Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-26T11:57:05.304Z Has data issue: false hasContentIssue false

7 - Advances in integrative taxonomy and evolution of African murid rodents: how morphological trees hide the molecular forest

Published online by Cambridge University Press:  05 August 2015

Christiane Denys
Affiliation:
Muséum National d'Histoire Naturelle, Paris, France
Alisa Winkler
Affiliation:
Southern Methodist University
Philip G. Cox
Affiliation:
University of York
Lionel Hautier
Affiliation:
Université de Montpellier II
Get access

Summary

Introduction

Species definitions include various concepts, among which are themorphological and palaeontological definitions (Eldredge and Cracraft, 1980). The latter are used for those species that can be described only on the basis of diagnostic morpho-anatomical characters or synapomorphies and have been commonly employed in addition to the biological (Mayr, 1963) and the phylogenetic species concepts (Wiley, 1978). The development of new systematic tools provides supplementary diagnostic characters such as karyotypes, chromosome banding patterns, DNA molecular sequences or morphometric discriminant functions for the description of new species. It has been reported that karyotyped data can provide good evidence of reproductive isolation at the specific level, without any signs of morphological discrimination even by more sophisticated morphometrical methods (Hausser and Jammot, 1974; Dobigny et al., 2002a). In other cases, only refined analyses of size and shape by conventional or geometric morphometrics allow specific separation into species complexes or between sibling species (Fadda and Corti, 2001; Lalis et al., 2009a). Finally, because only morpho-anatomical characters on fragmented specimens (generally dental characters) are available for palaeospecies definitions, it is useful to have well-defined biological species accompanied by morphological characters that allow comparison of present and past diversity (Stoetzel et al., 2013).

The diversity of African rodents is relatively high, especially in the tropical regions of the continent. At present there are 98 genera (80 endemic) and 408 species (375 endemic) (Happold, 2013). This high level of endemism made the establishment of a stabilized classification relatively difficult until recent palaeontological discoveries and more sophisticated molecular analyses were developed. Among the most recent molecular analyses that have clarified rodent classification are Blanga-Kanfi et al. (2009) and Fabre et al. (2012), in which rodents are divided into three main clades: Ctenohystrica, squirrel-related, and mouse-related. All these clades are represented in Africa today and in the past. Analyses of fossil discoveries place their early occurrences in Africa as early as the Palaeocene for Ctenohystrica, Oligocene for the squirrel-related clade and Miocene for the mouse-related clade (Winkler et al., 2010).

Type
Chapter
Information
Evolution of the Rodents
Advances in Phylogeny, Functional Morphology and Development
, pp. 186 - 220
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aguilar, J. P. and Michaux, J. (1996). The beginning of the age of Murinae (Mammalia: Rodentia) in southern France. Acta Zoologica Cracoviensia, 39, 35–45.Google Scholar
Aguilar, J. P., Michaux, J. and Lazzari, V. (2007). Lo Fournas 16-M (Miocène supérieur) et Lo Fournas 16-P (Pliocene moyen), nouvelles localités karstiques a Baixas, Sud de la France. Part. II – Les faunes de rongeurs et les nouvelles espèces. Géologie de la France, 1, 63–81.Google Scholar
Ameur, R. (1984). Découverte de nouvelles rongeurs dans la Formation Miocène de Bou Hanifia (Algérie Occidentale). Géobios, 17, 167–175.CrossRefGoogle Scholar
Barry, J. C. (1995). Faunal turnover and diversity in the terrestrial Neogene of Pakistan. In Paleoclimate and Evolution with Emphasis on Human Origins, eds. Vrba, E. S., Denton, H., Partridge, T. C. and Burckle, L. H.. New Haven and London: Yale University Press, pp. 115–134.Google Scholar
