Book contents
- Evolutionary Physiology of Algae and Aquatic Plants
- Evolutionary Physiology of Algae and Aquatic Plants
- Copyright page
- Contents
- Contributors
- Preface
- Acknowledgments
- 1 Environmental Changes Impacting on, and Caused by, the Evolution of Photosynthetic Organisms
- Part I Origins and Consequences of Early Photosynthetic Organisms
- Part II Physiology of Photosynthetic Autotrophs in Present-Day Environments
- 7 Light as a Major Driver of Algal Physiology and Evolution
- 8 Temperature: Still an Enigmatic Driver in the Evolution and Physiology of Algae
- 9 Nutrient Acquisition by Algae and Aquatic Embryophytes
- 10 Salinity
- 11 Desiccation
- 12 Trait Trade-Offs in Mixoplankton: An Analysis
- 13 Effects of Pollutants on Microalgae
- 14 Algae in Extreme and Unusual Environments
- Part III The Future
- Index
- References
10 - Salinity
from Part II - Physiology of Photosynthetic Autotrophs in Present-Day Environments
Published online by Cambridge University Press: 24 October 2024
- Evolutionary Physiology of Algae and Aquatic Plants
- Evolutionary Physiology of Algae and Aquatic Plants
- Copyright page
- Contents
- Contributors
- Preface
- Acknowledgments
- 1 Environmental Changes Impacting on, and Caused by, the Evolution of Photosynthetic Organisms
- Part I Origins and Consequences of Early Photosynthetic Organisms
- Part II Physiology of Photosynthetic Autotrophs in Present-Day Environments
- 7 Light as a Major Driver of Algal Physiology and Evolution
- 8 Temperature: Still an Enigmatic Driver in the Evolution and Physiology of Algae
- 9 Nutrient Acquisition by Algae and Aquatic Embryophytes
- 10 Salinity
- 11 Desiccation
- 12 Trait Trade-Offs in Mixoplankton: An Analysis
- 13 Effects of Pollutants on Microalgae
- 14 Algae in Extreme and Unusual Environments
- Part III The Future
- Index
- References
Summary
Over 70% of the Earth’s surface is covered by saline environments. While the salinity of the open ocean is fairly stable, in coastal waters and estuaries, where river freshwater mixes with marine water bodies, salinity is usually highly variable, and, in some situations, such as lagoons or rock pools, evaporation of water can lead to hypersaline conditions. Changes in salinity directly affect water potential and turgor pressure in walled cells. Furthermore, salinity changes alter the intracellular concentration of inorganic ions such as sodium, which can have deleterious effects on processes such as photosynthesis and respiration. Salinity can therefore pose challenges for the physiology and growth of aquatic phototrophs. Algae respond to differences in salinity through a range of physiological mechanisms, including osmotic adjustment involving inorganic ion fluxes and the production of organically compatible solutes. In some cases, acclimation to salinity involves ultrastructural plasticity. Horizontal salinity gradients, found in environments including estuaries, lagoons or semi-isolated systems such as the Baltic Sea, promote the development of physiologically distinct variants of algal species, known as ecotypes, and eventually speciation in algae.
Keywords
- Type
- Chapter
- Information
- Evolutionary Physiology of Algae and Aquatic Plants , pp. 194 - 208Publisher: Cambridge University PressPrint publication year: 2024