Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-13T05:10:07.290Z Has data issue: false hasContentIssue false

Section 3 - Fetal anomalies

Published online by Cambridge University Press:  05 April 2016

Bidyut Kumar
Affiliation:
Wrexham Maelor Hospital
Zarko Alfirevic
Affiliation:
University of Liverpool
Get access
Type
Chapter
Information
Fetal Medicine , pp. 81 - 200
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Myrianthopoulos, NC. Epidemiology of central nervous system malformations. In: Vinken, PJ, Bruyn, GW, eds. Handbook of Clinical Neurology. Amsterdam: Elsevier; 1977: 139–71.Google Scholar
Gupta, JK, Bryce, FC, Lilford, RJ. Management of apparently isolated fetal ventriculomegaly. Obstet Gynecol Surv. 1994; 49(10): 716–21.CrossRefGoogle ScholarPubMed
Melchiorre, K, Bhide, A, Gika, AD, et al. Counseling in isolated mild fetal ventriculomegaly. Ultrasound Obstet Gynecol 2009; 34(2): 212–24.CrossRefGoogle ScholarPubMed
Agathokleous, M, Chaveeva, P, Poon, LC, et al. Meta-analysis of second-trimester markers for trisomy 21. Ultrasound Obstet Gynecol 2013; 41(3): 247–61.CrossRefGoogle ScholarPubMed
Johnson, SP, Sebire, NJ, Snijders, RJ, et al. Ultrasound screening for anencephaly at 10–14 weeks of gestation. Ultrasound Obstet Gynecol 1997; 9(1): 14–6.Google Scholar
Ghi, T, Pilu, G, Falco, P, et al. Prenatal diagnosis of open and closed spina bifida. Ultrasound Obstet Gynecol 2006; 28(7): 899903.CrossRefGoogle ScholarPubMed
Van den Hof, MC, Nicolaides, KH, Campbell, J, et al. Evaluation of the lemon and banana signs in one hundred thirty fetuses with open spina bifida. Am J Obstet Gynecol 1990; 162(2): 322–7.Google Scholar
Appasamy, M, Roberts, D, Pilling, D, et al. Antenatal ultrasound and magnetic resonance imaging in localizing the level of lesion in spina bifida and correlation with postnatal outcome. Ultrasound Obstet Gynecol 2006; 27(5): 530–6.CrossRefGoogle ScholarPubMed
Khalil, A, Caric, V, Papageorghiou, A, et al. Prenatal prediction of need for ventriculoperitoneal shunt in open spina bifida. Ultrasound Obstet Gynecol 2014; 43(2): 159–64.CrossRefGoogle ScholarPubMed
Goldstein, RB, LaPidus, AS, Filly, RA. Fetal cephaloceles: diagnosis with US. Radiology 1991; 180(3): 803–8.CrossRefGoogle ScholarPubMed
Blaas, HG, Eriksson, AG, Salvesen, KA, et al. Brains and faces in holoprosencephaly: pre- and postnatal description of 30 cases. Ultrasound Obstet Gynecol 2002; 19(1): 2438.CrossRefGoogle ScholarPubMed
Santo, S, D’Antonio, F, Homfray, T, et al. Counseling in fetal medicine: agenesis of the corpus callosum. Ultrasound Obstet Gynecol 2012; 40(5): 513–21.CrossRefGoogle ScholarPubMed
Sotiriadis, A, Makrydimas, G. Neurodevelopment after prenatal diagnosis of isolated agenesis of the corpus callosum: an integrative review. Am J Obstet Gynecol 2012; 206(4): 337 e15.CrossRefGoogle ScholarPubMed
Bault, JP, Salomon, LJ, Guibaud, L, et al. Role of three-dimensional ultrasound measurement of the optic tract in fetuses with agenesis of the septum pellucidum. Ultrasound Obstet Gynecol 2011; 37(5): 570–5.CrossRefGoogle ScholarPubMed
Robinson, AJ. Inferior vermian hypoplasia – preconception, misconception. Ultrasound Obstet Gynecol. 2014; 43(2): 123–36.Google Scholar
Gandolfi Colleoni, G, Contro, E, Carletti, A, et al. Prenatal diagnosis and outcome of fetal posterior fossa fluid collections. Ultrasound Obstet Gynecol 2012; 39(6): 625–31.CrossRefGoogle ScholarPubMed
Limperopoulos, C, Robertson, RL, Estroff, JA, et al. Diagnosis of inferior vermian hypoplasia by fetal magnetic resonance imaging: potential pitfalls and neurodevelopmental outcome. Am J Obstet Gynecol 2006; 194(4): 1070–6.CrossRefGoogle ScholarPubMed
Quarello, E, Molho, M, Garel, C, et al. Prenatal abnormal features of the fourth ventricle in Joubert syndrome and related disorders. Ultrasound Obstet Gynecol 2014; 43(2): 227–32.Google Scholar
Ghi, T, Simonazzi, G, Perolo, A, et al. Outcome of antenatally diagnosed intracranial hemorrhage: case series and review of the literature. Ultrasound Obstet Gynecol 2003; 22(2): 121–30.CrossRefGoogle ScholarPubMed
Govaert, P. Prenatal stroke. Semin Fetal Neonatal Med 2009; 14(5): 250–66.CrossRefGoogle ScholarPubMed
Picone, O, Teissier, N, Cordier, AG, et al. Detailed in utero ultrasound description of 30 cases of congenital cytomegalovirus infection. Prenat Diagn 2014; 34(6): 518–24.CrossRefGoogle ScholarPubMed
Chervenak, FA, Rosenberg, J, Brightman, RC, et al. A prospective study of the accuracy of ultrasound in predicting fetal microcephaly. Obstet Gynecol 1987; 69(6): 908–10.Google Scholar
Stoler-Poria, S, Lev, D, Schweiger, A, et al. Developmental outcome of isolated fetal microcephaly. Ultrasound Obstet Gynecol 2010; 36(2): 154–8.Google Scholar
Schlembach, D, Bornemann, A, Rupprecht, T, et al. Fetal intracranial tumors detected by ultrasound: a report of two cases and review of the literature. Ultrasound Obstet Gynecol 1999; 14(6): 407–18.Google Scholar
Tworetzky, W, McElhinney, DB, Margossian, R, et al. Association between cardiac tumors and tuberous sclerosis in the fetus and neonate. Am J Cardiol 2003; 92(4): 487–9.Google Scholar
Sepulveda, W, Platt, CC, Fisk, NM. Prenatal diagnosis of cerebral arteriovenous malformation using color Doppler ultrasonography: case report and review of the literature. Ultrasound Obstet Gynecol 1995; 6(4): 282–6.Google Scholar
Garel, C, Azarian, M, Lasjaunias, P, et al. Pial arteriovenous fistulas: dilemmas in prenatal diagnosis, counseling and postnatal treatment. Report of three cases. Ultrasound Obstet Gynecol 2005; 26(3): 293–6.CrossRefGoogle ScholarPubMed
Laurichesse Delmas, H, Winer, N, Gallot, D, et al. Prenatal diagnosis of thrombosis of the dural sinuses: report of six cases, review of the literature and suggested management. Ultrasound Obstet Gynecol 2008; 32(2): 188–98.Google Scholar
Malinger, G, Kidron, D, Schreiber, L, et al. Prenatal diagnosis of malformations of cortical development by dedicated neurosonography. Ultrasound Obstet Gynecol 2007; 29(2): 178–91.CrossRefGoogle ScholarPubMed