Benammi, M., Orth, B., Vianey-Liauid, M., et al. (1995). Micromammifères et biochronologie des formations néogènes du flanc sud du Hant-Atlas Marocain: implications biogéographiques, stratigraphiques et tectoniques. Africa Geoscience Review, 2, 279–310.Google Scholar
Bernor, R. L., Brunet, M., Ginsburg, L., et al. (1987). A consideration of some major topics concerning Old World Miocene mammalian chronology, migrations and paleogeography. Geobios, 20, 431–439.CrossRefGoogle Scholar
Black, C. G. and Krishtalka, L. (1986). Rodents, bats, and insectivores from the Plio-Pleistocene sediments to the east of Lake Turkana, Kenya. Contributions in Science, 372, 1–15.Google Scholar
Blanga-Kanfi, S., Miranda, H., Penn, O., et al. (2009). Rodent phylogeny revised: analysis of six nuclear genes from all major rodent clades. BMC Evolutionary Biology, 9, 71.CrossRefGoogle ScholarPubMed
Boaz, N. T., Bernor, R. L., Brooks, A. S., et al. (1992). A new evaluation of the significance of the Late Neogene Lusso Beds, Upper Semliki Valley, Zaire. Journal of Human Evolution, 22, 505–517.CrossRefGoogle Scholar
Brouat, C., Tatard, C., Cosson, J.-F., et al. (2009). Phylogeography of the Guinea multimammate mouse (Mastomys erythroleucus): a case study for Sahelian species in West Africa. Journal of Biogeography, 36, 2237–2250.CrossRefGoogle Scholar
Catzeflis, F.M. and Denys, C. (1992). The African Nannomys (Muridae): an early offshoot from the Mus lineage. Evidence for scnDNA hybridization experiments and compared morphology. Israel Journal of Zoology, 38, 219–231.Google Scholar
Chevret, P. and Dobigny, G. (2005). Systematics and evolution of the subfamily Gerbillinae (Mammalia, Rodentia, Muridae). Molecular Phylogenetics and Evolution, 35, 674–688.CrossRefGoogle Scholar
Chevret, P., Denys, C., Jaeger, J. J., Michaux, J. and Catzeflis, F. M. (1993). Molecular evidence that the spiny mouse (Acomys) is more closely related to the gerbils (Gerbillinae) than to true mice (Murinae). Proceedings of the National Academy of Sciences USA, 90, 3433–3436.CrossRefGoogle Scholar
Chevret, P., Granjon, L., Duplantier, J. M., Denys, C. and Catzeflis, F. M. (1994). Molecular phylogeny of the Praomys complex (Rodent, Murinae): a study based on DNA/DNA hybridization experiments. Zoological Journal of the Linnean Society, 112, 425–442.CrossRefGoogle Scholar
Colangelo, P., Verheyen, E., Leirs, H., et al. (2013). A mitochondrial phylogeographic scenario for the most widespread African rodent, Mastomys natalensis. Biological Journal of the Linnean Society, 108, 901–916.CrossRefGoogle Scholar
De Bruijn, H. and Whybrow, P. (1994). A late Miocene rodent fauna from the Baynunah formation, Emirate of Abu Dhabi, United Arab Emirates. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, 97, 407–422.Google Scholar
De Graaff, G. (1960). A preliminary investigation of the mammalian microfauna in Pleistocene deposits of caves in the Transvaal. Palaeontologia Africana, 7, 59–118.Google Scholar
Denys, C. (1987a). Fossil rodents (other than Pedetidae) from Laetoli. In Laetoli: A Pliocene Site in Northern Tanzania, eds. Leakey, M. D. and Harris, J. M.. Oxford: Clarendon Press, pp. 118–170.Google Scholar
Denys, C. (1987b). Micromammals from the West-Natron Pleistocene deposits (Tanzania). Biostratigraphy and paleoecology. Sciences Géologiques Bulletin, 40, 1–2, 185–201.Google Scholar
Denys, C. (1989). Two new gerbillids (Rodentia, Mammalia) from Olduvai Bed I (Pleistocene, Tanzania). Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, 178, 243–265.Google Scholar
Denys, C. (1990a). The oldest Acomys (Rodentia, Mammalia) from the lower Pliocene of South Africa and the problem of its murid affinities. Palaeontographica, Abt. A, 210, 70–91.Google Scholar
Denys, C. (1990b). Deux nouvelles espèces d’Aethomys (Rodentia, Muridae) à Langebaanweg (Pliocène, Afrique du Sud): implications phylogénétiques et paléoécologiques. Annales de Paléontologie, 76, 41–69.Google Scholar
Denys, C. (1990c). Implications paléoécologiques et paléobiogéographiques de l’étude de rongeurs plio-pléistocènes d'Afrique orientale et australe. Mémoires des Sciences de la Terre, PhD dissertation, University of Paris VI, pp. 428.
