Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T11:47:34.840Z Has data issue: false hasContentIssue false

5 - The Appearance of Macroalgae: Evolution and Ecological Consequences of Multicellularity

from Part I - Origins and Consequences of Early Photosynthetic Organisms

Published online by Cambridge University Press:  24 October 2024

Mario Giordano
Affiliation:
Università degli Studi di Ancona, Italy
John Beardall
Affiliation:
Monash University, Victoria
John A. Raven
Affiliation:
University of Dundee
Stephen C. Maberly
Affiliation:
UK Centre for Ecology & Hydrology, Lancaster
Get access

Summary

Multicellularity among algae is not restricted to macroalgae, nor are all macroalgae multicellular. Multicellularity contrasts with colonies of identical cells by differentiation of cell types and intercellular connections; by this definition, heterocystous cyanobacteria are multicellular, as are some freshwater green algae in the streptophyte and chlorophyte lineages. Multicellular, mainly marine, macroscopic algae include Rhodophyta and Phaeophyceae. Among large marine chlorophytan green algae, Ulva has no plasmodesmata, while differentiated Ulvophyceae, such as Acetabularia, Caulerpa, Halimeda and Codium, are composed of a single cell, demonstrating that organ growth and morphogenesis are independent from cell division, so the most complex green seaweeds are both macroscopic and unicellular/acellular. Macroscopic seaweeds of the Rhodophyta, Chlorophyta and Phaeophyceae clades arose from small unicellular ancestors, with the red and green lineages dating back most likely to the Meso- or Neoproterozoic (1,600–900 Ma) and brown seaweeds to about 200 Ma. Compared to benthic microalgae, macroalgae project beyond the substrate boundary layer, but have their own diffusion boundary layer constraining nutrient acquisition, and have more self-shading of photosynthetically active radiation than do individual microalgal cells. These constraints are partly offset by wave activity.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aguirre, J., Perfectti, F. & Braga, J. C. (2010). Integrating phylogeny, molecular clocks, and the fossil record in the evolution of coralline algae (Corallinales and Sporolithales, Rhodophyta). Paleobiology 36: 519533.CrossRefGoogle Scholar
Aguirre, J., Riding, R. & Braga, J. C. (2000). Diversity of coralline red algae: Origination and extinction patterns from the Early Cretaceous to the Pleistocene. Paleobiology 26: 651667.2.0.CO;2>CrossRefGoogle Scholar
Bartsch, I., Wiencke, C., Bischof, K. et al. (2008). The genus Laminaria sensu lato: Recent insights and developments. European Journal of Phycology 43: 186.CrossRefGoogle Scholar
Beardall, J., Allen, D., Bragg, J. et al. (2009). Allometry and stoichiometry of unicellular, colonial and multicellular phytoplankton. New Phytologist 181: 295309.CrossRefGoogle ScholarPubMed
Bengtson, S., Sallstedt, T., Belivanova, V. et al. (2017). Three-dimensional preservation of cellular and subcellular structures suggests 1.6 billion-year-old crown-group red algae. PLOS Biology 15: e2000735.CrossRefGoogle ScholarPubMed
Berney, C. & Pawlowski, J. (2006). A molecular time-scale for eukaryote evolution recalibrated with the continuous microfossil record. Proceedings of the Royal Society of London B: Biological Sciences 273: 18671872.Google ScholarPubMed
Black, W. á. (1950). The seasonal variation in weight and chemical composition of the common British Laminariaceae. Journal of the Marine Biological Association U. K. 29: 4572.CrossRefGoogle Scholar