References

Nyberg, DA, Sicjkler, GK, Hegg, F, et al. Fetal cleft lip with or without cleft palate: ultrasound classification and correlation with outcome. Radiology 1995; 195: 677–84.CrossRefGoogle ScholarPubMed
Cockell, A, Lees, M. Prenatal diagnosis and management of orofacial clefts. Prenat Diagn 2000; 20(2): 149–51.Google Scholar
Bergé, SJ, Plath, H, Van de Vondel, PT, et al. Fetal cleft lip and palate: sonographic diagnosis, chromosomal abnormalities, associated anomalies and postnatal outcome in 70 fetuses. Ultrasound Obstet Gynecol 2001; 18(5): 422–31.Google Scholar
Bergé, SJ, Plath, H, von Lindern, JJ, et al. Natural history of 70 fetuses with a prenatally diagnosed orofacial cleft. Fetal Diagn Ther 2002; 17(4): 247–51.CrossRefGoogle ScholarPubMed
Geis, N, Seto, B, Bartoshesky, L, et al. The prevalence of congenital heart disease among the population of a metropolitan cleft lip and palate clinic. Cleft Palate J 1981; 18(1): 1923.Google ScholarPubMed
Wilcox, AJ, Lie, RT, Solvoll, K, et al. Folic acid supplements and risk of facial clefts: national population based case-control study. BMJ 2007; 334(7591): 464.CrossRefGoogle ScholarPubMed
Firth, H, Hurst, J. Oxford Desk Reference Clinical Genetics, ch 2: p. 77. Oxford University Press, 2007.Google Scholar
Bromley, B, Benacerraf, BR. Fetal micrognathia: associated anomalies and outcome. J Ultrasound Med 1994; 13(7): 529–33.Google Scholar
Vettraino, IM, Lee, W, Bronsteen, RA, et al. Clinical outcome of fetuses with sonographic diagnosis of isolated micrognathia. Obstet Gynecol 2003; 102(4): 801–5.Google Scholar
Nicolaides, K. The 11–13+6 week scan. The Fetal Medicine Foundation, 2004.Google Scholar
Souka, AP, Von Kaisenberg, CS, Hyett, JA, et al. Increased nuchal translucency with a normal karyotype. Am J Obstet Gynecol 2005; 192(4): 1005–21.CrossRefGoogle ScholarPubMed
National Health Service. Nuchal translucency greater than or equal to 3.5 mm. FASP, 2010.Google Scholar
Atzei, A1, Gajewska, K, Huggon, IC, et al. Relationship between nuchal translucency thickness and prevalence of major cardiac defects in fetuses with normal karyotype. Ultrasound Obstet Gynecol 2005; 26(2): 154–7.Google Scholar
Malone, FD, Ball, RH, Nyberg, DA, et al; FASTER Trial Research Consortium. First-trimester septated cystic hygroma: prevalence, natural history, and pediatric outcome. Obstet Gynecol 2005; 106(2): 288–94.Google Scholar