Denys, C. (1993). Réexamen de la dentition de Leimacomys buettneri (Mammalia, Rodentia). Hypothèses sur sa position systématique. Mammalia, 57, 613–618.Google Scholar
Denys, C. (1999). Of mice and men. Evolution in East and South Africa during Plio-Pleistocene times. In African Biogeography, Climate Change and Human Evolution, eds. Bromage, T. and Schrenk, F.. Oxford: Oxford University Press, pp. 226–252.Google Scholar
Denys, C. (2003). Evolution du genre Otomys (Rodentia, Muridae) au Plio-Pléistocène d'Afrique orientale et austral. In Advances in Vertebrate Paleontology, “Hen to Panta,” Volume in Honor of Constantin Radulescu and Petre Mihai Samson, eds. Petrulescu, A. and Stiuca, E.. Bucharest, Romania: Romanian Academy, “Emil Racovitzã,” Institute of Speleology, pp. 75–84.Google Scholar
Denys, C. (2011). Rodents. In Paleontology and Geology of Laetoli: Human Evolution in Context. Volume 2: Fossil Hominins and the Associated Fauna, ed. Harrison, T.. Heidelberg: Springer, pp. 15–53.Google Scholar
Denys, C. and Jaeger, J. J. (1986). A biostratigraphic problem: the case of the East African Plio-Pleistocene rodent faunas. Modern Geology, 10, 215–233.Google Scholar
Denys, C. and Michaux, J. (1992). La troisième molaire supérieure chez les Muridae d'Afrique tropicale et le cas des genres Acomys, Uranomys et Lophuromys. Bonner Zoologische Beiträge, 43, 367–382.Google Scholar
Denys, C., Michaux, J. and Hendey, B. (1987). Les rongeurs (Mammalia) Euryotomys et Otomys: un exemple d’évolution parallèle en Afrique tropicale?Comptes Rendus de l'Académie des Sciences, Paris, 305, Série II, 1389–1395.Google Scholar
Denys, C., Michaux, J., Catzeflis, F., Ducrocq, S. and Chevret, P. (1995). Morphological and molecular data against the monophyly of Dendromurinae (Muridae: Rodentia). Bonner Zoologische Beiträge, 45, 173–190.Google Scholar
Denys, C., Lecompte, E., Granjon, L., et al. (2003). Integrative systematics: the importance of combining various techniques for increasing knowledge of African Murinae. In Rats, Mice and People: Rodent Biology and Management, eds. Singleton, G. R., Hinds, L. A., Krebs, C. J. and Spratt, D. M.. Canberra: ACIAR, pp. 499–506.Google Scholar
Denys, C., Lalis, A., Fodé, K., et al. (2012). Discrimination morphologique, génétique et écologique de deux espèces sympatriques de Mastomys (Mammalia: Rodentia) en Guinée Maritime (Conakry) : implications pour la santé et l'agriculture. Revue d'Ecologie (Terre & Vie), 67, 193–211.Google Scholar
Dippenaar, N. J., Swanepoel, P. and Gordon, D.H. (1993). Diagnostic morphometrics of two medically important southern African rodents, Mastomys natalensis and M. coucha (Rodentia, Muridae). South African Journal of Science, 89, 300–303.Google Scholar
Dobigny, G., Aniskin, V. and Volobouev, V. (2002a). Explosive chromosome evolution and speciation in the gerbil genus Taterillus (Rodentia, Gerbillinae): a case of two new cryptic species. Cytogenetics and Genome Research, 96, 117–124.CrossRefGoogle ScholarPubMed
Dobigny, G., Baylac, M. and Denys, C. (2002b). Geometric morphometrics, neural networks and diagnosis of sibling Taterillus species (Rodentia, Gerbillinae). Biological Journal of the Linnean Society, 77, 319–327.CrossRefGoogle Scholar
Dobigny, G., Lecompte, E., Tatard, C., et al. (2008). An update on the taxonomy and geographic distribution of the cryptic species Mastomys kollmannspergeri (Muridae, Murinae) using combined cytogenetic and molecular data. Journal of Zoology, 276, 368–374.CrossRefGoogle Scholar
Dubois, J.-Y, Catzeflis, F. M. and Beintema, J. J. (1999). The phylogenetic position of “Acomyinae” (Rodentia, Mammalia) as sister group of a Murinae+Gerbillinae clade: evidence from the nuclear ribonuclease gene. Molecular Phylogenetics and Evolution, 13, 181–192.CrossRefGoogle ScholarPubMed
Duplantier, J. M. (1988). Biologie évolutive de populations du genre Mastomys (Rongeur, Muride) au Sénégal. PhD dissertation, University of Montpellier II, pp. 215.
Duplantier, J. M. and Granjon, L. (1988). Occupation et utilisation de l'espace par des populations du genre Mastomys au Sénégal : étude à trois niveaux de perception. Sciences et Techniques Animalières de Laboratoire, 13, 129–133.Google Scholar
Eldredge, N. and Cracraft, J. (1980). Phylogenetic Analysis and the Evolutionary Process. New York: Columbia University Press.Google Scholar