Boller, M. L. & Carrington, E. (2006). The hydrodynamic effects of shape and size change during reconfiguration of a flexible macroalga. Journal of Experimental Biology 209: 18941903.CrossRefGoogle ScholarPubMed
Brooke, C. & Riding, R. (1998). Ordovician and Silurian coralline red algae. Lethaia 31: 185195.CrossRefGoogle Scholar
Brown, J. W. & Smith, S. A. (2018). The past sure is tense: On interpreting phylogenetic divergence time estimates. Systematic Biology 67: 340353.CrossRefGoogle ScholarPubMed
Brown, J. W. & Sorhannus, U. (2010). A molecular genetic timescale for the diversification of autotrophic stramenopiles (Ochrophyta): Substantive underestimation of putative fossil ages. PLOS ONE 5: e12759.CrossRefGoogle ScholarPubMed
Buggeln, R. G. (1983). Photoassimilate translocation in brown algae. Progress in Phycological Research 2: 282332.Google Scholar
Butterfield, N. J. (2000). Bangiomorpha pubescens n. gen., n. sp.: Implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes. Paleobiology 26: 386404.2.0.CO;2>CrossRefGoogle Scholar
Butterfield, N. J. (2004). A vaucheriacean alga from the middle Neoproterozoic of Spitsbergen: Implications for the evolution of Proterozoic eukaryotes and the Cambrian explosion. Paleobiology 30: 231252.2.0.CO;2>CrossRefGoogle Scholar
Cavalier-Smith, T. (2006). Cell evolution and Earth history: Stasis and revolution. Philosophical Transactions of the Royal Society B 361:9691006.CrossRefGoogle ScholarPubMed
Chapman, A. & Craigie, J. (1977). Seasonal growth in Laminaria longicruris: Relations with dissolved inorganic nutrients and internal reserves of nitrogen. Marine Biology 40: 197205.CrossRefGoogle Scholar
Chisholm, J. R. M., Dauga, C., Ageron, E. et al. (1996). ‘Roots’ in mixotrophic algae. Nature 381: 382382.CrossRefGoogle Scholar
Choi, S.W., Graf, L., Choi, J.W. et al. (2024). Ordovician origin and subsequent diversification of the brown algae. Current Biology 10:1016/j.cub.2023.12.069.Google Scholar
Claessen, D., Rozen, D. E., Kuipers, O. P., Søgaard-Andersen, L. & Van Wezel, G. P. (2014). Bacterial solutions to multicellularity: A tale of biofilms, filaments and fruiting bodies. Nature Reviews Microbiology 12: 115124.CrossRefGoogle ScholarPubMed
Coneva, V. & Chitwood, D. H. (2015). Plant architecture without multicellularity: Quandaries over patterning and the soma-germline divide in siphonous algae. Frontiers in Plant Science 6: 287. https://doi.org/10.3389/fpls.2015.00287.CrossRefGoogle ScholarPubMed
Cornwall, C. E., Boyd, P. W., McGraw, C. M. et al. (2014). Diffusion boundary layers ameliorate the negative effects of ocean acidification on the temperate coralline macroalga Arthrocardia corymbosa. PLOS ONE 9: e97235.CrossRefGoogle ScholarPubMed
Cornwall, C. E., Revill, A. T. & Hurd, C. L. (2015). High prevalence of diffusive uptake of CO2 by macroalgae in a temperate subtidal ecosystem. Photosynthesis Research 124: 181190.CrossRefGoogle Scholar
Del Cortona, A., Jackson, C. J., Van Bel, M. et al. (2020). Neoproterozoic origin and multiple transitions to macroscopic growth in green seaweeds. Proceedings of the National Academy of Sciences USA 117: 25512559.CrossRefGoogle ScholarPubMed
Deloffre, R. (1988). Nouvelle taxonomie des algues Dasycladales. Bulletin des centres de recherches exploration-production Elf-Aquitaine 12: 165217.Google Scholar
