Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-13T11:08:26.401Z Has data issue: false hasContentIssue false

10 - Mechanisms Underlying Absolute and Relative Reward Value in Vertebrates

from Part I - Evolution of Learning Processes

Published online by Cambridge University Press:  26 May 2022

Mark A. Krause
Affiliation:
Southern Oregon University
Karen L. Hollis
Affiliation:
Mount Holyoke College, Massachusetts
Mauricio R. Papini
Affiliation:
Texas Christian University
Get access

Summary

In his Nichomachean ethics, Aristotle suggested that absolute judgments precede relative judgments. This chapter places this notion in an evolutionary context by centering on comparative research on successive negative contrast (SNC). SNC occurs when a downshift from a more preferred to a less preferred reward deteriorates behavior. SNC is observed in experiments with mammals, but not in experiments with goldfish (bony fish), toads (amphibian), or turtles (reptile). Pigeons and starlings (birds) have produced a mixed set of results. Since E. L. Thorndike, an understanding of animal learning has been influenced by the notion that rewards strengthen behavior and nonrewards weaken behavior — the strengthening/weakening principle.Outcomes fitting this principle provide evidence of control by absolute reward value, whereas results that violate this principle, like SNC, suggest control by relative reward value. Comparative research suggests that absolute reward effects are more general than relative reward effects.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Annicchiarico, I., Glueck, A. C., Cuenya, L., Kawasaki, K., Conrad, S. E., & Papini, M. R. (2016). Complex effects of reward upshift on consummatory behavior. Behavioural Processes, 129, 5467 (https://doi.org/10.1016/j.beproc.2016.06.006).CrossRefGoogle ScholarPubMed
Aristotle (2003). Nichomachean ethics. Translated by H. Rackham. Cambridge, MA: Harvard University Press.Google Scholar
Azrin, N. H. (1959). A technique for delivering shock to pigeons. Journal of the Experimental Analysis of Behavior, 2, 161163 (https://doi.org/10.1901/jeab.1959.2-161).Google Scholar
Binkley, K. A., Webber, E. S., Powers, D. D., & Cromwell, H. C. (2014). Emotion and relative reward processing: An investigation on instrumental successive negative contrast and ultrasonic vocalizations in the rat. Behavioural Processes, 107, 167174 (https://doi.org/10.1016/j.beproc.2014.07.011).Google Scholar
Bitterman, M. E. (1975). The comparative analysis of learning. Science, 188, 699709 (https://doi.org/10.1126/science.188.4189.699).Google Scholar
Conrad, S. E., & Papini, M. R. (2018). Reward shifts in forced-choice and free-choice autoshaping with rats. Journal of Experimental Psychology: Animal Learning and Cognition, 44, 422440 (https://doi.org/10.1037/xan0000187).Google ScholarPubMed
Couvillon, P. A., & Bitterman, M. E. (1985). Effect of experience with a preferred food on consummatory responding for a less preferred food in goldfish. Animal Learning & Behavior, 13, 433438 (https://doi.org/10.3758/BF03208020).CrossRefGoogle Scholar
Cuenya, L., Bura, S., Serafini, M., & López, M. (2018). Consummatory successive negative contrast in rats: Assessment through orofacial taste reactivity responses. Learning & otivation, 63, 98104 (https://doi.org/10.1016/j.lmot.2018.04.001).CrossRefGoogle Scholar
Daly, H. B. (1974). Reinforcing properties of escape from frustration. In Bower, G. H. (Ed.), Psychology of learning and motivation (pp. 187232). New York: Academic Press.Google Scholar
Dantzer, R., Arnone, M., & Mormede, P. (1980). Effects of frustration on behaviour and plasma corticosteroid levels in pigs. Physiology & Behavior, 24, 14 (https://doi.org/10.1016/0031-9384(80)90005-0).Google Scholar
Dudley, R. T., & Papini, M. R. (1995). Pavlovian performance of rats following unexpected reward omissions. Learning & Motivation, 26, 6382 (https://doi.org/10.1016/0023-9690(95)90011-X).Google Scholar
Elliott, M. H. (1928). The effect of change of reward on the maze performance of rats. University of California Publications in Psychology, 4, 1930.Google Scholar
Flaherty, C. F. (1996). Incentive relativity. Cambridge: Cambridge University Press.Google Scholar
