Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-10T06:20:38.903Z Has data issue: false hasContentIssue false

15 - Grey Parrots (Psittacus erithacus) – Cognitive and Communicative Abilities

Published online by Cambridge University Press:  30 July 2018

Nereida Bueno-Guerra
Affiliation:
Comillas Pontifical University
Federica Amici
Affiliation:
Universität Leipzig
Get access

Summary

Parrot brains differ from human, primate, mammalian and even other bird brains. Consequently, parrot and human senses may differ (e.g. most parrots have ultraviolet vison; higher flicker-fusion rates and smaller binocular overlap than do primates). Some parrot and human senses are similar (e.g. acute hearing sensitivity range overlap). Grey parrots can perform quite like humans - particularly young children (e.g. number concepts) - sometimes more so than genetically-nearer nonhuman primates. Such aspects affect laboratory experimental design and possibly field studies, although little is known about Greys’ lives in nature. I summarize knowledge about Grey parrot sensory capabilities and their possible effect on cognitive studies, and examine generalizations about behavioural training techniques - particularly how humans’ early evaluations of parrot capacities were prejudiced by not understanding how parrots learn vocalizations and concepts. I review laboratory studies on cognitive and communicative abilities. As to guidance for conducting field work, I discuss the small amount of existent information. This chapter, therefore, is a reference source, not an exhaustive treatise nor detailed guide.
Type
Chapter
Information
Field and Laboratory Methods in Animal Cognition
A Comparative Guide
, pp. 329 - 353
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Balsby, T. J. S., Momberg, J. V., and Dabelsteen, T. (2012). Vocal imitation in parrots allows addressing of specific individuals in a dynamic communication network. PLoS ONE, 7, e49747.CrossRefGoogle Scholar
Jaakkola, K., Fellner, W., Erb, L., Rodriguez, M., and Guarino, E. (2005). Understanding of the concept of numerically ‘less’ by bottlenose dolphins (Tursiops truncatus). Journal of Comparative Psychology, 119, 296303.CrossRefGoogle ScholarPubMed
Jaakkola, K., Guarino, E., Rodriguez, M., Erb, L., and Trone, M. (2010). What do dolphins (Tursiops truncatus) understand about hidden objects? Animal Cognition, 13, 103120.CrossRefGoogle ScholarPubMed
Janik, V. M., and Slater, P. J. (1997). Vocal learning in mammals. Advances in the Study of Behavior, 26, 5999.CrossRefGoogle Scholar
Janik, V. M., Sayigh, L. S., and Wells, R. S. (2006). Signature whistle shape conveys identity information to bottlenose dolphins. Proceedings of the National Academy of Sciences, 103, 82938297.CrossRefGoogle ScholarPubMed
King, S. L. (2015). You talkin’ to me? Interactive playback is a powerful yet underused tool in animal communication research. Biology Letters, 11, 20150403.CrossRefGoogle ScholarPubMed
King, S. L., and Janik, V. M. (2013). Bottlenose dolphins use learned vocal labels to address each other. Proceedings of the National Academy of Sciences, 110, 1321613221.CrossRefGoogle ScholarPubMed
King, S. L., and McGregor, P. K. (2016). Vocal matching: the what, the why and the how. Biology Letters, 12, 20160666.CrossRefGoogle ScholarPubMed
King, S. L., Harley, H. E., and Janik, V. M. (2014). The role of signature whistle matching in bottlenose dolphins (Tursiops truncatus). Animal Behavior, 96, 7986.CrossRefGoogle Scholar
Quick, N. J., and Janik, V. M. (2012). Bottlenose dolphins exchange signature whistles when meeting at sea. Proceedings of the Royal Society of London B: Biological Sciences, 279, 25392545.Google ScholarPubMed
Reiss, D., and McCowen, B. (1993). Spontaneous vocal mimicry and production by bottlenose dolphins (Tursiops truncatus). Journal of Comparative Psychology, 107, 301312.CrossRefGoogle ScholarPubMed
Richards, D. G., Wolz, J. P., and Herman, L. M. (1984). Vocal mimicry of computer-generated sounds and vocal labeling of objects by a bottlenose dolphin, Tursiops truncatus. Journal of Comparative Psychology, 98, 1028.CrossRefGoogle Scholar