Deniaud-Bouët, E., Kervarec, N., Michel, G. et al. (2014). Chemical and enzymatic fractionation of cell walls from Fucales: Insights into the structure of the extracellular matrix of brown algae. Annals of Botany 114: 12031216.CrossRefGoogle ScholarPubMed
Denny, M. W. & King, F. A. (2016). The extraordinary joint material of an articulated coralline alga. II. Modeling the structural basis of its mechanical properties. Journal of Experimental Biology 219: 18431850.CrossRefGoogle ScholarPubMed
Domozych, D. S. & Domozych, C. E. (2014). Multicellularity in green algae: Upsizing in a walled complex. Frontiers in Plant Science 5: 649.CrossRefGoogle Scholar
Dragastan, O. N. & Schlagintweit, F. (2005). Mesozoic algae of family Protohalimedaceae Dragastan, Littler & Littler, 2002 (Chlorophycota): A critical review. Acta Palaeontologica Romaniae 5: 107140.Google Scholar
Eme, L., Sharpe, S. C., Brown, M. W. et al. (2014). On the age of eukaryotes: Evaluating evidence from fossils and molecular clocks. Cold Spring Harbor Perspectives in Biology 6: 165180.CrossRefGoogle ScholarPubMed
Floc’h, J. (1982). Uptake of inorganic ions and their long distance transport in Fucales and Laminariales. In: Srivastava, L. M. (ed.) Synthetic and Degradative Processes in Marine Macrophytes: Proceedings of a Conference Held at Bamfield Marine Station, Bamfield, Vancouver Island, British Columbia, May 16–18. W. de Gruyter. Berlin; New York, NY, pp. 139166.Google Scholar
Flores, E. & Herrero, A. (2010). Compartmentalized function through cell differentiation in filamentous cyanobacteria. Nature Reviews Microbiology 8: 3950.CrossRefGoogle ScholarPubMed
Gibson, T. M., Shih, P. M., Cumming, V. M. et al. (2017). Precise age of Bangiomorpha pubescens dates the origin of eukaryotic photosynthesis. Geology 46: 135138.CrossRefGoogle Scholar
Harder, D. L., Speck, O., Hurd, C. L. et al. (2004). Reconfiguration as a prerequisite for survival in highly unstable flow-dominated habitats. Journal of Plant Growth Regulation 23: 98107.CrossRefGoogle Scholar
Haug, A. & Jensen, A. (1954). Seasonal Variations in the Chemical Composition of Alaria Esculenta, Laminaria Saccharina, Laminaria Hyperborea and Laminaria Digitata From Northern Norway. Akademisk Trykningssentral, Oslo, Norway, p. 14.Google Scholar
Hein, M., Pedersen, M. F. & Sand-Jensen, K. (1995). Size-dependent nitrogen uptake in micro-and macroalgae. Marine Ecology Progress Series 118: 247253.CrossRefGoogle Scholar
Hepburn, C. D., Frew, R. D. & Hurd, C. L. (2012). Uptake and transport of nitrogen derived from sessile epifauna in the giant kelp Macrocystis pyrifera. Aquatic Biology 14: 121128.CrossRefGoogle Scholar
Herron, M. D., Hackett, J. D., Aylward, F. O. et al. (2009). Triassic origin and early radiation of multicellular volvocine algae. Proceedings of the National Academy of Sciences USA 106: 32543258.CrossRefGoogle ScholarPubMed
Hillis-Colinvaux, L. (1980). Ecology and taxonomy of Halimeda: Primary producer of coral reefs. Advances in Marine Biology 17: 1327.CrossRefGoogle Scholar
Hurd, C. L. (2000). Water motion, marine macroalgal physiology, and production. Journal of Phycology 36: 453472.CrossRefGoogle ScholarPubMed
Hurd, C. L., Harrison, P. J., Bischof, K. et al. (2014). Seaweed Ecology and Physiology. Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
Hurd, C. L., Lenton, A., Tilbrook, B. et al. (2018). Current understanding and challenges for oceans in a higher-CO2 world. Nature Climate Change 8: 686694.CrossRefGoogle Scholar
Jackson, C., Knoll, A. H., Chan, C. X. et al. (2018). Plastid phylogenomics with broad taxon sampling further elucidates the distinct evolutionary origins and timing of secondary green plastids. Scientific Reports 8: 1523.CrossRefGoogle ScholarPubMed