Freidín, E., Cuello, M. I., & Kacelnik, A. (2009). Successive negative contrast in a bird: Starlings’ behavior after unpredictable negative changes in food quality. Animal Behaviour, 77, 857865 (https://doi.org/10.1016/j.anbehav.2008.12.010).Google Scholar
Freidín, E., & Mustaca, A. E. (2004). Frustration and sexual behavior in male rats. Learning & Behavior, 32, 311320 (https://doi.org/10.3758/bf03196030).CrossRefGoogle ScholarPubMed
Guarino, S., Conrad, S. E., & Papini, M. R. (2020a). Control of free-choice consummatory behavior by absolute reward value. Learning & Motivation, 72, 101682 (https://doi.org/10.1016/j.lmot.2020.101682).Google Scholar
Guarino, S., Conrad, S. E., & Papini, M. R. (2020b). Frustrative nonreward: Chemogenetic inactivation of the central amygdala abolishes the effect of reward downshift without affecting alcohol intake. Neurobiology of Learning & Memory, 169, 107173 (https://doi.org/10.1016/j.nlm.2020.107173).CrossRefGoogle ScholarPubMed
Hoke, K. L., Adkins-Regan, E., Bass, A. H., McCune, A. R., & Wolfner, M. F. (2019). Co-opting evo-devo concepts for new insights into mechanisms of behavioural diversity. Journal of Experimental Biology, 222, jeb190058 (https://doi.org/10.1242/jeb.190058).Google Scholar
Jiménez-García, A. M., Ruíz-Leyva, L., Cendán, C. M., Torres, C., Papini, M. R., & Morón, I. (2016). Hypoalgesia induced by reward devaluation in rats. PLOS ONE, 11, e0164331 (https://doi.org/10.1371/journal.pone.0164331).CrossRefGoogle ScholarPubMed
Justel, N., Pautassi, R., & Mustaca, A. E. (2014). Proactive interference of open field on consummatory successive negative contrast. Learning & Behavior, 42, 5868 (https://doi.org/10.3758/s13420-013-0124-8).CrossRefGoogle ScholarPubMed
Kamin, L. J. (1969). Predictability, surprise, attention and conditioning. In Campbell, B. A. & Church, R. M. (Eds.), Punishment and aversive behavior (pp. 279296). New York: Appleton-Century-Crofts.Google Scholar
Korn, C. W., Vunder, J., Miró, J., Fuentemilla, L., Hurlemann, R., & Bach, D. R. (2017). Amygdala lesions reduce anxiety-like behavior in a human benzodiazepine-sensitive approach-avoidance conflict test. Biological Psychiatry, 82, 522531. (https://doi.org/10.1016/j.biopsych.2017.01.018).Google Scholar
Lowes, G., & Bitterman, M. E. (1967). Reward and learning in the goldfish. Science, 157, 455457 (https://doi.org/10.1126/science.157.3787.455).Google Scholar
Lucas, G. A., Gawley, D. J., & Timberlake, W. (1988). Anticipatory contrast as a measure of time horizons in the rat: Some methodological determinants. Animal Learning & Behavior, 16, 377382 (https://doi.org/10.3758/BF03209375).CrossRefGoogle Scholar
Ludvigson, H. W. (1999) (Ed.). Odorous episodes and episodic odors. Special Issue. Psychological Record, 49, No. 3.Google Scholar
Mansbach, R. S., Harrod, C., Hoffmann, S. M., Nader, M. A., Lei, Z., Witkin, J. M., & Barrett, J. E. (1988). Behavioral studies with anxiolytic drugs. V. Behavioral and in vivo neurochemical analyses in pigeons of drugs that increase punished responding. Journal of Pharmacology & Experimental Therapeutics, 246, 114120.Google Scholar
Manzo, L., Donaire, R., Sabariego, M., Papini, M. R., & Torres, C. (2015). Anti-anxiety self-medication in rats: Oral consumption of chlordiazepoxide and ethanol after reward devaluation. Behavioural Brain Research, 278, 9097 (https://doi.org/10.1016/j.bbr.2014.09.017).Google Scholar
McCain, G., Dyleski, K., & McElvain, G. (1971). Reward magnitude and instrumental responses: Consistent reward. Psychonomic Monograph Supplements, 3, No. 48.Google Scholar
Murillo, N. R., Diercks, J. K., & Capaldi, E. J. (1961). Performance of the turtle, Pseudemys scripta troostii, in a partial-reinforcement situation. Journal of Comparative & Physiological Psychology, 54, 204206 (https://doi.org/10.1037/h0040813).CrossRefGoogle Scholar
Mustaca, A. E., Martínez, C., & Papini, M. R. (2000). Surprising nonreward reduces aggressive behavior in rats. International Journal of Comparative Psychology, 13, 91100.Google Scholar
Mustaca, A. E., & Papini, M. R. (2005). Consummatory successive negative contrast induces hypoalgesia. International Journal of Comparative Psychology, 18, 333339.Google Scholar
