Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-10T05:54:41.512Z Has data issue: false hasContentIssue false

14 - Octopuses – Mind in the Waters

Published online by Cambridge University Press:  30 July 2018

Nereida Bueno-Guerra
Affiliation:
Comillas Pontifical University
Federica Amici
Affiliation:
Universität Leipzig
Get access

Summary

Why study the behaviour of octopuses?  They are known to be very intelligent, to have personalities, play and accomplish many learning tasks, as well as explore their environment. They may even have a simple form of consciousness. But they accomplish all this with a neural and behavioural system that is radically different from that of vertebrates such as mammals and birds and follows a general invertebrate Protostomian body plan. So if we want to study a different model of advanced learning, to know more about comparative cognition, octopuses are logical subjects. While field work is slowly increasing our knowledge of cephalopods, laboratory studies on these animals are crucial to expand our understanding and to uncover background information about them. Thanks to the new European laws granting Cephalopods a status like vertebrates in terms of legal protection, efforts to standardizes and improve keeping Cephalopods have recently increased. Researchers need to know how to keep an animal safe and healthy, as well as some ‘tried and true’ approaches for learning about it. This chapter will begin with three areas of background, and will discuss particular testing paradigms.
Type
Chapter
Information
Field and Laboratory Methods in Animal Cognition
A Comparative Guide
, pp. 308 - 328
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Chiao, C. C., Chubb, C., and Hanlon, R. T. (2015). A review of visual perception mechanisms that regulate rapid adaptive camouflage in cuttlefish. Journal of Comparative Physiology, 201, 933945.CrossRefGoogle ScholarPubMed
Godfrey-Smith, P., and Lawrence, M. (2012). Long-term high-density occupation of a site by Octopus tetricus and possible site modification due to foraging behavior. Marine and Freshwater Behaviour and Physiology, 45, 261268.CrossRefGoogle Scholar
Huang, K. L., and Chiao, C. C. (2013). Can cuttlefish learn by observing others? Animal Cognition, 16, 313320.CrossRefGoogle ScholarPubMed
Mather, J. A. (2008). Cephalopod consciousness: behavioral evidence. Consciousness and Cognition, 17, 3748.CrossRefGoogle Scholar
Mather, J. A., and Anderson, R. C. (1993). ‘Personalities’ of octopuses (Octopus rubescens). Journal of Comparative Psychology, 107, 336340.CrossRefGoogle Scholar
Orenstein, E. C., Haaga, J. M., Gagnonc, Y. L., and Jaffe, J. S. (2016). Automated classification of camouflaging cuttlefish. Methods in Oceanography, 15, 2134.CrossRefGoogle Scholar
Pronk, R., Wilson, D. R., and Harcourt, R. (2010). Video playback demonstrates episodic personality in the gloomy octopus. The Journal of Experimental Biology, 213, 10351041.CrossRefGoogle ScholarPubMed
Scheel, D., Chancellor, S., Hing, M., Lawrence, M., Linquist, S., and Godfrey-Smith, P. (2017). A second site occupied by Octopus tetricus at high densities, with notes on their ecology and behavior. Marine and Freshwater Behaviour and Physiology, 50, 285291.CrossRefGoogle Scholar
Sinn, D. L., Perrin, N. A., Mather, J. A., and Anderson, R. C. (2001). Early temperamental traits in an octopus (Octopus bimaculoides). Journal of Comparative Psychology, 115, 351364.CrossRefGoogle Scholar