Tibbetts, E. A., and Dale, J. (2007). Individual recognition: it is good to be different. Trends in Ecology and Evolution, 22, 529537.CrossRefGoogle ScholarPubMed

References

Annorbah, N. N. D., Collar, N. J., and Marsden, S. J. (2016). Trade and habitat change virtually eliminate the Grey Parrot Psittacus erithacus from Ghana. Ibis, 158, 8291.CrossRefGoogle Scholar
Bandura, A. (1971). Analysis of modeling processes. In Psychological modeling (pp. 162). Chicago, IL: Aldine-Atherton.Google Scholar
Beckers, G. J. L., Nelson, B. S., and Suthers, R. A. (2004). Vocal-tract filtering by lingual articulation in a parrot. Current Biology, 14, 15921597.CrossRefGoogle Scholar
Berg, K. S., Delgado, S., Okawa, R., Bessinger, S. R., and Bradbury, J. W. (2011). Contact calls are used for individual mate recognition in free-ranging green-rumped parrotlets, Forpus passerinus. Animal Behaviour, 81, 241248.CrossRefGoogle Scholar
Berg, K. S., Delgado, S., Cortopassi, K. A., Bessiner, S. R., and Bradbury, J. W. (2012). Vertical transmission of learned signatures in a wild parrot. Proceedings of the Royal Society of London B: Biological Sciences, 279, 585591.Google Scholar
Berkhoudt, H. (1985). Structure and function of avian taste receptors. In Form and function in birds (pp. 463496). New York, NY: Academic.Google Scholar
BirdLife International. (2016). Psittacus erithacus. The IUCN Red List of Threatened Species, 2016:e.T22724813A94879563.Google Scholar
Bock, W. J. (1978). Morphology of the larynx of Corvus brachyrhynchos (Passeriformes: Corvidae). Wilson Bulletin, 90, 553565.Google Scholar
Bottoni, L., Masin, S., and Lenti-Boero, D. (2009). Vowel-like sound structure in an African Grey parrot (Psittacus erithacus) vocal production. The Open Behavioural Science Journal, 3, 116.CrossRefGoogle Scholar
Bowmaker, J. K., Heath, L. A., Das, D., and Hunt, D. M. (1994). Spectral sensitivity and opsin structure of avian rod and cone visual pigments. Investigative Ophthalmology and Visual Science, 35, 1708.Google Scholar
Bowmaker, J. K., Heath, L. A., Wilkie, S. E., Das, D., and Hunt, D. M. (1996). Middle-wave cone and rod visual pigments in birds: spectral sensitivity and opsin structure. Investigative Ophthalmology and Visual Science, 37, 804.Google Scholar
Braun, H. (1952). Über das Unterscheidungsvermögen unbenannter Anzahlen bei Papageien [Concerning the ability of parrots to distinguish unnamed numbers]. Zeitschrift für Tierpsychologie, 9, 4091.CrossRefGoogle Scholar
Bregman, M. R., Patel, A. D., and Gentner, T. Q. (2014). Songbirds use spectral shape, not pitch, for sound pattern recognition. Proceedings of the National Academy of Sciences, 113, 16661671.CrossRefGoogle Scholar
Brightsmith, D., and Villalobos, E. M. (2011). Parrot behaviour at a Peruvian clay lick. Wilson Journal of Ornithology, 123, 595602.CrossRefGoogle Scholar
Butler, A. B., Manger, P. R., Lindahl, B. I. B., and Århem, P. (2005). Evolution of the neural basis of consciousness: a bird–mammal comparison. BioEssays, 27, 923936.CrossRefGoogle ScholarPubMed
Carey, S. (2009). The origin of concepts. New York, NY: Oxford University Press.CrossRefGoogle Scholar
Carey, S., Gray, S. L., Mody, S., Cornero, F., and Pepperberg, I. M. (in prep.). Inferential reasoning by a Grey parrot: three- and four-cup exclusion studies.Google Scholar
Carvalho, L. S., Knott, B., Berg, M. L., Bennett, A. T. D., and Hunt, D. M. (2011). Ultraviolet-sensitive vision in long-lived birds. Proceedings of the Royal Society of London B: Biological Sciences, 278, 107114.Google ScholarPubMed
Chakraborty, M., Walløe, S., Nedergaard, S., et al. (2015). Core and shell song systems unique to the parrot brain. PLoS ONE, 10(6), e0118496.CrossRefGoogle Scholar
Chapman, C. A., Chapman, L. J., and Wrangham, R. (1993). Observations on the feeding biology and population ecology of the Grey Parrot Psittacus erithacus. Scopus, 16, 8993.Google Scholar