Ellerman, J. R. (1940–1941). The Families and Genera of Living Rodents. Volumes 1 & 2. London: British Museum (Natural History).Google Scholar
Fabre, P.-H., Hautier, L., Dimitrov, D. and Douzery, E. J. P. (2012). A glimpse on the pattern of rodent diversification: a phylogenetic approach. BMC Evolutionary Biology, 12, 88.CrossRefGoogle ScholarPubMed
Fabre, P.-H., Pages, M., Musser, G. G., et al. (2013). A new genus of rodent from Wallacea (Rodentia: Muridae: Murinae: Rattini), and its implication for biogeography and Indo-Pacific Rattini systematics. Zoological Journal of the Linnean Society, 169, 408–447.CrossRefGoogle Scholar
Fadda, C. and Corti, M. (2001). Three-dimensional geometric morphometrics of Arvicanthis: implications for systematics and taxonomy. Journal of Zoology Systematics and Evolutionary Research, 39, 235–245.CrossRefGoogle Scholar
Fejfar, O. and Horacek, I. (2006). The Early Miocene mammalian assemblages in Jebel Zelten, Libya. Lynx (Praha) n. s., 37, 95–105.Google Scholar
Flynn, L. J., Jacobs, L. L. and Lindsay, E. H. (1985). Problems in muroid phylogeny: relationship to other rodents and origin of major groups. In Evolutionary Relationships Among Rodents; a Multidisciplinary Analysis., ed. Luckett, W. P. and Hartenberger, J. L.. New York: Plenum Press, pp. 589–616.Google Scholar
Flynn, L. J., Winkler, A. J., Jacobs, L. L. and Downs, W. (2003). Tedford's gerbils from Afghanistan. Bulletin of the American Museum of Natural History, 279, 603–624.2.0.CO;2>CrossRefGoogle Scholar
Geraads, D. (1998). Rongeurs du Mio-Pliocène de Lissasfa (Casablanca, Maroc), Geobios, 31, 229–245.CrossRefGoogle Scholar
Geraads, D. (2001). Rongeurs du Miocène supérieur de Chorora, Ethiopie: Murinae, Dendromurinae et conclusions. Paleovertebrata, 30, 89–109.Google Scholar
Gomes Rodrigues, H., Merceron, G. and Viriot, L. (2009). Dental microwear patterns of extant and extinct Muridae (Rodentia, Mammalia): ecological implications. Naturwissenschaften, 96, 537–542.CrossRefGoogle Scholar
Hänni, C., Laudet, V., Barriel, V. and Catzeflis, F.M. (1995). Evolutionary relationships of Acomys and other murids (Rodentia, Mammalia) based on complete 12s RNA mitochondrial gene sequences. Israel Journal of Zoology, 41, 131–146.Google Scholar
Happold, D. C. D. (2013). Mammals of Africa / Volume III, Rodents, Hares and Rabbits. London: Bloomsbury, pp. 784.Google Scholar
Hauser, J. and Jammot, D. (1974). Étude biométrique des mâchoires, chez les Sorex de groupe araneus en Europe continentale (Mammalia, Insectivora). Mammalia, 38, 324–343.Google Scholar
Heim de Balsac, H. (1963). L’ « abrasion » préalable sous-gingivale des molaires de certains rongeurs et insectivores. Le cas remarquable d’Uranomys. Comptes Rendus de l'Académie des Sciences, 256, 5257–5261.Google Scholar
Hoffmann, M., Grubb, P., Groves, C.P., et al. (2009). A synthesis of African and western Indian Ocean Island mammal taxa (Class: Mammalia) described between 1988 and 2008: an update to Allen (1939) and Ansell (1989). Zootaxa, 2205, 1–36.Google Scholar
Jacobs, L. L. (1978). Fossil rodents (Rhizomyidae & Muridae) from Neogene Siwalik Deposits, Pakistan. Museum of Northern Arizona Press Bulletin Series, 52, 1–103.Google Scholar
Jacobs, L. L. and Flynn, L. J. (2005). Of mice…again: the Siwalik rodent record, murine distribution, and molecular clocks. In Interpreting the Past: Essays on Human, Primate and Mammal Evolution, eds. Lieberman, D., Smith, R., and Kelley, J.. Leiden: Brill Academic Publishers, pp. 63–80.Google Scholar
Jacobs, L. L., Flynn, L. J. and Downs, W. R. (1989). Neogene rodents of southern Asia. In Papers on Fossil Rodents in Honor of Albert Elmer Wood, ed. Black, C.C. and Dawson, M. R.. Natural History Museum of Los Angeles County, Science Series, 33, pp. 157–177.Google Scholar
Jaeger, J.J. (1976). Les Rongeurs (Mammalia, Rodentia) du Pléistocène inférieur d'Olduvai Bed I (Tanzanie). Iè partie: les Muridés. In Fossil Vertebrates of Africa, eds. Savage, R. J. G. and Coryndon, S. C.. London: Academic Press, pp. 58–120.Google Scholar
Jaeger, J. J. (1977). Les rongeurs du Miocène moyen et supérieur du Maghreb. Palaeovertebrata, 8: 1–166.Google Scholar