References

Aitken, J. P., O’Dor, R. K., and Jackson, G. D. (2005). The secret life of the giant Australian cuttlefish Sepia apama (Cephalopoda): behaviour and energetics in nature revealed through radio acoustic positioning and telemetry (RAPT). Journal of Experimental Marine Biology and Ecology, 320, 7791.CrossRefGoogle Scholar
Allen, J. J., Bell, G. G. R., Kuzirian, A. M., Velankar, S. S., and Hanlon, R. T. (2009). Comparative morphology of changeable skin papillae in octopus and cuttlefish. Journal of Morphology, 257, 371390.Google Scholar
Alupay, J. S., Hadjisolomou, S. P., and Crook, R. J. (2014). Arm injury produces long term behavioral and neural hypersensitivity in octopus. Neuroscience Letters, 558, 137142.CrossRefGoogle ScholarPubMed
Anderson, J. A., Wood, J. B., and Mather, J. A. (2008). Octopus vulgaris in the Caribbean is a specializing generalist. Marine Ecology Progress Series, 371, 199202.CrossRefGoogle Scholar
Anderson, R. C., and Mather, J. A. (2007). The packaging problem: bivalve mollusk prey selection and prey entry techniques of Enteroctopus dofleini. Journal of Comparative Psychology, 121, 300305.CrossRefGoogle ScholarPubMed
Anderson, R. C., and Mather, J. A. (2010). It’s all in the cues: octopuses learn to open jars. Ferrantia, 59, 2231.Google Scholar
Anderson, R. C., Mather, J. A., and Sinn, D. L. (2008). Octopus senescence: forgetting how to eat clams. Festivus, 15, 5556.Google Scholar
Anderson, R. T., and Wood, J. B. (2001). Enrichment for giant Pacific octopuses: happy as a clam? Journal of Applied Animal Welfare Science, 4, 157168.CrossRefGoogle Scholar
Beigel, M., and Boal, J. G. (2006). The effect of habitat enrichment on the mudflat octopus. The Shape of Enrichment, 15, 36.Google Scholar
Boal, J. G. (1996). A review of simultaneous visual discrimination as a method of training octopuses. Biological Reviews, 72, 157190.CrossRefGoogle Scholar
Boal, J. G. (2010). Behavioral research methods for octopuses and cuttlefishes. Vie et Milieu, 61, 203210.Google Scholar
Boal, J. G., and Marsh, S. E. (1998). Social recognition using chemical cues in cuttlefish (Sepia officinalis Linnaeus, 1758). Journal of Experimental Marine Biology and Ecology, 230, 183192.CrossRefGoogle Scholar
Boal, J. G., Dunham, A. W., Williams, K. T., and Hanlon, R. T. (2000). Experimental evidence for spatial learning in octopuses. Journal of Comparative Psychology, 114, 246252.CrossRefGoogle ScholarPubMed
Boycott, B. B. (1954). Learning in Octopus vulgaris and other cephalopods. Pubblicazione della Stazione Zoologica di Napoli, 25, 127.Google Scholar
Boyle, P. R. (1983). Ventilation rate and arousal in the octopus. Journal of Experimental Marine Biology and Ecology, 69, 129136.CrossRefGoogle Scholar
Bublitz, A., Weinhold, S. R., Strobel, S., Dehnhardt, G., and Hanke, F. (2017). Reconsideration of serial visual reversal learning in octopus (Octopus vulgaris) from a methodological perspective. Frontiers in Physiology, 8, 54.CrossRefGoogle ScholarPubMed
Budelmann, B. U. (1995). The cephalopod nervous system: what evolution has made of the Molluscan design. In The nervous system of invertebrates: an evolutionary approach (pp. 115138). Basel: Berkhauser Verlag.CrossRefGoogle Scholar
Budelmann, B. U., and Tu, Y. (1997). The statocyst-oculomotor reflex of cephalopods and the vestibule-oculomotor reflex of vertebrates: a tabular comparison. Vie et Milieu, 47, 9599.Google Scholar