Cobb, S. (1960). Observations on the comparative anatomy of the avian brain. In Perspectives in biology and medicine (pp. 383408). Chicago, IL: University of Chicago Press.Google Scholar
Connor, R. C. (2007). Dolphin social intelligence: complex alliance relationships in bottlenose dolphins and a consideration of selective environments for extreme brain size evolution in mammals. Philosophical Transactions of the Royal Society B: Biological Sciences, 362, 587602.CrossRefGoogle Scholar
Cruickshank, A. J., Gautier, J.-P., and Chappius, C. (1993). Vocal mimicry in wild African Grey parrots Psittacus erithacus. Ibis, 135, 293299.CrossRefGoogle Scholar
Cuthill, I. C., Hart, N. S., Partridge, J. C., Bennett, A. T. D., Hunt, S., and Church, S. C. (2000). Avian colour vision and avian colour playback experiments. Acta Ethologica, 3, 2937.CrossRefGoogle Scholar
Dahlin, C. R., Young, A. M., Cordier, B., Mundry, R., and Wright, T. F. (2014). A test of multiple hypotheses for the function of call sharing in female budgerigars, Melopsittacus undulatus. Behavioural Ecology and Sociobiology, 68, 145161.CrossRefGoogle ScholarPubMed
Dändliker, G. (1992). The Grey parrot in Ghana: a population survey, a contribution to the biology of the species, a study of its commercial exploitation and management recommendations. A report on CITES project S-30. Lausanne, Switzerland: CITES Secretariat.Google Scholar
Demery, Z. P., Chappell, J., and Martin, G. R. (2011). Vision, touch and object manipulation in Senegal parrots, Poicephalus senegalus. Proceedings of the Royal Society of London B: Biological Sciences, 278, 36873693.Google ScholarPubMed
Dooling, R. J. (1986). Perception of vocal signals by budgerigars (Melopsittacus undulatus). Experimental Biology, 45, 195218.Google ScholarPubMed
Dooling, R. J., Lohr, B., and Dent, M. L. (2000). Hearing in birds and reptiles. In Comparative hearing in birds and reptiles (pp. 308359). New York, NY: Springer.CrossRefGoogle Scholar
Farabaugh, S. M., and Dooling, R. J. (1996). Acoustic communication in parrots: laboratory and field studies of budgerigars, Melopsittacus undulatus. In Ecology and evolution of acoustic communication in birds (pp. 97117). Ithaca, NY: Cornell University Press.Google Scholar
Fotso, R. (1998). Survey status of the distribution and utilization of the Grey parrot (Psittacus erithacus) in Cameroon. A report for the CITES Secretariat. Lausanne, Switzerland: CITES.Google Scholar
Gaunt, A. S., and Gaunt, S. L. L. (1985). Electromyographic studies of the syrinx in parrots (Aves: Psittacidae). Zoomorphology, 105, 111.CrossRefGoogle Scholar
Gelfand, S. (2016). Essentials of audiology. New York, NY: Thieme.CrossRefGoogle Scholar
Giret, N., Miklósi, A., Kreutzer, M., and Bovet, D. (2009). Use of experimenter-given cues by African Grey parrots (Psittacus erithacus). Animal Cognition, 12, 110.CrossRefGoogle Scholar
Giret, N., Péron, F., Lindová, J., et al. (2010). Referential learning of French and Czech labels in African grey parrots (Psittacus erithacus): different methods yield contrasting results. Behavioural Processes, 85, 9098.CrossRefGoogle ScholarPubMed
Goldsmith, T., and Butler, B. K. (2005). Colour vision of the budgerigar (Melopsittacus undulatus): hue matches, tetrachromacy, and intensity discrimination. Journal of Comparative Physiology A, 191, 933951.CrossRefGoogle ScholarPubMed
Gnam, R. (1988). Preliminary results on the breeding biology of Bahama amazon. Parrot Letter, 1, 2326.Google Scholar
Greenewalt, C. H. (1968). Bird song: acoustics and physiology. Washington, DC: Smithsonian Institution Press.Google Scholar
Griffin, D. R. (1976). The question of animal awareness: evolutionary continuity of mental experience. New York, NY: Rockefeller University Press.Google Scholar
Hedges, S. B., Parker, P. H., Sibley, C. G., and Kumar, S. (1996). Continental breakup and the ordinal diversification of birds and mammals. Nature, 381, 226229.CrossRefGoogle ScholarPubMed