Jacobs, W. P. (1994). Caulerpa. Scientific American 271: 100105.CrossRefGoogle Scholar
Knoll, A. H. (2011). The multiple origins of complex multicellularity. Annual Review of Earth and Planetary Science. 39: 217239.CrossRefGoogle Scholar
Knoll, A. H. (2014). Paleobiological perspectives on early eukaryotic evolution. Cold Spring Harb. Perspectives in Biology 6: a016121.CrossRefGoogle ScholarPubMed
Koehl, M., Silk, W. K., Liang, H. et al. (2008). How kelp produce blade shapes suited to different flow regimes: A new wrinkle. Integrative and Comparative Biology 48: 834851.CrossRefGoogle ScholarPubMed
Kordé, K. B. (1973). Cambrian algae. Nauka, Moscow.Google Scholar
Kraemer, G. P. & Chapman, D. J. (1991). Effects of tensile force and nutrient availability on carbon uptake and cell wall synthesis in blades of juvenile Egregia menziesii (Turn.) Aresch. (Phaeophyta). Journal of Experimental Marine Biology and Ecology 149: 267277.CrossRefGoogle Scholar
Lee, W.-K., Lim, Y.-Y., Leow, A. T.-C. et al. (2017). Biosynthesis of agar in red seaweeds: A review. Carbohydrate Polymers 164: 2330.CrossRefGoogle ScholarPubMed
LoDuca, S., Bykova, N., Wu, M. et al. (2017). Seaweed morphology and ecology during the great animal diversification events of the early Paleozoic: A tale of two floras. Geobiology. 15: 588616.CrossRefGoogle ScholarPubMed
LoDuca, S. T., Kluessendorf, J. & Mikulic, D. G. (2003). A new noncalcified dasycladalean alga from the Silurian of Wisconsin. Journal of Paleontology 77: 11521158.2.0.CO;2>CrossRefGoogle Scholar
Mach, K. J., Nelson, D. V. & Denny, M. W. (2007). Techniques for predicting the lifetimes of wave-swept macroalgae: A primer on fracture mechanics and crack growth. Journal of Experimental Biology 210: 22132230.CrossRefGoogle ScholarPubMed
Magallón, S., Gómez-Acevedo, S., Sánchez-Reyes, L. L. et al. (2015). A metacalibrated time-tree documents the early rise of flowering plant phylogenetic diversity. New Phytologist 207: 437453.CrossRefGoogle ScholarPubMed
Meredith, R. W., Janecka, J. E., Gatesy, J. et al. (2011). Impacts of the cretaceous terrestrial revolution and KPg extinction on mammal diversification. Science 334: 521524.CrossRefGoogle ScholarPubMed
Miller, S. M., Wing, S. R. & Hurd, C. L. (2006). Photoacclimation of Ecklonia radiata (Laminariales, Heterokontophyta) in Doubtful Sound, Fjordland, Southern New Zealand. Phycologia 45: 4452.CrossRefGoogle Scholar
Monro, K. & Poore, A. G. (2009). Performance benefits of growth-form plasticity in a clonal red seaweed. Biological Journal of the Linnean Society 97: 8089.CrossRefGoogle Scholar
Mullineaux, C. W., Mariscal, V., Nenninger, A. et al. (2008). Mechanism of intercellular molecular exchange in heterocyst-forming cyanobacteria. The EMBO journal 27: 12991308.CrossRefGoogle ScholarPubMed
Nash, M. C., Martin, S. & Gattuso, J.-P. (2016). Mineralogical response of the Mediterranean crustose coralline alga Lithophyllum cabiochae to near-future ocean acidification and warming. Biogeosciences 13: 59375945.CrossRefGoogle Scholar
Niklas, K. J. (2000). The evolution of plant body plans: A biomechanical perspective. Annals of Botany 85: 411438.CrossRefGoogle Scholar
Niklas, K. J. (2013). Biophysical and size-dependent perspectives on plant evolution. Journal of Experimental Botany 64: 48174827.CrossRefGoogle ScholarPubMed