References

Carvalho, JS, Allan, LD, Chaoui, R, et al. ISUOG Practice Guidelines (updated): sonographic screening examination of the fetal heart. Ultrasound Obstet Gynecol 2013; 41: 348–59.Google Scholar
The American Institute of Ultrasound in Medicine. AIUM practice guideline for the performance of fetal echocardiography. J Ultrasound Med 2011; 30: 12736.Google Scholar
Cardiac screening examination of the fetus: guidelines for performing the ‘basic’ and extended basic’ cardiac scan. Ultrasound Obstet Gynecol 2006; 27(1): 107–13.Google Scholar
Yagel, S, Cohen, SM, Achiron, R. Examination of the fetal heart by five short axis views: a proposed screening method for comprehensive cardiac evaluation. Ultrasound Obstet Gynecol 2001; 17(5): 367–9.CrossRefGoogle ScholarPubMed
Rychik, J, Ayres, N, Cuneo, B, et al. American Society of Echocardiography guidelines and standards for performance of the fetal echocardiogram. J Am Soc Echocardiogr 2004; 17: 803–10.Google Scholar
Vergani, P, Mariani, S, Ghidini, A, et al. Screening for congenital heart disease with the four chamber view of the fetal heart. Am J Obstet Gynecol 1992; 167: 1000–3.Google Scholar
Buskens, E, Grobbee, DE, Frohn-Mulder, IM, et al. Efficacy of routine fetal ultrasound screening for congenital heart disease in normal pregnancy. Circulation 1996; 94: 6772.Google Scholar
Copel, JA, Pilu, G, Green, J, et al. Fetal echocardiographic screening for congenital heart disease: The importance of the four-chamber view. Am J Obstet Gynecol 1987; 157: 648.Google Scholar
Oggè, G, Gaglioti, P, Maccanti, S, et al. Prenatal screening for congenital heart disease with four-chamber and outflow-tract views: A multicenter study. Ultrasound Obstet Gynecol 2006; 28: 779.Google Scholar
Chaoui, R. The four-chamber view: four reasons why it seems to fail in screening for cardiac abnormalities and suggestions to improve detection rates. Ultrasound Obstet Gynecol 2003; 22: 3.Google Scholar
DeVore, GR. The aortic and pulmonary outflow tract screening in the human fetus. J Ultrasound Med 1992; 11: 345.Google Scholar
Carvalho, JS, Mavrides, E, Shinebourne, E, et al. Improving the effectiveness of routine prenatal screening for major congenital heart defects. Heart 2002; 88: 387.CrossRefGoogle ScholarPubMed
Kirk, JS, Riggs, TW, Comstock, CH, et al. Prenatal screening for cardiac anomalies: The value of routine addition of the aortic root to the four chamber view. Obstet Gynecol 1994; 84: 427.Google Scholar
Allan, L, Hornberger, L, Sharland, G (eds). Textbook of Fetal Cardiology. London: Greenwich Medical Media, 2000.Google Scholar
Yagel, S, Silverman, N, Gembruch, U (eds). Fetal Cardiology. London: Martin Dunitz, 2003.Google Scholar
Schneider, C, McCrindle, BW, Carvalho, JS, et al. Development of Z-scores for fetal cardiac dimensions from echocardiography. Ultrasound Obstet Gynecol 2005; 26: 599.CrossRefGoogle ScholarPubMed
DeVore, G. The use of Z-scores in the analysis of fetal cardiac dimensions. Ultrasound Obstet Gynecol 2005; 26: 596.Google Scholar
Firpo, C, Hoffman, J, Silverman, N. Evaluation of fetal heart dimensions from 12 weeks to term. Am J Cardiol 2001; 87: 594.Google Scholar
Khoshnood, B, De Vigan, C, Vodovar, V, et al. Trends in prenatal diagnosis, pregnancy termination, and perinatal mortality of newborns with congenital heart disease in France, 1983–2000: a population-based evaluation. Pediatrics 2005; 115: 95.Google Scholar
Hoffman, JI, Kaplan, S. The incidence of congenital heart disease. J. Am. Coll. Cardiol 2002; 39: 18901900.Google Scholar
Ferencz, C, Rubin, JD, McCarter, RJ, et al. Congenital heart disease: Prevalence at live birth. The Baltimore-Washington Infant Study. Am J Epidemiol 1985; 121: 31.Google Scholar
Garne, E, Stoll, C, Clementi, M; Euroscan Group. Evaluation of prenatal diagnosis of congenital heart diseases by ultrasound: experience from 20 European registries. Ultrasound Obstet Gynecol 2001; 17: 386.CrossRefGoogle ScholarPubMed
Ariane, J, Marelli, AS, Mackie, RII, et al. Congenital heart disease in the general population changing prevalence and age distribution. Circulation 2007; 115: 163172.Google Scholar
van der Linde, D, Konings, EE, Slager, MA, et al. Birth prevalence of congenital heart disease worldwide: a systematic review and meta-analysis. J Am Coll Cardiol 2011; 58(21): 2241–7.Google Scholar
Hoffman, J, Christianson, R. Congenital heart disease in a cohort of 19,502 births with long-term follow-up. Am J Cardiol 1978; 42: 641.CrossRefGoogle Scholar
Allen, H, Gutgesell, H, Clark, E, et al. (eds). Moss and Adams’ Heart Disease in Infants, Children and Adolescents Including the Fetus and Young Adult, 6th ed. Philadelphia: Lippincott Williams & Wilkins, 2001.Google Scholar
Keane, J, Lock, J, Fyler, D, et al. (eds). Nadas’ Pediatric Cardiology, 2nd edn. Philadelphia: Saunders, 2006.Google Scholar
Rajiah, P, Mak, C, Dubinksy, TJ, et al. Ultrasound of fetal cardiac anomalies. AJR Am J Roentgenol 2011; 197(4): W74760.Google Scholar
Burch, M. Congenital heart disease. Medicine 2006; 34; 7: 274281.Google Scholar
Jaeggi, ET, Sholler, GF, Jones, OD, et al. Comparative analysis of pattern, management and outcome or pre versus postnatally diagnosed major congenital heart disease: A population-based study. Ultrasound Obstet Gynecol 2001; 17: 380.Google Scholar
Kirklin, JW, Barratt-Boyes, BG. Cardiac Surgery, 2nd edn. New York: Churchill Livingstone, 1993.Google Scholar
Anderson, RH, Macartney, FJ, Shinebourne, EA, et al. Paediatric Cardiology. Edinburgh: Churchill Livingstone, 2001.Google Scholar
Uzun, O Ethical dilemmas in Fetal Cardiology: improving outcomes or reducing incidence. Welsh Paed J 2008; 24: 2225.Google Scholar
Gopalakrishnan, PN, Sinha, A, Uzun, O. Change in referral and diagnostic trends in fetal cardiac screening over 7 years in South Wales. Arch Dis Child Fetal Neonatal Ed 2011; 96: Fa66Fa67.Google Scholar
Sinha, A, Gopalakrishnan, PN, Tucker, D, et al. Outcome after prenatal diagnosis of hypoplastic left heart syndrome (HLHS) in South Wales over a 7-year period. Arch Dis Child Fetal Neonatal Ed 2011; 96: Fa67.Google Scholar
