
[202] P., Ribenboim, My Numbers, My Friends, Springer, 2000.
[203] B., Riemann, Gesammelte Werke, Teubner, 1893; reprinted by Dover, 1953.
[204] M., Riesz, Sur l'hypoth`ese de Riemann, Acta Math. 40 (1916), 185–190.
[205] G., Robin, Grandes valeurs de la fonction sommes des diviseurs et hypoth`ese de Riemann, J. Math. Pures Appl. 63 (1984), 187–213.
[206] G., Robin, Sur la différence Li(θ(x)) − π(x), Ann. Fac. Sci. Toulouse Math. 6 (1984), 257–268.
[207] H. L., Royden, Real Analysis, 2nd edn, Macmillan, 1968.
[208] W., Rudin, Real and Complex Analysis, 2nd edn, McGraw-Hill, 1974.
[209] W., Rudin, Functional Analysis, 2nd edn, McGraw-Hill, 1991.
[210] K., Sabbagh, The Riemann Hypothesis, Farrar, Straus and Giroux, 2003.
[211] R., Salem, Sur une proposition équivalente `a l'hypoth`ese de Riemann. C. R. Acad. Sci. Paris
236 (1953), 127–128.
[212] Y., Saouter, X., Gourdon and P., Demichel, An improved lower bound for the de Bruijn– Newman constant, Math. Comp. 80 (2011), 2259–2279.
[213] P., Sarnak, Asymptotic behavior of periodic orbits of the horocycle flow and Eisenstein series, Comm. Pure Appl. Math. 34 (1981), 719–739.
[214] P., Sarnak, Problems of the Millennium: the Riemann Hypothesis (2004), Annual Report of the Clay Mathematics Institute, 2004.
[215] M., du Sautoy, The Music of the Primes, HarperCollins, 2003.
[216] M., Schechter, An Introduction to Nonlinear Analysis, Cambridge University Press, 2004.
[217] L., Schwartz, Théorie des Distributions, vols 1 and 2, Hermann, 1951.
[218] S. K., Sekatskii, S., Beltraminelli and D., Merlini, On equalities involving integrals of the logarithm of the Riemann-function and equivalent to the Riemann hypothesis, Ukrain. Math. J. 64 (2012), 247–261.
[219] S. K., Sekatskii, Generalized Bombieri–Lagarias’ theorem and generalized Li's criterion with its arithmetic interpretation, Ukrain. Mat. Zh. 66 (2014), 371–383.
[220] J. A., Shohat and J. D., Tamarkin, The Problem of Moments, Mathematical Surveys, no. 1, American Mathematical Society, 1943.
[221] C. L., Siegel, On the zeros of the Dirichlet L-functions, Ann. Math. 46 (1945), 409–422.
[222] J. H., Silverman and J., Tate, Rational points on elliptic curves, Undergraduate Texts, Springer, 1968.
[223] J. H., Silverman, The Arithmetic of Elliptic Curves, 1st edn, Graduate Texts in Mathematics, vol. 106, Springer, 1986; 2nd edn, 2009.
[224] H., Skovgaard, On inequalities of the Turán type, Math. Scand. 2 (1954), 65–73.
[225] L., Smajlović, On Li's criterion for the Riemann hypothesis for the Selberg class, J. Number Theory
130 (2010), 828–851.
[226] J., Sondow and C., Dumitrescu, A monotonicity property of Riemann's xi function and a reformulation of the Riemann hypothesis, Period. Math. Hungar. 60 (2010), 37–40.
[227] K., Soundararajan, Nonvanishing of quadratic Dirichlet L-functions at s= 12, Ann. Math. (2)
152 (2000), 447–488.
[228] S., Stahl, The Poincaré Half-Plane: A Gateway to Modern Geometry, Jones and Bartlett, 1993.
[229] A., Steiger, Course Notes, 2006.
[230] T., Tao, Every odd number greater than 1 is the sum of at most five primes,Math. Comp. 83 (2012), 997–1038.
[231] T., Tao, Web based lecture notes on the Bombieri–Vinogradov theorem, 2016.
[232] G., Tenenbaum, Introduction to Analytic and Probabilistic Number Theory, Cambridge University Press, 1995.
[233] J., Thorner, A variant of the Bombieri–Vinogradov theorem in short intervals and some questions of Serre, Math. Proc. Cambridge Philos. Soc. 161 (2016), 53–63.
[234] E. C., Titchmarsh, A divisor problem, Rend. Circ. Mat. Palermo
54 (1930), 414–429.
[235] E. C., Titchmarsh, The Theory of Functions, 2nd edn, Oxford University Press, 1939.