Niklas, K. J. & Newman, S. A. (2013). The origins of multicellular organisms. Evolution & Development 15: 4152.CrossRefGoogle ScholarPubMed
Parfrey, L. W., Lahr, D. J. G., Knoll, A. H. et al. (2011). Estimating the timing of early eukaryotic diversification with multigene molecular clocks. Proceedings of the National Academy of Sciences USA 108: 1362413629.CrossRefGoogle ScholarPubMed
Peña, V., Vielera, C., Braga, J. C. et al. (2020). Radiation of the coralline red algae (Corallinophycideae, Rhodophyta) crown group as inferred from a multilocus time-calibrated phylogeny. Molecular Phylogenetics and Evolution 150: 106845.CrossRefGoogle Scholar
Porter, S. M. (2004). The fossil record of early eukaryotic diversification. The Paleontological Society Papers 10: 3550.CrossRefGoogle Scholar
Prajapati, V. D., Maheriya, P. M., Jani, G. K. et al. (2014). Carrageenan: A natural seaweed polysaccharide and its applications. Carbohydrate Polymers 105: 97112.CrossRefGoogle ScholarPubMed
Pritchard, D. W., Hurd, C. L., Beardall, J. et al. (2015). Restricted use of nitrate and a strong preference for ammonium reflects the nitrogen ecophysiology of a light-limited red alga. Journal of Phycology 51: 277287.CrossRefGoogle Scholar
Pueschel, C. M. & Cole, K. M. (1982). Rhodophycean pit plugs: An ultrastructural survey with taxonomic implications. American Journal of Botany 69: 703720.CrossRefGoogle Scholar
Rajanikanth, A. (1989). A fossil marine brown alga from the Gangapur formation, Pranhita-Godavari graben. Current Science (Bangalore) 58: 7880.Google Scholar
Raven, J. A. (1997). Miniview: Multiple origins of plasmodesmata. European Journal of Phycology 32: 95101.CrossRefGoogle Scholar
Raven, J. A. (2003). Long-distance transport in non-vascular plants. Plant, Cell & Environment 26: 7385.CrossRefGoogle Scholar
Riding, R. & Braga, J. C. (2005). Halysis Høeg, 1932 – An Ordovician coralline red alga? Journal of Paleontology 79: 835841.CrossRefGoogle Scholar
Riding, R., Cope, J. C. W. & Taylor, P. D. (1998). A coralline-like red alga from the lower Ordovician of Wales. Palaeontology 41: 10691076.Google Scholar
Roberson, J. A. & Coyer, L. M. (2004). Variation in blade morphology of the kelp Eisenia arborea: Incipient speciation due to local water motion? Marine Ecology Progress Series 282: 115128.CrossRefGoogle Scholar
Rösler, A., Perfectti, F., Peña, V. et al. (2017). Timing of the evolutionary history of Corallinaceae (Corallinales, Rhodophyta). Journal of Phycology 53: 567576.CrossRefGoogle ScholarPubMed
Sánchez-Baracaldo, P., Raven, J. A., Pisani, D. et al. (2017). Early photosynthetic eukaryotes inhabited low-salinity habitats. Proceedings of the National Academy of Sciences USA 114: E7737E7745.CrossRefGoogle ScholarPubMed
Schirrmeister, B. E., Antonelli, A. & Bagheri, H. C. (2011). The origin of multicellularity in cyanobacteria. BMC Evolutionary Biology 11: 45.CrossRefGoogle ScholarPubMed
Schirrmeister, B. E., de Vos, J. M., Antonelli, A. et al. (2013). Evolution of multicellularity coincided with increased diversification of cyanobacteria and the Great Oxidation Event. Proceedings of the National Academy of Sciences USA 110: 17911796.CrossRefGoogle ScholarPubMed
Silberfeld, T., Leigh, J. W., Verbruggen, H. et al. (2010). A multi-locus time-calibrated phylogeny of the brown algae (Heterokonta, Phaeophyceae): Investigating the evolutionary nature of the ‘Brown Algal Crown Radiation’. Molecular Phylogenetics and Evolution 56: 659674.CrossRefGoogle ScholarPubMed