Sinha, A, Gopalakrishnan, PN, Tucker, D, et al. Outcome of all antenatally diagnosed cases of complete atrioventricular septal defect (CAVSD) in South Wales over a 7 year period: impact of associated chromosomal anomalies. Arch Dis Child Fetal Neonatal Ed 2011; 96: Fa69.CrossRefGoogle Scholar
Uzun, O, Sinha, A. Outcome of hypoplastic left and right heart syndrome (HLHS and HRHS) after antenatal diagnosis in South Wales over a seven year period. Cardiol Young 2011; 21 (Suppl. 1): S1S167.Google Scholar
Uzun, O. Outcome of congenital heart defects associated with 22q11.2 Deletion. AEPC 2012, Istanbul. Cardiol Young 2012; 22 (Suppl. S1): S3S176.Google Scholar
Uzun, O, Ofoe, V, Worrall, S. Changing trends in tetralogy of Fallot: impact of improved antenatal detection rate, earlier catheter and surgical intervention. Cardiol Young 2014; 24 (Suppl. 1): S148.Google Scholar
Uzun, O, Babaoglu, K, Bendapudi, P, et al. Total anomalous pulmonary venous connection: clinical presentation and long term outcome of 60 patients at a single institution in 32 years. AEPC 2014 Helsinki. Cardiol Young 2014; 24 (Suppl. 1): S6061.Google Scholar
Pierpont, ME, Craig, T, Basson, D. Genetic basis for congenital heart defects: current knowledge. A scientific statement from the American Heart Association Congenital Cardiac Defects Committee Council on Cardiovascular Disease in the Young. Circulation 2007; 115: 301538.CrossRefGoogle ScholarPubMed
Peter, J, Gruber, PJ, Epstein, JA. Development gone awry: congenital heart Disease. Circ Res 2004; 94: 27383.Google Scholar
Kyle Niessen, K, Karsan, A. Notch signaling in cardiac development. Circ Res 2008; 102: 116981.Google Scholar
Stankunas, K, Shang, C, Twu, KY, et al. Pbx/Meis deficiencies demonstrate multigenetic origins of congenital heart disease. Circ Res 2008; 103: 7029.Google Scholar
James, J, Noba, JJ. Multifactorial inheritance hypothesis for the etiology of congenital heart diseases: the genetic-environmental interaction. Circulation 1968; 38: 60417.Google Scholar
Goldmuntz, E. The genetic contribution to congenital heart disease. Pediatr Clin N Am 2004; 51: 1721–37.Google Scholar
Marino, B, Digilio, MC. Congenital heart disease and genetic syndromes: Specific correlation between cardiac phenotype and genotype. Cardiovasc Pathol 2000; 9: 30315.Google Scholar
Nora, JJ, Nora, AH. Maternal transmission of congenital heart diseases: new recurrence risk figures and the questions of cytoplasmic inheritance and vulnerability to teratogens. Am J Cardiol 1987; 59: 459.CrossRefGoogle ScholarPubMed
Allan, LD, Crawford, DC, Chita, SK, et al. Familial recurrence of congenital heart disease in a prospective series of mothers referred for fetal echocardiography. Am J Cardiol 1986; 58: 334.CrossRefGoogle Scholar
Boughman, JA, Berg, KA, Astemborski, JA, et al. Familial risks of congenital heart defect in a population-based epidemiological study. Am J Med Genet 1987; 26: 839.Google Scholar
Whittemore, R, Wells, J, Castellsague, X. A second-generation study of 427 probands with congenital heart defects and their 837 children. J Am Coll Cardiol 1994; 23: 1459.CrossRefGoogle ScholarPubMed
Hyett, J, Perdu, M, Sharland, G, et al. Using fetal nuchal translucency to screen for major congenital cardiac defects at 10–14 weeks of gestation: population based cohort study. BMJ 1999; 318: 81.Google Scholar
Burn, J, Brennan, P, Little, J, et al: Recurrence risks in offspring of adults with major heart defects: Results from first cohort of British collaborative study. Lancet 1998; 351: 311.CrossRefGoogle ScholarPubMed
Garne, E, Stoll, C, Clementi, M; Euroscan Group. Evaluation of prenatal diagnosis of congenital heart diseases by ultrasound: experience from 20 European registries. Ultrasound Obstet Gynecol 2001; 17: 386.Google Scholar
Copel, JA, Pilu, G, Kleinman, CS. Congenital heart disease and extracardiac anomalies: Associations and indications for fetal echocardiography. Am J Obstet Gynecol 1986; 154: 1121.CrossRefGoogle ScholarPubMed
Kleinman, C, Nehgme, R, Copel, J. Fetal cardiac arrhythmias: diagnosis and therapy. In: Creasy, R, Resnik, R, Iams, J (eds). Maternal-Fetal Medicine, 5th edn. Philadelphia: Saunders, 2003.Google Scholar
Kleinman, CS, Nehgme, RA. Cardiac arrhythmias in the human fetus. Pediatr Cardiol 2004; 25: 234.CrossRefGoogle ScholarPubMed
Simpson, J. Fetal arrhythmias. Ultrasound Obstet Gynecol 2006; 27: 599.Google Scholar
Respondek, M, Wloch, A, Kaczmarek, P, et al. Diagnostic and perinatal management of fetal extrasystole. Pediatr Cardiol 1997; 18: 361.Google Scholar
Strasburger, J, Huhta, J, Carpenter, R, et al. Doppler echocardiography in the diagnosis and management of persistent fetal arrhythmias. J Am Coll Cardiol 1986; 7: 1386.Google Scholar
Uzun, O, Sinha, A, Beattie, B. Comparison of transplacental treatment of fetal supraventricular tachyarrhythmias with digoxin, flecainide, and sotalol: Results of a nonrandomized multicenter study. Circulation 2012; 125: e956.CrossRefGoogle ScholarPubMed
Uzun, O, Babaoglu, K, Sinha, A, et al. Rapid control of foetal supraventricular tachycardia with digoxin and flecainide combination treatment. Cardiol Young 2011; 29: 19.Google Scholar
Uzun, O, Babaoglu, K, Ayhan, YI, et al. Maternal serum antiarrhythmic drug levels do not predict fetal supraventricular tachycardia response time. AEPC 2013, London. Cardiol Young 2013; 23 (Suppl. 1): S57.Google Scholar
Babaoglu, K, Uzun, O, Ayhan, YI, et al. 10-year review of outcome of fetal arrhythmias in Wales. AEPC 2012, Istanbul. Cardiol Young 2012; 22 (Suppl. S1): S3S176.Google Scholar
Uzun, O. Outcome of heart block diagnosed during fetal and postnatal life. AEPC 2012, Istanbul. Cardiol Young 2012; 22 (Suppl. S1): S3S176.Google Scholar
Donofrio, MT, Moon-Grady, AJ, Hornberger, LK, et al; American Heart Association Adults with Congenital Heart Disease Joint Committee of the Council on Cardiovascular Disease in the Young and Council on Clinical Cardiology, Council on Cardiovascular Surgery and Anesthesia, and Council on Cardiovascular and Stroke Nursing. Diagnosis and treatment of fetal cardiac disease: a scientific statement from the American Heart Association. Circulation 2014; 129(21): 2183–242.CrossRefGoogle ScholarPubMed