Jaeger, J.-J. (1979). Les Faunes de rongeurs et de Lagomorphes du Pliocène et du Pléistocène d'Afrique oriertale. Bulletin de La Société Gédogique de France, 21(3), 301–308.Google Scholar
Jaeger, J.-J., Tong, H., Buffetaut, E. and Ingavat, R. (1985). The first fossil rodents from the Miocene of northern Thailand and their bearing on the problem of the origin of the Muridae. Revue de Paléobiologie, 4, 1–7.Google Scholar
Kan Kouassi, S., Nicolas, V., Aniskine, V., et al. (2008). Taxonomy and biogeography of the African Pygmy Mice, sub genus Nannomys (Rodentia, Murinae, Mus) in Ivory Coast and Guinea (West Africa). Mammalia, 72, 237–252.Google Scholar
Kimura, Y., Jacobs, L. L., Cerling, T. E., et al. (2013). Fossil mice and rats show isotopic evidence of niche partitioning and change in dental ecomorphology related to dietary shift in Late Miocene of Pakistan. PLoS ONE, 8(8), e69308.CrossRefGoogle ScholarPubMed
Lalis, A., Evin, A. and Denys, C. (2009a). Morphological identification of sibling species: the case of West African Mastomys (Rodentia: Muridae) in sympatry. Comptes Rendus Biologies, 332, 480–488.CrossRefGoogle Scholar
Lalis, A., Baylac, M., Cosson, J. F., et al. (2009b). Cranial morphometric and fine scale genetic variability of two adjacent Mastomys natalensis (Rodentia: Muridae) populations. Acta Theriologica, 54, 171–181.CrossRefGoogle Scholar
Lalis, A., Leblois, R., Lecompte, E., et al. (2012). The impact of human conflict on the genetics of Mastomys natalensis and Lassa virus in West Africa. PLoS ONE, 7(5), e37068.CrossRefGoogle ScholarPubMed
Lavocat, R. (1964). Fossil rodents from Fort Ternan, Kenya. Nature, 202, 1131.CrossRefGoogle Scholar
Lazzari, V., Charles, C., Tafforeau, P., et al. (2008). Mosaic convergence of rodent dentitions. PLoS ONE, 3(10), e3607.CrossRefGoogle ScholarPubMed
Lecompte, E., Denys, C. and Granjon, L. (2001). An identification key of the Praomys species (Rodentia : Muridae). In African Small Mammals, eds. Denys, C., Granjon, L. and Poulet, A.. Paris: IRD Editions, pp.127–140.Google Scholar
Lecompte, E., Granjon, L. and Denys, C. (2002a). The phylogeny of the Praomys complex (Rodentia: Muridae) and its phylogeographic implications. Journal of Zoological Systematics and Evolutionary Research, 40, 8–25.CrossRefGoogle Scholar
Lecompte, E., Granjon, L., Kerbis-Peterhans, J. and Denys, C. (2002b). Cytochrome b-based phylogeny of the Praomys group (Rodentia, Murinae): a new African radiation?Comptes Rendus Biologies, 325, 827–840.CrossRefGoogle ScholarPubMed
Lecompte, E., Denys, C. and Granjon, L. (2005). Confrontation of morphological and molecular data: the Praomys group (Rodentia, Murinae) as a case of adaptive convergences and morphological stasis. Molecular Phylogenetics and Evolution, 37, 899–919.CrossRefGoogle ScholarPubMed
Lecompte, E., Aplin, K., Denys, C., et al. (2008). Phylogeny and biogeography of African Murinae based on mitochondrial and nuclear gene sequences, with a new tribal classification of the subfamily. BMC Evolutionary Biology, 8, 199.CrossRefGoogle ScholarPubMed
Lindsay, E. H. (1988). Cricetid rodents from Siwalik deposits near Chinji Village. Part I: Megacricetodontinae, Myocricetodontinae, and Dendromurinae. Palaeovertebrata, 18, 95–154.Google Scholar
Linzey, A. V., Kesner, M. H., Chimimba, C. T. and Newbery, C. (2003). Distribution of veld rat sibling species Aethomys chrysophilus and Aethomys ineptus (Rodentia: Muridae) in southern Africa. African Zoology, 38, 169–174.CrossRefGoogle Scholar
López Antoñanzas, R. (2009). First Potwarmus from the Miocene of Saudi Arabia and the early phylogeny of murines (Rodentia: Muroidea). Zoological Journal of the Linnean Society, 156, 664–679.CrossRefGoogle Scholar
López-Martinez, N., Michaux, J. and Hutterer, R. (1998). The skull of Stephanomys and a review of Malpaisomys relationships (Rodentia: Muridae). Taxonomic incongruence in murids. Journal of Mammalian Evolution, 5, 185–215.CrossRefGoogle Scholar
Louchart, A., Wesselman, H., Blumenschine, R. J., et al. (2009). Taphonomic, avian, and small-vertebrate indicators of Ardipithecus ramidus habitat. Science, 326, 66, 66e1–66e4.CrossRefGoogle ScholarPubMed
Manthi, F. K. (2006). The Pliocene micromammalian fauna from Kanapoi, northwestern Kenya, and its contribution to understanding the environment of Australopithecus anamensis. PhD, University of Cape Town, pp. 1–231.