Muzio, R. N., Pistone-Creydt, V., Iurman, M., Rinaldi, M. A., Sirani, B., & Papini, M. R. (2011). Incentive or habit learning in amphibians? PLoS One, 6, 112 (https://doi.org/10.1371/journal.pone.0025798).Google Scholar
Muzio, R. N., Segura, E. T., & Papini, M. R. (1992). Effect of schedule and magnitude of reinforcement on instrumental learning in the toad (Bufo arenarum). Learning & Motivation, 23, 406429 (https://doi.org/10.1016/0023-9690(92)90004-6).Google Scholar
Nilsson, M. A., Churakov, G., Sommer, M., Tran, N. V., Zemann, A., Brosius, J., & Schmitz, J. (2010). Tracking marsupial evolution using archaic genomic retroposon insertions. PLOS Biology, 8, e1000436 (https://doi.org/10.1371/journal.pbio.1000436).Google Scholar
Norris, J. N., Pérez-Acosta, A. M., Ortega, L. A., & Papini, M. R. (2009). Naloxone facilitates appetitive extinction and eliminates escape from frustration. Pharmacology, Biochemistry & Behavior, 94, 8187 (https://doi.org/10.1016/j.pbb.2009.07.012).Google Scholar
Ortega, L. A., Daniel, A. M., Davis, J. B., Fuchs, P. N., & Papini, M. R. (2011). Peripheral pain enhances the effects of incentive downshifts. Learning & Motivation, 42, 203209 (https://doi.org/10.1016/j.lmot.2011.03.003).Google Scholar
Ortega, L. A., Prado-Rivera, M. A., Cárdenas-Poveda, D. C., McLinden, K. A., Glueck, A. C., Gutiérrez, G., Lamprea, M. R., & Papini, M. R. (2013). Tests of the aversive summation hypothesis in rats: Effects of restraint stress on consummatory successive negative contrast and extinction in the Barnes maze. Learning & Motivation, 44, 159173 (https://doi.org/10.1016/j.lmot.2013.02.001).Google Scholar
Ortega, L. A., Solano, J. L., Torres, C., & Papini, M. R. (2017). Reward loss and addiction: Opportunities for cross-pollination. Pharmacology, Biochemistry, & Behavior, 154, 3952 (http://dx.doi.org/10.1016/j.pbb.2017.02.001).CrossRefGoogle ScholarPubMed
Papini, M. R. (1997). Role of reinforcement in spaced-trial operant learning in pigeons (Columba livia). Journal of Comparative Psychology, 111, 275285 (https://doi.org/10.1037/0735-7036.111.3.275).Google Scholar
Papini, M. R. (2002). Pattern and process in the evolution of learning. Psychological Review, 109, 186201 (https://doi.org/10.1037/0033-295x.109.1.186).Google Scholar
Papini, M. R. (2003). Comparative psychology of surprising nonreward. Brain, Behavior and Evolution, 62, 8395 (https://doi.org/10.1159/000072439).Google Scholar
Papini, M. R. (2014). Diversity of adjustments to reward downshifts in vertebrates. International Journal of Comparative Psychology, 27, 420445.Google Scholar
Papini, M. R., & Dudley, R. T. (1997). Consequences of surprising reward omissions. Review of General Psychology, 1, 175197 (https://doi.org/10.1037/1089-2680.1.2.175).Google Scholar
Papini, M. R., Fuchs, P. N., & Torres, C. (2015). Behavioral neuroscience of psychological pain. Neuroscience & Biobehavioral Reviews, 48, 5369 (https://doi.org/10.1016/j.neubiorev.2014.11.012).Google Scholar
Papini, M. R., Ludvigson, H. W., Huneycutt, D., & Boughner, R. L. (2001). Apparent incentive contrast effects in autoshaping with rats. Learning & Motivation, 32, 434456 (https://doi.org/10.1006/lmot.2001.1088).CrossRefGoogle Scholar
Papini, M. R., Mustaca, A. E., & Bitterman, M. E. (1988). Successive negative contrast in the consummatory responding of didelphid marsupials. Animal Learning & Behavior, 16, 5357 (https://doi.org/10.3758/BF03209043).Google Scholar
Papini, M. R., Muzio, R. N., & Segura, E. T. (1995). Instrumental learning in toads (Bufo arenarum): Reinforcer magnitude and the medial pallium. Brain, Behavior, & Evolution, 46, 6171 (https://doi.org/10.1159/000113259).CrossRefGoogle ScholarPubMed
Papini, M. R., & Pellegrini, S. (2006). Scaling relative incentive value in consummatory behavior. Learning & Motivation, 37, 357378 (https://doi.org/10.1016/j.lmot.2006.01.001).Google Scholar
Papini, M. R., Penagos-Corzo, J. C., & Pérez-Acosta, A. M. (2019). Avian emotions: Comparative perspectives on fear and frustration. Frontiers in Psychology, 9, 2707 (https://doi.org/10.3389/fpsyg.2018.02707).CrossRefGoogle ScholarPubMed