References

Kumar, S. Thoracic Abnormalities. In: Handbook of Fetal Anomalies. Cambridge University Press, 2009: 4554.Google Scholar
Fong, K, Ohlsson, A, Zalev, A. Fetal thoracic circumference: a prospective cross sectional study with real time ultrasound. Am J Obstet Gynecol 1988; 158: 1154–60.Google Scholar
Nimrod, C, Nicholson, S, Davies, D, et al. Pulmonary hypoplasia testing in clinical obstetrics. Am J Obstet Gynecol 1988; 158: 277–80.Google Scholar
DeVore, GR, Horenstein, J, Platt, LD. Fetal echocardiography: assessment of cardiothoracic disproportion – a new technique for the diagnosis of thoracic hypoplasia. Am J Obstet Gynecol 1986; 155: 1066–74.Google Scholar
D’Alton, M, Mercer, B, Riddick, E, et al. Serial thoracic versus abdominal circumference ratios for the prediction of pulmonary hypoplasia in premature rupture of membranes remote from term. Am J Obstet Gynecol 1992; 166: 658–63.Google Scholar
Lipshutz, GS, et al. Prospective analysis of lung-to-head ratio predicts survival for patients with prenatally diagnosed congenital diaphragmatic hernia. J Pediatr Surg 1997; 32(11): 1634–6.Google Scholar
Kamal, A, Grigoratos, D, Cornelius, V, et al. Outcome of CDH infants following fetoscopic tracheal occlusion – influence of premature delivery. J Pediatric Surg 2013; 48 (9): 1831–6.Google Scholar
Cass, DL, et al. Prenatal diagnosis and outcome of fetal lung masses. J Pediatr Surg 2011; 46(2): 292–8.Google Scholar
Crombleholme, TM. Cystic adenomatoid malformation volume ratio predicts outcome in prenatally diagnosed cystic adenomatoid malformation of the lung. J Pediatr Surg 2002; 37(3): 331–8.Google Scholar
Adzick, NS, Flake, AW, Crombleholme, TM. Management of congenital lung lesions. Sem Pediatr Surg 2003; 12: 1016.Google Scholar
Frazier, AA, Rosado de Christenson, ML, Stocker, JT, et al. Intralobar sequestration: radiologic-pathologic correlation. Radiographics 1997; 17(3): 725–45.CrossRefGoogle ScholarPubMed
Smart, LM, Hendry, GM. Imaging of neonatal pulmonary sequestration including Doppler ultrasound. Br J Radiol 1991; 64(760): 324–9.CrossRefGoogle ScholarPubMed
Salmons, S. Pulmonary sequestration. Neonatal Netw 2000; 19(7): 2731.Google Scholar
Amitai, M, Konen, E, Rozenman, J, et al. Preoperative evaluation of pulmonary sequestration by helical CT angiography. AJR Am J Roentgenol 1996; 167(4): 1069–70.CrossRefGoogle ScholarPubMed
Ooi, GC, Cheung, CW, Lam, WK, et al. Pulmonary sequestration: diagnosis by magnetic resonance angiography and computed tomography. Chin Med J (Engl) 1999; 112(7): 668–70.Google ScholarPubMed
Donoghue, VB, Bjørnstad, PG. Radiological Imaging of the Neonatal Chest. Springer Verlag, 2007.Google Scholar
Berrocal, T, Madrid, C, Novo, S, et al. Congenital anomalies of the tracheobronchial tree, lung, and mediastinum: embryology, radiology, and pathology. Radiographics 2004; 24(1): e17.Google Scholar
Smith, RP, Illanes, S, Denbow, ML, et al. Outcome of fetal pleural effusions treated by thoracoamniotic shunting. Ultrasound Obstet Gynecol 2005; 26(1): 63–6.Google Scholar
Rustico, MA, Lanna, M, Coviello, D, et al. Fetal pleural effusion. Prenat Diagn 2007; 27: 793–9.Google Scholar
Knox, WF, Barson, AJ. Pulmonary hypoplasia in a regional perinatal unit. Early Hum. Dev 1986; 14 (1): 3342.Google Scholar
Berrocal, T, Madrid, C, Novo, S, et al. Congenital anomalies of the tracheobronchial tree, lung, and mediastinum: embryology, radiology, and pathology. Radiographics 24(1): e17.CrossRefGoogle Scholar
Bromley, B, Benacerraf, BR. Unilateral lung hypoplasia: report of three cases. J Ultrasound Med 1997; 16: 599601.Google Scholar
Onderoglu, L, Karamursell, S, Bulun, A et al. Prenatal diagnosis of laryngeal atresia prenatal diagnosis. Prenat Diagn 2003; 23: 277–80.Google Scholar