Manthi, F. K. (2007). A preliminary review of the rodent fauna from Lemudong'o, southwestern Kenya, and its implication to the Late Miocene paleoenvironments. Kirtlandia, 56, 92–105.Google Scholar
Manthi, F. K. (2008). The taphonomy of the Pliocene microfauna from Kanapoi, north-western Kenya. Journal of Taphonomy, 6, 41–67.Google Scholar
Mayr, E. (1963). Animal Species and Evolution. Cambridge, MA: Harvard University Press.CrossRefGoogle Scholar
Mein, P. (1994). Micromammifères du Miocène supérieur et du Pliocène du rift occidental, Ouganda. In Geology and Palaeobiology of the Albertine Rift Valley, Uganda–Zaire. Volume II: Palaeobiology, eds. Senut, B. and Pickford, M.. Orléans: CIFEG Occasional Publications, pp.187–193.Google Scholar
Mein, P. and Pickford, M. (2006). Late Miocene micromammals from the Lukeino Formation (6.1 to 5.8 Ma), Kenya. Bulletin Mensuel de la Société Linnéenne de Lyon, 75, 183–223.CrossRefGoogle Scholar
Mein, P. and Pickford, M. (2010). Vallesian rodents from Sheikh Abdallah, Western Desert, Egypt. Historical Biology, 22, 224–259.CrossRefGoogle Scholar
Mein, P., Martin Suarez, E. and Agusti, J. (1993). Progonomys Schaub, 1938 and Huerzelerimys gen. nov. (Rodentia): their evolution in Western Europe. Scripta Geologica, 103, 41–64.Google Scholar
Mein, P., Pickford, M. and Senut, B. (2004). Late Miocene micromammals from the Harasib karst deposits, Namibia. Part 2B – Cricetomyidae, Dendromuridae and Muridae, with an addendum on the Myocricetodontinae. Communications of the Geological Survey of Namibia, 13, 43–61.Google Scholar
Michaux, J. (1971). Muridae (Rodentia) néogènes d'Europe sud-occidentale. Evolution et rapports avec les formes actuelles. Paleobiologie Continentale, Montpellier, 2, 1–67.Google Scholar
Michaux, J. and Catzeflis, F. (2000). The bushlike radiation of muroid rodents is exemplified by the molecular phylogeny of the LCAT nuclear gene. Molecular Phylogenetics and Evolution, 17, 280–293.CrossRefGoogle ScholarPubMed
Michaux, J., Aguilar, J. P., Montuire, S., Wolff, A. and Legendre, S. (1997). Les Muridae (Rodentia, Mammalia) néogènes du Sud de la France: évolution et paléoenvironnements. Geobios, Mémoire Spécial, 20, 379–385.Google Scholar
Michaux, J. R, Reyes, R. A. and Catzeflis, F. (2001). Evolutionary history of the most speciose mammals: molecular phylogeny of muroid rodents. Molecular Biology and Evolution, 18, 2017–2031.CrossRefGoogle ScholarPubMed
Misonne, X. (1969). African and Indo-Australian muridae. Evolutionary trends. Museum Royal de l'Afrique Centrale, Tervuren, Zoologie, 172, 1–219.Google Scholar
Missoup, A.D. (2010). Systématique et biogéographie des rongeurs des forêts de la ligne volcanique du Cameroun (Afrique ouest centrale). PhD thesis, MNHN-Université de Yaoundé 1 (unpublished).
Mosimann, J. E. and James, F. C. (1979). New statistical methods for allometry with application to Florida redwinged blackbirds. Evolution, 33, 444–459.CrossRefGoogle Scholar
Munthe, J. (1987). Small-mammal fossils from the Pliocene Sahabi Formation of Libya. In Neogene Paleontology and Geology of Sahabi, eds. Boaz, N. T.El-Arnauti, A., Gaziry, A. W., Heinzelvi, J. de and Boaz, D. Dechant, New York: A. R. Liss Inc., pp. 135–144.Google Scholar
Musser, G. (1987). The occurrence of Hadromys (Rodentia: Muridae) in Early Pleistocene Siwalik strata in northern Pakistan and its bearing on biogeographic affinities between Indian and northeastern African murine faunas. American Museum Novitates, 2883, 1–36.Google Scholar
Musser, G and Carleton, M. (2005). Superfamily Muroidea. In Mammal Species of the World. A Taxonomic and Geographic Reference, Volume 2, eds. Wilson, D. E. and Reeder, D. M., . Baltimore: Johns Hopkins University, pp. 894–1531.Google Scholar
Nicolas, V., Mboumba, J. F., Verheyen, E., et al. (2008). Phylogeographic structure and regional history of Lemniscomys striatus (Rodentia : Muridae) in tropical Africa. Journal of Biogeography, 35, 2074–2089.CrossRefGoogle Scholar
Panzironi, C., Cerone, G., Cristaldi, M. and Amori, G. (1994). A method for morphometric identification of southern Italian populations of Apodemus (Sylvaemus). Hystrix, 5, 1–16.Google Scholar
Pickford, M., Mein, P. and Senut, B. (1992). Primate bearing Plio-Pleistocene cave deposits of Humpata, Southern Angola. Human Evolution, 7, 17–33.CrossRefGoogle Scholar
Pocock, T. N. (1976). Pliocene mammalian microfauna from Langebaanweg: a new fossil genus linking the Otomyinae with the Murinae. South African Journal of Science, 72, 58–60.Google Scholar