Hile, A. G., Plummer, T. K., and Striedter, G. F. (2000). Male vocal imitation produces call convergence during pair bonding in budgerigars, Melopsittacus undulatus. Animal Behaviour, 59, 12091218.CrossRefGoogle ScholarPubMed
Hile, A. G., Burley, N. T., Coopersmith, C. B., Foster, V. S., and Striedter, G. F. (2005). Effects of male vocal learning on female behaviour in the budgerigar, Melopsittacus undulatus. Ethology, 111, 901923.CrossRefGoogle Scholar
Hillemann, F., Bugnyar, T., Kotrschal, K., and Wascher, C. A. F. (2014). Waiting for better, not for more: corvids respond to quality in two delay maintenance tasks. Animal Behaviour, 90, 110.CrossRefGoogle Scholar
Homberger, D. G. (1979). Functional morphology of the larynx in the parrot Psittacus erithacus. Abstract of paper presented at the annual meeting of the American Society for Zoologists. American Zoologist, 19, 988.Google Scholar
Homberger, D. G. (1986). The lingual apparatus of the African Grey parrot, Psittacus erithacus Linne (Aves: Psittacidae). Description and theoretical mechanical analysis. Ornithological Monographs, 39.Google Scholar
Homberger, D. G. (1999). The avian linguo-buccal system: multiple functions in nutrition and vocalization. In Proceedings of the XXIInd International Ornithological Congress (pp. 94113). Durban: University of Natal.Google Scholar
Humphrey, N. K. (1976). The social function of intellect. In Growing points in ethology (pp. 303317). Cambridge: Cambridge University Press.Google Scholar
Ikebuchi, M., and Okanoya, K. (1999). Male zebra finches and Bengalese finches emit directed songs to the video images of conspecific females projected onto a TFT display. Zoological Science, 16, 6370.CrossRefGoogle Scholar
Jarvis, E. D., Güntürkün, O., Bruce, L., et al. (2005). Avian brains and a new understanding of vertebrate evolution. Nature Reviews Neuroscience, 6, 151159.CrossRefGoogle Scholar
Jarvis, E. D., Yu, J., Rivas, M. V., et al. (2013). Global view of the functional molecular organization of the avian cerebrum: mirror images and functional columns. Journal of Comparative Neurology, 521, 36143665.CrossRefGoogle ScholarPubMed
Jolly, A. (1966). Lemur social behaviour and primate intelligence. Science, 153, 501506.CrossRefGoogle ScholarPubMed
Juniper, T., and Parr, M. (1998). Parrots: a guide to parrots of the world. New Haven, CT: Yale University Press.Google Scholar
Kalischer, O. (1901). Weitere Mittheilung zur Grosshirnlocalisation bei den Vogeln [Further information on cerebral lesions in birds]. Preussian Akademie der Wissenschaften, Berlin, 1, 428439.Google Scholar
Koehler, O. (1950). The ability of birds to ‘count’. Bulletin of the Animal Behaviour Society, 9, 4145.Google Scholar
Koehler, O. (1953). Thinking without words. Proceedings of the XIVth International Congress of Zoology, 75–88.Google Scholar
Koepke, A., Gray, S. L., and Pepperberg, I. M. (2015). Delayed gratification: a Grey parrot (Psittacus erithacus) will wait for a better reward. Journal of Comparative Psychology, 129, 339346.CrossRefGoogle ScholarPubMed
Kuczaj, S. A. (1983). Crib speech and language play. New York, NY: Springer.CrossRefGoogle Scholar
Lögler, P. (1959). Versuche zur Frage des ‘Zähl’-Vermögens an einem Graupapagei und Vergleichsversuche an Menschen [Studies on the question of ‘number’ sense in a Grey parrot and comparative studies on humans]. Zeitschrift für Tierpsychologie, 16, 179217.CrossRefGoogle Scholar
May, D. L. (2004). The vocal repertoire of Grey Parrots (Psittacus erithacus) living in the Congo Basin (Central African Republic, Cameroon). PhD thesis, University of Arizona.Google Scholar
Mikolasch, S., Kotrschal, K., and Schloegl, C. (2011). African Grey parrots (Psittacus erithacus) use inference by exclusion to find hidden food. Biology Letters, 7, 875877.CrossRefGoogle ScholarPubMed
Mody, S., and Carey, S. (2016). The emergence of reasoning by the disjunctive syllogism in early childhood. Cognition, 154, 4048.CrossRefGoogle ScholarPubMed
Necker, R. (2000). The somatosensory system. In Sturkie’s avian physiology (pp. 5769). San Diego, CA: Academic Press.CrossRefGoogle Scholar