[236] E. C., Titchmarsh and D. R., Heath-Brown, The Theory of the Riemann Zeta-Function, 2nd edn, Oxford University Press, 1986.
[237] F., Tréves, Topological Vector Spaces, Distributions and Kernels, Academic Press, 1967.
[238] O. N., Vasilenko, Number-Theoretic Algorithms in Cryptography, American Mathematical Society, 2007.
[239] R. C., Vaughan, Mean value theorems in prime number theory, J. London Math. Soc. (2)
10 (1975), 153–162.
[240] R. C., Vaughan, An elementary method in prime number theory, Acta Arith. 37 (1980), 111–115.
[241] J.-L., Verger-Gaugry, Uniform distribution of Galois conjugates and beta-conjugates of a Parry number near the unit circle and the dichotomy of Perron numbers, Unif. Distrib. Theory
3 (2008), 157–190.
[242] A., Verjovsky, Arithmetic geometry and dynamics in the unit tangent bundle of the modular orbifold, in Dynamical Systems (Santiago, 1990), Pitman Research Notes in Mathematics Series, 285, pp. 263–298, Longman, 1993.
[243] A., Verjovsky, Discrete measures and the Riemann hypothesis, Kodai Math. J. 17 (1994), 596–608.
[244] A. I., Vinogradov, On the density hypothesis for Dirichlet L-series, Izv. Akad. Nauk SSSR, Ser. Mat. 29 (1965), 903–934.
[245] A. I., Vinogradov, Corrections to the work of A. I. Vinogradov “On the density hypothesis for Dirichlet L-series”, Izv. Akad. Nauk SSSR, Ser. Mat. 30 (1965), 719–729.
[246] V. V., Volchkov, On an equality equivalent to the Riemann hypothesis, Ukrain. Math. J. 47 (1995), 422–423.
[247] A., Voros, Sharpenings of Li's criterion for the Riemann hypothesis, Math. Phys. Anal. Geom. 9 (2006), 53–63.
[248] F. T., Wang, A note on the Riemann zeta-function, Bull. Amer. Math. Soc. 52 (1946), 319–321.
[249] M., Watkins, Real zeros of real odd Dirichlet L-functions, Math. Comp. 73 (2003), 415–423.
[250] M., Watkins, Class numbers of imaginary quadratic fields, Math. Comp. 73 (2004), 907–938.
[251] A., Weil, Sur les “formules explicites” de la théorie des nombres premiers, Meddel. Fran Lunds Univ. Mat. Sem. (1952), 252–265; see also Oeuvres Scientifiques – Collected Papers, Vol. II, corrected 2nd printing, pp. 48–61, Springer, 1980.
[252] A., Weil, Sur les formules explicites de la théorie des nombres premiers, Izv. Akad. Nauk SSSR Ser. Mat. 36 (1972), 3–18.
[253] A., Weil, Number Theory: An Approach Through History. From Hammurapi to Legendre, Birkhauser, 1984.
[254] E. T., Whittaker and G. N., Watson, A Course of Modern Analysis, Cambridge University Press, 1962.
[255] D. V., Widder, The Laplace Transform, Princeton University Press, 1946.
[256] N., Wiener, Tauberian theorems, Ann Math. 33 (1932), 1–100.
[257] H. S., Wilf, On the zeros of Riesz’ function in the analytic theory of numbers, Illinois J. Math. 8 (1964), 639–641.
[258] M., Wolf, Evidence in favour of the Báez-Duarte criterion for the Riemann hypothesis, Comp. Meth. Sci. Technol. 14 (2008), 47–54.
[259] M., Wolf, Some remarks on the Báez-Duarte criterion for the Riemann hypothesis, Comp. Meth. Sci. Technol. 20 (2014), 39–47.
[260] S., Yakubovich, Integral and series transformations via Ramanujan's identities and Slaem's type equivalences to the Riemann hypothesis, Integral Transforms Spec. Funct. 25 (2014), 255–271.
[261] H., Yoshida, On Hermitian forms attached to zeta functions, in Zeta Functions in Geometry (Tokyo, 1990), Advanced Studies in Pure Mathematics, vol. 21, pp. 281–325, Kinokuniya, 1992.
[262] K., Yosida, Functional Analysis, 4th edn, Springer, 1974.
[263] D., Zagier, Eisenstein series and the Riemann zeta-function, in Automorphic Forms, Representation Theory and Arithmetic (Bombay, 1979), Tata Institute Studies in Mathematics, vol. 10, pp. 275–301, Springer, 1981.
[264] Y., Zhang, Bounded gaps between primes, Ann. Math. (2)
1979 (2014), 1121–1174.