Pocock, T. N. (1987). Plio-Pleistocene fossil mammalian microfauna of southern Africa – a preliminary report including description of two new fossil muroid genera (Mammalia: Rodentia). Paleontologia Africana, 26, 69–91.Google Scholar
Reed, D. N. (2011). New murid (Mammalia, Rodentia) fossils from a late Pliocene (2.4 Ma) locality, Hadar A. L. 894, Afar Region, Ethiopia. Journal of Vertebrate Paleontology, 31, 1326–1337.CrossRefGoogle Scholar
Robinson, T. J. (2001). The comparative cytogenetics of African small mammals in perspective: status, trends, and bibliography. In African Small Mammals, eds. Denys, C., Granjon, L. and Poulet, A.. Paris: IRD Editions, pp. 185–214.Google Scholar
Russo, I. M., Chimimba, C. T. and Bloomer, P. (2006). Mitochondrial DNA differentiation between two species of Aethomys (Rodentia: Muridae) from Southern Africa. Journal of Mammalogy, 87, 545–553.CrossRefGoogle Scholar
Russo, I.-R. M., Chimimba, C. T. and Bloomer, P. (2010). Bioregion heterogeneity correlates with extensive mitochondrial DNA diversity in the Namaqua rock mouse, Micaelamys namaquensis (Rodentia: Muridae) from southern Africa – evidence for a species complex. BMC Evolutionary Biology, 10, 307.CrossRefGoogle ScholarPubMed
Sabatier, M. (1982). Les rongeurs du site Pliocène à hominidés de Hadar (Ethiopie). Paleovertebrata, 12, 1–56.Google Scholar
Sarich, V. M. (1985). Rodent macromolecular systematics. In Evolutionary Relationships Among Rodents: a Multidisciplinary Analysis, eds. Luckett, W. P. and Hartenberger, J. L.. New York: Plenum Press, pp. 423–452.Google Scholar
Schaub, S. (1938). Tertiäre und Quartäre Murinae. Abhandlungen des Schweizerischen paläontologische Gesellschaft, 61, 1–38.Google Scholar
Schenk, J. J., Rowe, K. C. and Steppan, S. J. (2013). Ecological opportunity and incumbency in the diversification of repeated continental colonizations by muroid rodents. Systematic Biology, 62, 837–864.CrossRefGoogle ScholarPubMed
Sen, S. (1983). Rongeurs et lagomorphes du gisement Pliocène de Pul-e Charkhi, bassin de Kabul, Afghanistan. Bulletin du Muséum National d'Histoire Naturelle, Section C [Série.5], 1, 33–74.Google Scholar
Sen, S., Brunet, M. and Heintz, E. (1979). Découverte de rongeurs africains dans le Pliocène d'Afghanistan (bassin de Sarobi) implications paléobiogéographiques et stratigraphiques. Bulletin du Muséum National d'Histoire Naturelle, Section C, Ser 4, 1, 65–75.Google Scholar
Sénégas, F. (2000). Les faunes de rongeurs (Mammalia) plio-pléistocènes de la province de Gauteng (Afrique du Sud) : mises au point et apports systématiques, biochronologiques et précisions paléoenvironnementales. PhD, Université de Montpellier 2, Montpellier, France (unpublished), 2 vols, 232 pp.
Sénégas, F. (2001). Interpretation of the dental pattern of the South African fossil Euryotomys (Rodentia, Murinae, Otomyini) and origin of otomyine dental morphology. In African Small Mammals, eds. Denys, C., Granjon, L. and Poulet, A.. Paris: IRD Editions, pp. 151–160.Google Scholar
Sénégas, F. and Avery, M. (1998). New evidence for the murine origins of the Otomyinae (Mammalia, Rodentia) and the age of Bolt's Farm (South Africa). South African Journal of Science, 94, 503–507.Google Scholar
Slaughter, B. H. and James, G. T. (1979). Saidomys natrunensis, an arvicanthine rodent from the Pliocene of Egypt. Journal of Mammalogy, 60, 421–425.CrossRefGoogle Scholar
Steppan, S., Adkins, R. and Anderson, J. (2004). Phylogeny and divergence-date estimates of rapid radiations in muroid rodents based on multiple nuclear genes. Systematic Biology, 53, 533–553.CrossRefGoogle ScholarPubMed
Stoetzel, E., Denys, C., Michaux, J. and Renaud, S. (2013). Mus in Morocco: a Quaternary sequence of intraspecific evolution. Biological Journal of the Linnean Society, 109, 599–621.CrossRefGoogle Scholar
Taylor, P. J. (2000). Patterns of chromosomal variation in Southern African rodents. Journal of Mammalogy, 81, 317–331.2.0.CO;2>CrossRefGoogle Scholar
Taylor, P. J., Denys, C. and Mukerjee, M. (2004). Phylogeny of the African murid tribe Otomyini (Rodentia), based on morphological and allozyme evidence. Zoologica Scripta, 33, 389–402.CrossRefGoogle Scholar
Thomas, O. (1888). On a new and interesting annectant genus of Muridae, with remarks on the relations of the Old- and New-World members of the family. Proceedings of the Zoological Society of London, pp. 130–135.