Byrne, R. A., Kuba, M. J., and Meisel, D. (2004). Lateral eye use in Octopus vulgaris shows an antisymmetric distribution. Animal Behaviour, 64, 461468.CrossRefGoogle Scholar
Byrne, R. A., Kuba, M. J., Meisel, D., Greibel, U., and Mather, J. A. (2006). Does Octopus vulgaris have preferred arms? Journal of Comparative Psychology, 120, 198204.CrossRefGoogle ScholarPubMed
Byrne, R. A., Wood, J. B., Anderson, R. C., Greibel, U., and Mather, J. A. (2010). Non-invasive methods of identifying and tracking wild squid. Ferrantia, 59, 2231.Google Scholar
Caldwell, R. L., Ross, R., Rodanice, A., and Huffard, C. L. (2015). Behavior and body patterns of the larger Pacific striped octopus. PLoS ONE, 10(8), e0134152.CrossRefGoogle ScholarPubMed
Carere, C., and Mather, J. A. (In prep.). The welfare of invertebrates. Springer.Google Scholar
Darmaillacq, A.-S., Jozet-Alves, C., Bellanger, C., and Dickel, L. (2014a). Cuttlefish preschool, or how to learn in the pre-hatching period. In Cephalopod cognition (pp. 330). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Darmaillacq, A.-S., Dickel, L., and Mather, J. A. (2014b). Cephalopod cognition. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Dews, P. M. (1959). Some observations of an operant in the octopus. Journal of the Experimental Analysis of Behavior, 8, 5763.CrossRefGoogle Scholar
Fay, R. R., and Popper, A. N. (2000). Evolution of hearing in vertebrates: the inner ear and processing. Hearing Research, 149, 110.CrossRefGoogle ScholarPubMed
Ferguson, G. P. A., and Messenger, J. B. (1991). A countershading reflex in cephalopods. Proceedings of the Royal Society of London B: Biological Sciences, 243, 247256.Google Scholar
Fiorito, G., Biederman, G. B., Davey, V. A., and Gherardi, F. (1998). The role of stimulus pre-exposure in problem solving by Octopus vulgaris. Animal Cognition, 1, 107112.CrossRefGoogle Scholar
Fiorito, G., Affuso, A., Anderson, D. B., et al. (2014). Cephalopods in neuroscience: regulations, research and the 3Rs. Invertebrate Neuroscience, 14, 1336.CrossRefGoogle ScholarPubMed
Flash, T., and Hochner, B. (2005). Motor primitives in vertebrates and invertebrates. Current Opinion in Neurobiology, 15, 660666.CrossRefGoogle ScholarPubMed
Forsythe, J. W., and Hanlon, R. T. (1997). Foraging and associated behavior by Octopus cyanea Gray, 1849, on a coral atoll, French Polynesia. Journal of Experimental Marine Biology and Ecology, 209, 1531.CrossRefGoogle Scholar
Gherardi, F., Aquilione, L., and Tricarico, E. (2012). Revisiting social recognition systems in invertebrates. Animal Cognition, 15, 745762.CrossRefGoogle ScholarPubMed
Giribet, G., Okusu, A., Lindgren, A. R., Huff, S. W., Schrödl, M., and Nishiguchi, M. K. (2006). Evidence for a clade composed of molluscs with serially repeated structures: monoplacophorans are related to chitons. Proceedings of the National Academy of Sciences, 103, 77237728.CrossRefGoogle ScholarPubMed
Gleadall, I., and Shashar, N. (2004). The octopus’s garden: the visual world of cephalopods. In Complex worlds from simpler nervous systems (pp. 269308). Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Graindorge, N., Alves, C., Darmaillacq, A.-S., Chichery, R., Dickel, L., and Bellanger, C. (2006). Effect of dorsal and ventral vertical lobe lesions on spatial learning and locomotor activity in Sepia officinalis. Behavioral Neuroscience, 120, 11511158.CrossRefGoogle ScholarPubMed