Nguyen, A. P, Spetch, M. L., Crowder, N. A., Winship, I. R., Hurd, P. L., and Wylie, D. R. W. (2004). A dissociation of motion and spatial-pattern vision in the avian telencephalon: implications for the evolution of ‘visual streams’. Journal of Neuroscience, 24, 49624970.CrossRefGoogle ScholarPubMed
Nottebohm, F. (1976). Phonation in the orange-winged Amazon parrot. Journal of Comparative Physiology A, 108, 157170.CrossRefGoogle Scholar
Ohms, V. R., Beckers, G. J. L., ten Cate, C., and Suthers, R. A. (2012). Vocal tract articulation revisited: the case of the monk parakeet. The Journal of Experimental Biology, 215, 8592.CrossRefGoogle ScholarPubMed
Okanoya, K., and Dooling, R. J. (1987). Hearing in passerine and psittacine birds: a comparative study of absolute and masked thresholds. Journal of Comparative Psychology, 101, 715.CrossRefGoogle Scholar
Olkowicz, S., Kocourek, M., Lučan, R. K., et al. (2016). Birds have primate-like numbers of neurons in the forebrain. Proceedings of the National Academy of Sciences, 113, 72557260.CrossRefGoogle ScholarPubMed
Patterson, D. K., and Pepperberg, I. M. (1994). A comparative study of human and parrot phonation: I. Acoustic and articulatory correlates of vowels. Journal of the Acoustical Society of America, 96, 634648.CrossRefGoogle ScholarPubMed
Patterson, D. K., and Pepperberg, I. M. (1998). A comparative study of human and Grey parrot phonation: II. Acoustic and articulatory correlates of stop consonants. Journal of the Acoustical Society of America, 103, 21972213.CrossRefGoogle Scholar
Patterson, D. K., Pepperberg, I. M., Story, B. H., and Hoffman, E. (1997). How parrots talk: insights based on CT scans, image processing, and mathematical models. In SPIE proceedings: physiology and function from multidimensional images (pp. 1424). Washington, DC: Bellingham.Google Scholar
Pepperberg, I. M. (1981). Functional vocalizations by an African Grey parrot. Zeitschrift für Tierpsychologie, 55, 139160.CrossRefGoogle Scholar
Pepperberg, I. M. (1983). Cognition in the African Grey parrot: preliminary evidence for auditory/vocal comprehension of the class concept. Animal Learning & Behaviour, 11, 179185.CrossRefGoogle Scholar
Pepperberg, I. M. (1987a). Acquisition of the same/different concept by an African Grey parrot (Psittacus erithacus): learning with respect to categories of colour, shape, and material. Animal Learning & Behaviour, 15, 423432.CrossRefGoogle Scholar
Pepperberg, I. M. (1987b). Evidence for conceptual quantitative abilities in the African Grey parrot: labeling of cardinal sets. Ethology, 75, 3761.CrossRefGoogle Scholar
Pepperberg, I. M. (1988a). An interactive modeling technique for acquisition of communication skills: separation of ‘labeling’ and ‘requesting’ in a psittacine subject. Applied Psycholinguistics, 9, 5976.CrossRefGoogle Scholar
Pepperberg, I. M. (1988b). Comprehension of ‘absence’ by an African Grey parrot: learning with respect to questions of same/different. Journal of the Experimental Analysis of Behaviour, 50, 553564.CrossRefGoogle ScholarPubMed
Pepperberg, I. M. (1990a). Cognition in an African Grey parrot (Psittacus erithacus): further evidence for comprehension of categories and labels. Journal of Comparative Psychology, 104, 4152.CrossRefGoogle Scholar
Pepperberg, I. M. (1990b). Referential mapping: attaching functional significance to the innovative utterances of an African Grey parrot. Applied Psycholinguistics, 11, 2344.CrossRefGoogle Scholar
Pepperberg, I. M. (1992). Proficient performance of a conjunctive, recursive task by an African Grey parrot (Psittacus erithacus). Journal of Comparative Psychology, 106, 295305.CrossRefGoogle Scholar
Pepperberg, I. M. (1994a). Evidence for numerical competence in an African Grey parrot (Psittacus erithacus). Journal of Comparative Psychology, 108, 3644.CrossRefGoogle Scholar
Pepperberg, I. M. (1994b). Vocal learning in African Grey parrots: effects of social interaction, reference and context. Auk, 111, 300313.CrossRefGoogle Scholar