Tong, H. (1989). Origine et évolution des Gerbillidae (Mammalia, Rodentia) en Afrique du Nord. Mémoires de la Société Geologique de France, 155, 1–120.Google Scholar
Tong, H. and Jaeger, J. J. (1993). Muroid rodents from the Middle Miocene Fort Ternan Locality (Kenya) and their contribution to the phylogeny of muroids. Palaeontographica, 229, 51–73.Google Scholar
Verheyen, E., Colyn, M. and Verheyen, W. (1995). The phylogeny of some African muroids (Rodentia) based upon partial mitochondrial cytochrome b sequences. Belgian Journal of Zoology, 125,403–406.Google Scholar
Verheyen, E., Colyn, M. and Verheyen, W. (1996). A mitochondrial cytochrome b phylogeny confirms the paraphyly of the Dendromurinae Alston, 1896 (Muridae, Rodentia). Mammalia, 60, 780–785.Google Scholar
Veyrunes, F., Dobigny, G., Yang, F., et al. (2006). Phylogenomics of the genus Mus (Rodentia; Muridae): extensive genome repatterning is not restricted to the house mouse. Proceedings of the Royal Society B, 273, 2925–2934.CrossRefGoogle Scholar
Volobouev, V., Auffray, J. C., Debat, V., et al. (2007). Species delimitation in the Acomys dimidiatus–cahirinus complex inferred from chromosomal and morphological analyses. Biological Journal of the Linnean Society, 91, 203–214.CrossRefGoogle Scholar
Volobouev, V. T., Aniskin, V. M., Lecompte, E. and Ducroz, J. F. (2002). Patterns of karyotype evolution in complexes of sibling species within three genera of African murid rodents inferred from the comparison of cytogenetic and molecular data. Cytogenetics and Genome Research, 96, 261–275.CrossRefGoogle Scholar
Wesselman, H. B. (1984). The Omo Micromammals. Contributions to Vertebrate Evolution, Vol. 7. Basel: Karger, pp. 1–219.Google Scholar
Wesselman, H. B., Black, M. T. and Asnake, M. (2009). Small mammals. In Ardipithecus kaddaba: Late Miocene Evidence from the Middle Awash, Ethiopia, eds. Haile-Selassie, Y. and Woldegabriel, G.. Berkeley: University of California Press, pp. 105–134.Google Scholar
Wessels, W. (2009). Miocene rodent evolution and migration: Muroidea from Pakistan, Turkey and North Africa. Geologia Ultraiectina, 307, 1–290.Google Scholar
Wessels, W., de Bruijn, H., Hussain, S. T. and Leinders, J. J. M. (1982). Fossil rodents from the Chinji Formation, Banda Daud Shah, Kohat, Pakistan. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen B, 85, 337–364.Google Scholar
Wessels, W., Fejfar, O., Pelaez-Campomanes, P., van der Meulen, A. and de Bruijn, H. (2003). Miocene small mammals from Jebel Zelten, Libya. In Surrounding Fossil Mammals: Dating, Evolution and Paleoenvironment, eds. N. López-Martínez, P. Peláez-Campomanes and M. Hernández Fernández. Coloquios de Paleontología, Volumen Extraordinario nº 1, en homenaje al Dr. Remmert Daams, pp. 699–715.
Wiley, E. O. (1978). The evolutionary species concept reconsidered. Systematic Zoology, 27, 17–26.CrossRefGoogle Scholar
Wilson, A. C., Ochman, H. and Prager, E. M. (1987). Molecular time scale for evolution. Trends in Genetics, 3, 241–247.CrossRefGoogle Scholar
Winkler, A. J. (1997). Systematics, paleobiogeography and paleoenvironmental significance of rodents from the Ibole Member, Manonga Valley, Tanzania. In Neogene Paleontology of the Manonga Valley, Tanzania. Topics in Geobiology, ed. Harrison, T.. New York: Plenum Press, pp. 311–332.Google Scholar
Winkler, A. J. (2002). Neogene paleobiogeography and East African paleoenvironments: contributions from the Tugen Hills rodents and lagomorphs. Journal of Human Evolution, 42, 237–256.CrossRefGoogle Scholar
Winkler, A. J. (2003). Lagomorpha and Rodentia. In Lothagam: The Dawn of Humanity in Eastern Africa, eds. Leakey, M. and Harris, J. M.. New York: Columbia University Press, pp.169–198.Google Scholar
Winkler, A. J., Denys, C. and Avery, M. (2010). Rodentia. In Fossil Mammals of Africa, eds. Werdelin, L. and Sanders, W.. Berkeley: California University Press, pp. 263–304.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×