Grasso, F. W., and Basil, J. (2009). The evolution of flexible behavioral repertoires in cephalopod mollusks. Brain, Behavior and Evolution, 74, 231245.CrossRefGoogle Scholar
Gutnick, T. (2014). Peripheral and central inputs in learning and navigation in Octopus vulgaris. Doctoral thesis. Department of Life Science, Hebrew University, Jerusalem.Google Scholar
Gutnick, T., Byrne, R. A., Hochner, B., and Kuba, M. (2011). Octopus vulgaris uses visual information to determine the location of its arm. Current Biology, 21, 460462.CrossRefGoogle ScholarPubMed
Gutnick, T., Shomrat, T., Mather, J. A., and Kuba, M. J. (2016). The cephalopod brain: motion control, learning, and cognition. In Physiology of Mollusca (pp. 139177). Waretown: Apple Academic Press.Google Scholar
Hall, K., and Hanlon, R. (2002). Principal features of the mating system of a large spawning aggregation of the giant Australian cuttlefish Sepia apama (Mollusca: Cephalopoda). Marine Biology, 140, 533545.Google Scholar
Hanlon, R.T., and Budelmann, B. U. (1987). Why cephalopods are probably not ‘deaf’. American Naturalist, 129, 312317.CrossRefGoogle Scholar
Hanlon, R. T., and Messenger, J. B. (1988). Adaptive coloration in young cuttlefish (Sepia officinalis L.): the morphology and development of body patterns and their relation to behavior. Philosophical Transactions of the Royal Society B: Biological Sciences, 320, 437487.Google Scholar
Hanlon, R. T., and Messenger, J. B. (1996). Cephalopod behaviour. Cambridge: Cambridge University Press.Google Scholar
Hanlon, R. T., Forsythe, J. W., and Joneschild, D. E. (1999). Crypsis, conspicuousness, mimicry and polyphenism as antipredator defenses of foraging octopuses on Indo-Pacific coral reefs, with a method of quantifying crypsis from videotapes. Biological Journal of the Linnean Society, 66, 122.CrossRefGoogle Scholar
Huffard, C. L. (2007). Ethogram of Abdopus aculeatus (d’Orbigny, 1834) (Cephalopoda: Octopodidae): can behavioral characters inform octopodid taxonomy and systematics? Journal of Molluscan Studies, 73, 185193.CrossRefGoogle Scholar
Huffard, C. L., Caldwell, R. L., and Boneka, F. (2008a). Mating behavior of Abdopus aculeatus (D’Orbigny, 1834) (Cephalopoda, Octopodidae) in the wild. Marine Biology, 154, 353362.CrossRefGoogle Scholar
Huffard, C. L., Caldwell, R. L., DeLoach, N., Gentry, D. W., Humann, P., and MacDonald, B. (2008b). Individually unique body color patterns in octopus (Wunderpus photogenicus) allow for photoidentification. PLoS ONE, 3, 15.CrossRefGoogle ScholarPubMed
Hvoreckny, L. M., Grudowski, J. L., Blakeslee, C. J., et al. (2007). Octopuses (Octopus bimaculoides) and cuttlefish (Sepia pharaonis, Sepia officinalis) can conditionally discriminate. Animal Cognition, 10, 449459.CrossRefGoogle Scholar
Ibanez, C. M., and Keyl, F. (2010). Cannibalism in cephalopods. Review of Fish Biology and Fisheries, 20, 123136.CrossRefGoogle Scholar
Iglesias, J., Fuentes, L., and Villanueva, R. (eds.) (2014). Cephalopod culture. New York, NY: Springer.CrossRefGoogle Scholar
Jozet-Alves, C., Moderan, J., and Dickel, L. (2008). Sex differences in spatial cognition in an invertebrate: the cuttlefish. Proceedings of the Royal Society of London B: Biological Sciences, 275, 20492054.Google Scholar
Jozet-Alves, C., Viblanc, V. A., Romagny, S., Dacher, M., Healy, S. D., and Dickel, L. (2012). Visual lateralization is task and age dependent in cuttlefish, Sepia officinalis. Animal Behaviour, 83, 13131318.CrossRefGoogle Scholar