Pepperberg, I. M. (1996). Categorical class formation by an African Grey parrot (Psittacus erithacus). In Stimulus class formation in humans and animals (pp. 7190). Amsterdam: Elsevier.CrossRefGoogle Scholar
Pepperberg, I. M. (1999). The Alex studies. Cambridge, MA: Harvard University Press.Google Scholar
Pepperberg, I. M. (2002). Allospecific referential speech acquisition in Grey parrots: evidence for multiple levels of avian vocal imitation. In Imitation in animals and artifacts (pp. 109131). Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Pepperberg, I. M. (2006a). Addition by a Grey parrot (Psittacus erithacus), including absence of quantity. Journal of Comparative Psychology, 120, 111.CrossRefGoogle Scholar
Pepperberg, I. M. (2006b). Ordinality and inferential abilities of a Grey parrot (Psittacus erithacus). Journal of Comparative Psychology, 120, 205216.CrossRefGoogle ScholarPubMed
Pepperberg, I. M. (2007). Grey parrots do not always ‘parrot’: roles of imitation and phonological awareness in the creation of new labels from existing vocalizations. Language Sciences, 29, 113.CrossRefGoogle Scholar
Pepperberg, I. M. (2012a). Further evidence for addition and numerical competence by a Grey parrot (Psittacus erithacus). Animal Cognition, 15, 711717.CrossRefGoogle ScholarPubMed
Pepperberg, I. M. (2012b). Symbolic communication in the Grey parrot. In The Oxford handbook of comparative evolutionary psychology (pp. 297319). New York, NY: Oxford University Press.CrossRefGoogle Scholar
Pepperberg, I. M. (2015). Reply to Jaakkola (2014): ‘Do animals understand invisible displacements? A critical review’. Journal of Comparative Psychology, 129, 198201.CrossRefGoogle ScholarPubMed
Pepperberg, I. M. (in press). Human–Grey parrot comparisons in cognitive performance. In Cambridge handbook of evolutionary perspectives on human behaviour. Cambridge: Cambridge University Press.Google Scholar
Pepperberg, I. M., and Brezinsky, M. V. (1991). Acquisition of a relative class concept by an African Grey parrot (Psittacus erithacus): discriminations based on relative size. Journal of Comparative Psychology, 105, 286294.CrossRefGoogle ScholarPubMed
Pepperberg, I. M., and Carey, S. (2012). Grey parrot number acquisition: the inference of cardinal value from ordinal position on the numeral list. Cognition, 125, 219232.CrossRefGoogle ScholarPubMed
Pepperberg, I. M., and Funk, M. S. (1990). Object permanence in four species of psittacine birds. Animal Learning & Behaviour, 18, 97108.CrossRefGoogle Scholar
Pepperberg, I. M., and Gordon, J. D. (2005). Number comprehension by a Grey parrot (Psittacus erithacus), including a zero-like concept. Journal of Comparative Psychology, 119, 197209.CrossRefGoogle ScholarPubMed
Pepperberg, I. M., and Kozak, F. A. (1986). Object permanence in the African Grey parrot (Psittacus erithacus). Animal Learning & Behaviour, 14, 322330.CrossRefGoogle Scholar
Pepperberg, I. M., and McLaughlin, M. A. (1996). Effect of avian–human joint attention on allospecific vocal learning by Grey parrots (Psittacus erithacus). Journal of Comparative Psychology, 110, 286297.CrossRefGoogle ScholarPubMed
Pepperberg, I. M., and Nakayama, K. (2016). Robust representation of shape by a Grey parrot (Psittacus erithacus). Cognition, 153, 146160.CrossRefGoogle ScholarPubMed
Pepperberg, I. M., and Shive, H. A. (2001). Simultaneous development of vocal and physical object combinations by a Grey parrot (Psittacus erithacus): bottle caps, lids, and labels. Journal of Comparative Psychology, 115, 376384.CrossRefGoogle ScholarPubMed
Pepperberg, I. M., and Wilcox, S. E. (2000). Evidence for a form of mutual exclusivity during label acquisition by Grey parrots (Psittacus erithacus)? Journal of Comparative Psychology, 114, 219231.CrossRefGoogle ScholarPubMed
Pepperberg, I. M., and Wilkes, S. (2004). Lack of referential vocal learning from LCD video by Grey parrots (Psittacus erithacus). Interaction Studies, 5, 7597.CrossRefGoogle Scholar