References

Fratelli, N, Papageorghiou, AT, Bhide, A, et al. Outcome of antenatally diagnosed abdominal wall defects Ultrasound Obstet Gynecol 2007; 30(3): 266–70.Google Scholar
Arnaoutoglou, CI, Pasquini, L, Abel, R, et al. Outcome of antenatally diagnosed fetal anterior abdominal wall defects from a single tertiary centre. Fetal Diagn Ther 2008; 24(4): 416–9.Google Scholar
Rankin, J, Dillon, E, Wright, C. Congenital anterior abdominal wall defects in the north of England, 1986–1996: occurrence and outcome. Prenat Diagn 1999; 19(7): 662–8.Google Scholar
Japaraj, RP, Hockey, R, Chan, FY. Gastroschisis: can prenatal sonography predict neonatal outcome? Ultrasound Obstet Gynecol 2003; 21(4): 329–33.Google Scholar
Goetzinger, KR, Tuuli, MG, Longman, RE, et al. Sonographic predictors of postnatal bowel atresia in fetal gastroschisis. Ultrasound Obstet Gynecol 2014; 43(4): 4205.Google Scholar
Heling, KS, Chaoui, R, Kirchmair, F, et al. Fetal ovarian cysts: prenatal diagnosis, management and postnatal outcome. Ultrasound Obstet Gynecol 2002; 20(1): 4750.Google Scholar

References

Sebire, NJ, Weber, MA, Thayyil, S, et al. Minimally invasive perinatal autopsies using magnetic resonance imaging and endoscopic post-mortem examination (“keyhole autopsy”): feasibility and initial experience. J Matern Fetal Neonatal Med 2012; 25: 513–8.Google Scholar
Arthurs, OJ, Thayyil, S, Addison, S, et al. Diagnostic accuracy of post-mortem MRI for musculoskeletal abnormalities in fetuses and children. Prenat Diagn 2014; 34: 1254–61.CrossRefGoogle Scholar
Chitty, LS, Griffin, DR, Meaney, C, et al. New aids for the non-invasive prenatal diagnosis of achondroplasia: dysmorphic features, charts of fetal size and molecular confirmation using cell free fetal DNA in maternal plasma. Ultrasound Obstet Gynecol 2011; 37: 283–9.Google Scholar
Chitty, LS, Mason, S, Barrett, AN, et al. Non-invasive prenatal diagnosis of achondroplasia and thanatophoric dysplasia: next generation sequencing allows for a safer, more accurate and comprehensive approach. Prenat Diagn 2015; 35(7): 656–62.Google Scholar
Lench, N, Barrett, A, Fielding, S, et al. The clinical implementation of non-invasive prenatal diagnosis for single gene disorders: challenges and progress made. Prenat Diagn 2013; 33: 555–62.CrossRefGoogle Scholar
Calder, AD, Offiah, AC. Foetal radiography for suspected skeletal dysplasia: technique, normal appearances, diagnostic approach. Pediatr Radiol 2015; 45: 536–48.Google Scholar
Chitty, LS, Campbell, S, Altman, DG. Measurement of the fetal mandible: feasibility and construction of a centile chart. Prenat Diagn 1993; 13: 749–56.Google Scholar
Chitty, LS, Altman, DG. Charts of fetal size: limb bones. Br J Obstet Gynaecol 2002; 109: 919–29.Google Scholar
Chitty, LS, Altman, DG. Charts of fetal size: kidney and renal pelvis measurements. Prenat Diagn 2003; 23: 891–7.Google Scholar
Chitty, LS, Altman, DG. Charts of fetal measurements. In: Fetal Medicine: Basic Science and Clinical Practice, Rodeck, CH, Whittle, M (eds). London: Churchill Livingstone, 2009: 721–66.Google Scholar
Pajkrt, E, Cicero, S, Griffin, DR, et al. Fetal forearm anomalies: prenatal diagnosis, associations and management strategy. Prenat Diagn 2012; 32: 1084–93.Google Scholar
Khalil, A, Pajkrt, E, Chitty, LS. Early prenatal diagnosis of skeletal anomalies. Prenat Diagn 2011; 31: 115–24.Google Scholar
Pajkrt, E, Griffin, DR, Chitty, LS. Brachmann-de Lange syndrome: definition of prenatal sonographic features to facilitate prenatal diagnosis. Prenat Diagn 2010; 30: 865–72.CrossRefGoogle ScholarPubMed
Schramm, T, Gloning, KP, Minderer, S, et al. Prenatal sonographic diagnosis of skeletal dysplasias. Ultrasound Obstet Gynecol 2009; 34: 160–70.Google Scholar
Yeh, P, Saeed, F, Paramasivam, G, et al. Accuracy of prenatal diagnosis and prediction of lethality for fetal skeletal dysplasias. Prenat Diagn 2011; 31: 515–8.Google Scholar
Krakow, D, Rimoin, DL. The skeletal dysplasias. Genet Med 2010; 12: 327–41.Google Scholar
Drury, S, Williams, H, Trump, N, et al. Exome sequencing for prenatal diagnosis of fetuses with sonographic abnormalities. Prenat Diagn 2015; 35(10): 1010–7.Google Scholar
Vermeer, N, Bekker, MN. Association of isolated short fetal femur with intrauterine growth restriction. Prenat Diagn 2013; 33: 365–70.Google Scholar
Chitty, LS, Khalil, A, Barrett, AN, et al. Safer, accurate prenatal diagnosis of thanatophoric dysplasia using ultrasound and cell free fetal DNA. Prenat Diagn 2013; 33: 416–23.Google Scholar
Chitty, LS, Tan, AW, Nesbit, DL, et al. Sonographic diagnosis of SEDC and double heterozygote of SEDC and achondroplasia: a report of six pregnancies. Prenat Diagn 2006; 26: 861–5.Google Scholar
Nelson, DB, Dashe, JS, McIntire, DD, et al. Fetal skeletal dysplasias: sonographic indices associated with adverse outcomes. J Ultrasound Med 2014; 33: 1085–90.Google Scholar