Pecoraro, N., Ginsberg, A. B., Akana, S. F., & Dallman, M. F. (2007). Temperature and activity responses to sucrose concentration reductions occur on the 1st but not the 2nd day of concentration shifts, and are blocked by low, constant glucocorticoids. Behavioral Neuroscience, 121, 764778 (https://doi.org/10.1037/0735-7044.121.4.764).Google Scholar
Pecoraro, N., de Jong, H., & Dallman, M. F. (2009). An unexpected reduction in sucrose concentration activates the HPA axis on successive post shift days without attenuation by discriminative contextual stimuli. Physiology & Behavior, 96, 651661 (https://doi.org/10.1016/j.physbeh.2008.12.018).Google Scholar
Pert, A., & Bitterman, M. R. (1970). Reward and learning in the turtle. Learning & Motivation, 1, 121128 (https://doi.org/10.1037/0735-7036.111.3.275).Google Scholar
Portavella, M., Salas, C., Vargas, J. P., & Papini, M. R. (2003). Involvement of the telencephalon in spaced-trial avoidance learning in the goldfish (Carassius auratus). Physiology & Behavior, 80, 4956 (https://doi.org/10.1016/S0031-9384(03)00208-7).CrossRefGoogle ScholarPubMed
Portavella, M., Torres, B., Salas, C., & Papini, M. R. (2004). Lesions of the medial pallium, but not of the lateral pallium, disrupt spaced-trial avoidance learning in goldfish (Carassius auratus). Neuroscience Letters, 362, 7578 (https://doi.org/10.1016/j.neulet.2004.01.083).CrossRefGoogle Scholar
Raff, R. A. (1996). The shape of life. Chicago: University of Chicago Press.Google Scholar
Rescorla, R. A., & Wagner, A. R. (1972). A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement. In Black, A. H. & Prokasy, W. F. (Eds.), Classical conditioning II (pp. 6499). New York: Appleton-Century-Crofts.Google Scholar
Sabariego, M., Morón, I., Gómez, M. R., Donaire, R., Tobeña, A., Fernández-Teruel, A., Martínez-Conejero, , J. A., Esteban, F. J., & Torres, C. (2013). Incentive loss and hippocampal gene expression in inbred Roman high- (RHA-I) and Roman low- (RLA-I) avoidance rats. Behavioural Brain Research, 257, 6270 (https://doi.org/10.1016/j.bbr.2013.09.025).CrossRefGoogle ScholarPubMed
Sastre, A., Lin, J.-Y., & Reilly, S. (2005). Failure to obtain instrumental successive negative contrast in tasks that support consummatory successive negative contrast. International Journal of Comparative Psychology, 18, 307319.Google Scholar
Schneider, G. E. (2014). Brain structure and its origins. Cambridge, MA: MIT Press.Google Scholar
Stout, S. C., Boughner, R. L., & Papini, M. R. (2003). Reexamining the frustration effect in rats: Aftereffects of surprising reinforcement and nonreinforcement. Learning & Motivation, 34, 437456 (https://doi.org/10.1016/S0023-9690(03)00038-9).Google Scholar
Stout, S. C., Muzio, R. N., Boughner, R. L., & Papini, M. R. (2002). Aftereffects of the surprising presentation and omission of appetitive reinforcers on key pecking performance in pigeons. Journal of Experimental Psychology: Animal Behavior Processes, 28, 242256 (https://doi.org/10.1037/0097-7403.28.3.242).Google Scholar
Striedter, G. F. (2005). Principles of brain evolution. Sunderland, MA: Sinauer.Google Scholar
Thomas, B. L., & Papini, M. R. (2001). Adrenalectomy eliminates the extinction spike in autoshaping with rats. Physiology & Behavior, 72, 543547 (https://doi.org/10.1016/s0031-9384(00)00448-0).Google Scholar
Thomas, B. L., & Papini, M. R. (2003). Mechanisms of spaced-trial runway extinction in pigeons. Learning & Motivation, 34, 104126 (https://doi.org/10.1016/S0023-9690(02)00506-4).Google Scholar
Thorndike, E. L. (1911). Animal intelligence: Experimental studies. New York: Macmillan.Google Scholar
Tinklepaugh, O. L. (1928). An experimental study of representative factors in monkeys. Journal of Comparative Psychology, 8, 197236 (https://doi.org/10.1037/h0075798).CrossRefGoogle Scholar
Torres, C., & Papini, M. R. (2017). Incentive relativity. In Vonk, J. & Shackelford, T. K. (Eds.), Encyclopedia of animal cognition and behavior. New York: Springer (https://doi.org/10.1007/978-3-319-47829-6_1079-1).Google Scholar
True, J. R., & Carroll, S. B. (2002). Gene co-option in physiological and morphological evolution. Annual Review of Cellular and Developmental Biology, 18, 5380 (https://doi.org/10.1146/annurev.cellbio.18.020402.140619).Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×