Pepperberg, I. M., Brese, K. J., and Harris, B. J. (1991). Solitary sound play during acquisition of English vocalizations by an African Grey parrot (Psittacus erithacus): possible parallels with children’s monologue speech. Applied Psycholinguistics, 12, 151177.CrossRefGoogle Scholar
Pepperberg, I. M., Garcia, S. E., Jackson, E. C., and Marconi, S. (1995). Mirror use by African Grey parrots (Psittacus erithacus). Journal of Comparative Psychology, 109, 182195.CrossRefGoogle Scholar
Pepperberg, I. M., Willner, M. R., and Gravitz, L. B. (1997). Development of Piagetian object permanence in a Grey parrot (Psittacus erithacus). Journal of Comparative Psychology, 111, 6375.CrossRefGoogle Scholar
Pepperberg, I. M., Howell, K. S., Banta, P. A., Patterson, D. K., and Meister, M. (1998a). Measurement of the trachea of the Grey parrot (Psittacus erithacus) via magnetic resonance imaging, dissection, and electron beam computed tomography. Journal of Morphology, 238, 8191.3.0.CO;2-Q>CrossRefGoogle ScholarPubMed
Pepperberg, I. M., Naughton, J. R., and Banta, P. A. (1998b). Allospecific vocal learning by Grey parrots (Psittacus erithacus): a failure of videotaped instruction under certain conditions. Behavioural Processes, 42, 139158.CrossRefGoogle ScholarPubMed
Pepperberg, I. M., Gardiner, L. I., and Luttrell, L. J. (1999). Limited contextual vocal learning in the Grey parrot (Psittacus erithacus): the effect of co-viewers on videotaped instruction. Journal of Comparative Psychology, 113, 158172.CrossRefGoogle Scholar
Pepperberg, I. M., Sandefer, R. M., Noel, D., and Ellsworth, C. P. (2000). Vocal learning in the Grey parrot (Psittacus erithacus): effect of species identity and number of trainers. Journal of Comparative Psychology, 114, 371380.CrossRefGoogle ScholarPubMed
Pepperberg, I. M., Vicinay, J., and Cavanagh, P. (2008). The Müller-Lyer illusion is processed by a Grey parrot (Psittacus erithacus). Perception, 37, 765781.CrossRefGoogle ScholarPubMed
Pepperberg, I. M., Koepke, A., Livingston, P., Girard, M., and Hartsfield, L. A. (2013). Reasoning by inference: further studies on exclusion in Grey parrots (Psittacus erithacus). Journal of Comparative Psychology, 127, 272281.CrossRefGoogle ScholarPubMed
Pepperberg, I. M., Gray, S. L., Lesser, J. S., and Hartsfield, L. A. (2017). Piagetian liquid conservation in Grey parrots (Psittacus erithacus). Journal of Comparative Psychology, 131, 370383.CrossRefGoogle ScholarPubMed
Péron, F., Rat-Fischer, L., Lalot, M., and Bovet, D. (2011). Cooperative problem solving in African Grey parrots (Psittacus erithacus). Animal Cognition, 14, 545553.CrossRefGoogle ScholarPubMed
Péron, F., Johns, M., Sapowicz, S., Bovet, D., and Pepperberg, I. M. (2013). A study of reciprocity in Grey parrots (Psittacus erithacus). Animal Cognition, 16, 197210.CrossRefGoogle ScholarPubMed
Péron, F., Thornburg, L., Gross, B., Gray, S., and Pepperberg, I. M. (2014). Further studies on Grey parrot reciprocity. Animal Cognition, 17, 937944.CrossRefGoogle ScholarPubMed
Portmann, A. (1950). Système nerveux. In Traité de Zoologie (pp. 185203). Paris: Masson.Google Scholar
Portmann, A., and Stingelin, W. (1961). The central nervous system. In Biology and comparative physiology of birds (pp. 136). New York, NY: Academic Press.Google Scholar
Premack, D. (1983). The codes of man and beast. Behavioural and Brain Sciences, 6, 125167.CrossRefGoogle Scholar
Premack, D., and Premack, A. J. (1994). Levels of causal understanding in chimpanzees and children. Cognition, 50, 347362.CrossRefGoogle ScholarPubMed
Regolin, L., Marconato, F., and Vallortigara, G. (2004). Hemispheric differences in the recognition of partly occluded objects by newly hatched domestic chicks (Gallus gallus). Animal Cognition, 7, 162170.CrossRefGoogle ScholarPubMed
Riede, T., and Goller, F. (2010). Peripheral mechanisms for vocal production in birds – differences and similarities to human speech and singing. Brain and Language, 115, 6980.CrossRefGoogle ScholarPubMed