References

Garrett, WJ, Grunwald, G, Robinson, DE. Prenatal diagnosis of fetal polycystic kidney by ultrasound. Aust N Z J Obstet Gynecol 1970; 10: 79.Google Scholar
Wiesel, A, Queisser-luft, A, Clementi, M, et al. Prenatal detection of congenital renal malformations by fetal ultrasonographic examination: An analysis of 709,030 births in 12 European countries. Eur J Med Genet 2005; 48: 131–44.Google Scholar
Elder, JS. Antenatal hydronephrosis fetal and neonatal management. Pediatr Clin North Am 1997; 44: 1299–321.Google Scholar
Appleman, Z, Globus, MS. The management of fetal urinary tract obstruction. Clin Obstet Gynaecol 1986; 29: 483–9.Google Scholar
Lenz, S, Lund-Hansen, T, Bang, J, et al. A possible prenatal evaluation of renal function by amnio acid analysis on fetal urine. Prenat Diagn 1985; 5: 259–67.Google Scholar
Rosati, P, Guariglia, L. Transvaginal sonographic assessment of the fetal urinary tract in early pregnancy. Ultrasound Obstet Gynecol 1996; 7: 95100.Google Scholar
Hitchcock, R, Burge, DM. Renal agenesis: an acquired condition? J Pediatr Surg 1994; 29: 454–5.Google Scholar
Bronshtein, M, Amil, A, Achiron, R, et al. The early prenatal diagnosis of renal agenesis: techniques and possible pitfalls. Prenat Diagn 1994; 14: 291–7.Google Scholar
Newbold, MJ, Lendon, M, Barson, AJ. Oligohydramnios sequence: the spectrum of renal malformations. Br J Obstet Gynaecol 1994; 101: 598604.Google Scholar
Bankier, A, De Campo, M, Newell, R, et al. A pedigree study of prenatally lethal renal disease. J Med Genet 1985; 22: 104–11.Google Scholar
Hill, L, Peterson, CS. Antenatal diagnosis of fetal pelvic kidneys. J Ultrasound Med 1987; 6: 393–6.Google Scholar
Tsuda, H, Matsumota, M, Imanaka, M, et al. Measurement of fetal urine production in mild infantile polycystic kidney disease-a case report. Prenat Diagn 1994; 14: 1083–5.Google Scholar
Bronshtein, M, Yoffe, N, Brandes, JM, et al. First and second trimester diagnosis of fetal urinary tract anomalies using transvaginal ultrasound. Prenat Diagn 1990; 10: 653–6.Google Scholar
Gough, DCS, Postlethwaite, RJ, Lewis, MA, et al. Muticystic renal dysplasia diagnosed in the antenatal period: a note of caution. Br J Urol 1995; 76: 244–8.Google Scholar
Reeders, ST, Breuning, MH, Davies, KE, et al. A highly polymorphic DNA marker linked to adult type polycystic kidney disease on chromosome 16. Nature 1985; 317: 542–4.Google Scholar
MacDermot, KD, Saggar-Malik, AK, Economides, SJ. Prenatal diagnosis of autosomal dominant polycystic kidney disease (PDK 1) presenting in utero and prognosis for very early onset disease. J Med Genet 1998; 35: 13–6.Google Scholar
Scott, JE, Renwick, M. Urological anomalies in the northern region fetal abnormality survey. Arch Dis Child 1993; 68: 22–6.CrossRefGoogle ScholarPubMed
Barker, AF, Cave, MM, Thomas, DFM, et al. Fetal pelvi-ureteric junction obstruction: predictions of outcome. Br J Urol 1995; 76: 649–52.CrossRefGoogle ScholarPubMed
Drake, DP, Stevens, P, Eckstein, HB. Hydronephrosis secondary to uretero-pelvic obstruction in children: a review of 14 years experience. J Urol 1978; 119: 649–51.Google Scholar
Thomas, DFM. Prenatally detected uropathies: Epidemiological considerations. Br J Urol 1998; 81 (Suppl 2): 812.Google Scholar
Twining, P. Urinary tract abnormalities. In: Twining, P, McHugo, JM, Pilling, DW, eds. Textbook of fetal abnormalities. London: Churchill Livingstone, 2000.Google Scholar
Reuss, A, Wladimiroff, JW, Stewart, PA, et al. Non-invasive management of fetal obstructive uropathy. Lancet 1988; 2: 949–50.Google Scholar
Tibballs, JM, De Bruyn, R. Primary vesico-ureteric reflux – how useful is postnatal ultrasound? Arch Dis Child 1996; 75: 444–7.Google Scholar
Yeung, C, Godley, M, Dhillon, H, et al. The characteristics of primary vesico-ureteric reflux in male and female infants with prenatal hydronephrosis. Br J Urol 1997; 80: 319–27.CrossRefGoogle Scholar
Noe, N, Wyatt, R, Peeden, J, et al. The transmission of vesicoureteral reflux from parent to child. J Urol 1992; 148: 1869–71.Google Scholar
Chtril, Y, Zorn, B, Filidori, M, et al. Cloacal exstrophy in monozygotic twins detected through antenatal ultrasound scanning. J Clin Ultrasound 1993; 21: 339–42.Google Scholar
Shapiro, E, Lepor, H, Jeffs, R. The inheritance of exstrophy – epispadias complex. J Urol 1984; 132: 308–10.Google Scholar