Steneck, R. (1985). Adaptations of crustose coralline algae to herbivory: Patterns in space and time. In Toomey, D. F. & Nitecki, M. H. (eds.) Paleoalgology. Springer, Berlin, Heidelberg, pp. 352366.CrossRefGoogle Scholar
Steneck, R. S. (1986). The ecology of coralline algal crusts: Convergent patterns and adaptative strategies. Annual Review of Ecology and Systematics 17: 273303.CrossRefGoogle Scholar
Tang, Q., Pang, K., Yuan, X. & Xiao, S. (2020). A one-billion-year-old multicellular chlorophyte. Nature Ecology and Evolution 10: 1038/s41559-020-1122-9.Google Scholar
Taylor, R. & Rees, T. A. V. (1998). Excretory products of mobile epifauna as a nitrogen source for seaweeds. Limnology and Oceanography 43: 600606.CrossRefGoogle Scholar
Terauchi, A. M. (2011). Ultrastructural Study on Plasmodesmata in the Brown Alga Dictyota dichotoma (Dictyotales, Phaeophyceae). Master, Hokkaido University, p. 62.Google Scholar
Terauchi, M., Nagasato, C. & Motomura, T. (2015). Plasmodesmata of brown algae. Journal of Plant Research 128: 715.CrossRefGoogle ScholarPubMed
Tomitani, A., Knoll, A. H., Cavanaugh, C. M. et al. (2006). The evolutionary diversification of cyanobacteria: Molecular-phylogenetic and paleontological perspectives. Proceedings of the National Academy of Sciences USA 103: 54425447.CrossRefGoogle ScholarPubMed
van den Hoek, C., Mann, D. G. & Jahns, H. M. (1995). Algae: An Introduction to Phycology. Cambridge University Press, Cambridge, p. 640.Google Scholar
Verbruggen, H., Ashworth, M., LoDuca, S. T. et al. (2009). A multi-locus time-calibrated phylogeny of the siphonous green algae. Molecular Phylogenetics and Evolution 50: 642653.CrossRefGoogle ScholarPubMed
Wallentinus, I. (1984). Comparisons of nutrient uptake rates for Baltic macroalgae with different thallus morphologies. Marine Biology 80: 215225.CrossRefGoogle Scholar
Warnock, R. C. M., Parham, J. F., Joyce, W. G. et al. (2015). Calibration uncertainty in molecular dating analyses: There is no substitute for the prior evaluation of time priors. Proceedings of the Royal Society B 282: 20141013. https://doi.org/10.1098/rspb.2014.1013.CrossRefGoogle ScholarPubMed
Wood, R., Liu, A. G., Bowyer, F. et al. (2019). Integrated records of environmental change and evolution challenge the Cambrian Explosion. Nature Ecology and Evolution 3: 528538.CrossRefGoogle ScholarPubMed
Xiao, S. H., Knoll, A. H., Yuan, X. L. et al. (2004). Phosphatized multicellular algae in the Neoproterozoic Doushantuo Formation, China, and the early evolution of florideophyte red algae. American Journal of Botany 91: 214227.CrossRefGoogle ScholarPubMed
Xiao, S. H., Zhang, Y. & Knoll, A. H. (1998). Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite. Nature 391: 553558.CrossRefGoogle Scholar
Yang, E. C., Boo, S. M., Bhattacharya, D. et al. (2016). Divergence time estimates and the evolution of major lineages in the florideophyte red algae. Scientific Reports 6: 21361.CrossRefGoogle ScholarPubMed
Yang, Z., Ma, X., Wang, Q. et al. (2023). Phylotranscriptomics unveil a Paleoproterozoic-Mesoproterozoic origin and deep relationships of the Viridiplantae. Nature Communications 14: 10.1038/s41467-023-41137-5.Google ScholarPubMed
Ye, Q., Tong, J., Xiao, S. et al. (2015). The survival of benthic macroscopic phototrophs on a Neoproterozoic snowball Earth. Geology 43: 507510.CrossRefGoogle Scholar
Yoon, H. S., Hackett, J. D., Ciniglia, C. et al. (2004). A molecular timeline for the origin of photosynthetic eukaryotes. Molecular Biology and Evolution 21: 809818.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×