Santos, S. I. C. O., Elward, B., and Lumeij, J. T. (2006). Sexual dichromatism in the blue-fronted Amazon parrot (Amazona aestiva) revealed by multiple-angle spectrometry. Journal of Avian Medicine and Surgery, 20, 814.CrossRefGoogle Scholar
Scanlan, J. (1988). Analysis of avian ‘speech’: patterns and production. London: University College London.Google Scholar
Schloegl, C., Schmidt, J., Boeckle, M., Weiss, B. M., and Kotrschal, K. (2012). Grey parrots use inferential reasoning based on acoustic cues alone. Proceedings of the Royal Society of London B: Biological Sciences, 279, 41354142.Google ScholarPubMed
Stettner, L. J. (1967). Brain lesions in birds: effects on discrimination acquisition and reversal. Science, 155, 16891692.CrossRefGoogle ScholarPubMed
Tamungang, S. A., and Cheke, R. A. (2012). Population status and management plan of the African Grey parrot (Psittacus erithacus) in Cameroon. Full report prepared by MINFOF for CITES Secretariat. Geneva: CITES.Google Scholar
Tamungang, S. A., Ayodele, I. A., and Akum, Z. E. (2001). Basic home range characteristics for the conservation of the African Grey parrot (Psittacus erithacus) in the Korup National Park, Cameroon. Journal of the Cameroon Academy of Sciences, 1, 155158.Google Scholar
Tamungang, S. A., Cheke, R. A., Mofor, G. Z., Tamungang, R. N., and Oben, F. T. (2014). Conservation concern for the deteriorating geographical range of the Grey Parrot in Cameroon. International Journal of Ecology, article ID 753294.CrossRefGoogle Scholar
Tamungang, S. A., Onabid, M. A., Awa, T. II, and Balinga, V. S. (2016). Habitat preferences of the Grey parrot in heterogeneous vegetation landscapes and their conservation implications. International Journal of Biodiversity, autide ID 7287563.CrossRefGoogle Scholar
Thompson, A. M., and Moreau, R. E. (1957). Feeding habits of the palm-nut vulture Gypohierax. Ibis, 99, 608613.CrossRefGoogle Scholar
Todt, D. (1975). Social learning of vocal patterns and modes of their application in Grey parrots. Zeitschrift für Tierpsychologie, 39, 178188.CrossRefGoogle Scholar
Tommasi, L., and Vallortigara, G. (2001). Encoding of geometric and landmark information in the left and right hemispheres of the avian brain. Behavioural Neurosciences, 115, 602613.CrossRefGoogle ScholarPubMed
Trick, L., and Pylyshyn, Z. (1989). Subitizing and the FNST spatial index model. Oshawa, ON: University of Ontario.Google Scholar
Trick, L., and Pylyshyn, Z. (1994). Why are small and large numbers enumerated differently? A limited-capacity preattentive stage in vision. Psychological Review, 101, 80102.CrossRefGoogle ScholarPubMed
Vick, S. J., Bovet, D., and Anderson, J. R. (2010). How do African Grey parrots (Psittacus erithacus) perform on a delay of gratification task? Animal Cognition, 13, 351358.CrossRefGoogle ScholarPubMed
Wanker, R., Sugama, Y., and Prinage, S. (2005). Vocal labeling of family members in spectacled parrotlets, Forpus conspicillatus. Animal Behaviour, 70, 111118.CrossRefGoogle Scholar
Warren, D. K., Patterson, D. K., and Pepperberg, I. M. (1996). Mechanisms of American English vowel production in a Grey parrot (Psittacus erithacus). Auk, 113, 4158.Google Scholar
White, S. S. (1968). Movements of the larynx during crowing in the domestic cock. Journal of Anatomy, 103, 390392.Google Scholar
Wilkie, S. E., Vissers, P. M. A. M., Das, D., DeGrip, W. J., Bowmaker, J. K., and Hunt, D. M. (1998). The molecular basis for UV vision in birds: spectral characteristics, cDNA sequence and retinal localization of the UV-sensitive visual pigment of the budgerigar (Melopsittacus undulatus). Biochemical Journal, 330, 541547.CrossRefGoogle ScholarPubMed
Wilson, G. H. (2006). Behaviour of captive psittacids in the breeding aviary. In Manual of parrot behaviour (pp. 281290). Oxford: Blackwell.CrossRefGoogle Scholar
Wright, T. F., Cortopassi, K. A., Bradbury, J. W., and Dooling, R. J. (2003). Hearing and vocalizations in the orange-fronted conure (Aratinga canicularis). Journal of Comparative Psychology, 117, 8795.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×