References

Kamil, D, Tepelmann, J, Berg, C, et al. Spectrum and outcome of prenatally diagnosed fetal tumors. Ultrasound Obstet Gynecol 2008; 31(3): 296302.Google Scholar
Lee, C, Olutoye, O. Evaluation of the prenatally diagnosed mass. Semin Fetal Neonatal Med 2012; 17(4): 185–91.Google Scholar
Isaacs, H. Fetal brain tumors: a review of 154 cases. Am J Perinatol 2009; 26(6): 453–66.CrossRefGoogle ScholarPubMed
Isaacs, HI. Perinatal brain tumours: a review of 250 cases. Pediatr Neurol 2002; 27(4): 249–61.Google Scholar
Hwang, S, Su, J, Jea, A. Diagnosis and management of brain and spinal cord tumors in the neonate. Semin Fetal Neonatal Med, 2012; 17(4): 202–6.Google Scholar
Parmar, HA, et al. Imaging of congenital brain tumors. Semin Ultrasound CT MR 2011; 32(6): 578–89.Google Scholar
Fong, K, Chong, K, Toi, A, et al. Fetal ventriculomegaly secondary to isolated large choroid plexuscysts: prenatal findings and postnatal outcome. Prenat Diagn 2011; 31(4): 395400.Google Scholar
Chen, C. Prenatal diagnosis of arachnoid cysts. Taiwan J Obstet Gynecol, 2007; 46(3): 187–98.Google Scholar
Deloison, B, Chalouhi, GE, Sonigo, P, et al. Hidden mortality of prenatally diagnosed vein of Galen aneurysmal malformation: retrospective study and review of the literature. Ultrasound Obstet Gynecol 2012; 40(6): 652–8.Google Scholar
Malone, F, Ball, RH, Nyberg, DA, et al. First-trimester septated cystic hygroma: prevalence, natural history, and pediatric outcome. Obstet Gynecol 2005; 106(2): 288–94.Google Scholar
Molina, F, Avgidou, K, Kagan, KO, et al. Cystic hygroma, nuchal edema, and nuchal translucency at 11–14 weeks of gestation. Obstet Gynecol 2006; 107(3): 678–83.Google Scholar
Hancock, B, St-Vil, D, Luks, FI, et al. Complications of lymphangiomas in children. J Pediatr Surg 1992; 27(2): 220–4.Google Scholar
Tonni, G, De Felice, C, Centini, G, et al. Cervical and oral teratoma in the fetus: a systematic review of etiology, pathology, diagnosis, treatment and prognosis. Arch Gynecol Obstet 2010; 282(4): 355–61.Google Scholar
Ogamo, M, Sugiyama, T, Maeda, Y, et al. The ex utero intrapartum treatment (EXIT) procedure in giant fetal neck masses. Fetal Diagn Ther 2005; 20(3): 214–8.Google Scholar
Lazar, D, Olutoye, OO, Moise, KJ Jr, et al. Ex-utero intrapartum treatment procedure for giant neck masses-fetal and maternal outcomes. J Pediatr Surg 2011; 46(5): 817–22.Google Scholar
Isaacs, H. Fetal and neonatal cardiac tumors. Pediatr Cardiol 2004; 25(3): 252–73.Google Scholar
Muhler, M, Rake, A, Schwabe, M, et al. Value of fetal cerebral MRI in sonographically proven cardiac rhabdomyoma. Pediatr Radiol, 2007; 37(5): 467–74.Google Scholar
Avni, F, Massez, A, Cassart, M. Tumours of the fetal body: a review. Pediatr Radiol 2009; 39(11): 1147–57.Google Scholar
Fisher, J, Tweddle, D. Neonatal neuroblastoma. Semin Fetal Neonatal Med 2012; 17(4): 207–15.Google Scholar
Gucciardo, L, Uyttebroek, A, De Wever, I, et al. Prenatal assessment and management of sacrococcygeal teratoma. Prenat Diagn 2011; 31(7): 678–88.Google Scholar
Altman, R, Randolph, J, Lilly, J. Sacrococcygeal teratoma: American Academy of Pediatrics Surgical Section Survey 1973. J Pediatr Surg 1974; 9(3): 389–98.Google Scholar
Swamy, R, Embleton, N, Hale, J. Sacrococcygeal teratoma over two decades: birth prevalence, prenatal diagnosis and clinical outcomes. Prenat Diagn 2008; 28(11): 1048–51.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×