Jozet-Alves, C., Bertin, M., and Clayton, N. (2013). Evidence of episodic-like memory in cuttlefish. Current Biology, 23, 10331035.CrossRefGoogle ScholarPubMed
Karson, M. A., Boal, J. G., and Hanlon, R. T. (2003). Experimental evidence for spatial learning in cuttlefish (Sepia officinalis). Journal of Comparative Psychology, 17, 149155.CrossRefGoogle Scholar
Kier, W. M., and Smith, K. K. (1985). Tongues, tentacles and trunks: the biomechanics of movement in muscular-hydrostats. Zoological Journal of the Linnean Society, 83, 307324.CrossRefGoogle Scholar
Langridge, K. V., Broom, M., and Osorio, D. (2007). Selective signalling by cuttlefish to predators. Current Biology, 17, 10441045.CrossRefGoogle ScholarPubMed
Leite, T. S., Batista, A. T., Lima, F. D., Barbosa, J. C., and Mather, J. A. (2016). Geographic variability of Octopus insularis diet: from oceanic island to continental populations. Aquatic Biology, 25, 1727.CrossRefGoogle Scholar
Levy, G., Flash, T., and Hochner, B. (2015). Arm coordination in crawling involves unique motor coordination strategies. Current Biology, 25, 119501200.CrossRefGoogle Scholar
Liu, T-H., and Chiao, C. C. (2017). Mosaic organization of body pattern control in the optic lobe of squids. The Journal of Neuroscience, 37, 768780.CrossRefGoogle ScholarPubMed
Macintosh, N. J. (1965). Selective attention in animal discrimination learning. Psychological Bulletin, 64, 124150.CrossRefGoogle Scholar
Mather, J. A. (1980a). Social organization and the use of space by Octopus joubini in a semi-natural situation. Bulletin of Marine Science, 30, 848857.Google Scholar
Mather, J. A. (1980b). Feeding and food intake in Octopus joubini Robson. The Veliger, 22, 286290.Google Scholar
Mather, J. A. (1991). Navigation by spatial memory and use of visual landmarks in octopuses. Journal of Comparative Physiology A, 168, 491497.CrossRefGoogle Scholar
Mather, J. A. (2006). Behaviour development: a cephalopod perspective. International Journal of Comparative Psychology, 19, 98115.CrossRefGoogle Scholar
Mather, J. A. (2008). Cephalopod consciousness: behavioral evidence. Consciousness and Cognition, 17, 3748.CrossRefGoogle Scholar
Mather, J. A. (2016). Mating games squid play: reproductive behavior and sexual skin displays in Caribbean reef squid Sepioteuthis sepioidea. Marine and Freshwater Behaviour and Physiology, 49, 359373.CrossRefGoogle Scholar
Mather, J. A., and Alupay, J. (2016). An ethogram for benthic octopods (Cephalopoda: Octopodidae). Journal of Comparative Psychology, 130, 109127.CrossRefGoogle ScholarPubMed
Mather, J. A., and Anderson, R. C. (1993). “Personalities” of octopuses (Octopus rubescens). Journal of Comparative Psychology, 107, 336340.CrossRefGoogle Scholar
Mather, J. A., and Anderson, R. C. (2007). Ethics and invertebrates: a cephalopod perspective. Diseases of Aquatic Organisms, 75, 119129CrossRefGoogle ScholarPubMed
Mather, J. A., and Kuba, M. (2013). The cephalopod specialties: complex nervous system, learning and cognition. Canadian Journal of Zoology, 91, 431449.CrossRefGoogle Scholar
Mather, J. A., Anderson, R. C., and Wood, J. B. (2013). Octopus, the ocean’s intelligent invertebrate. Portland, OR: Timber Press.Google Scholar
Mather, J. A., Leite, T. S., Anderson, R. C., and Wood, J. B. (2014). Foraging and cognitive competence in octopuses. In Cephalopod cognition (pp. 125149). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Mäthger, L. M., Barbosa, A., Miner, S., and Hanlon, R. T. (2005). Color blindness and contrast perception in cuttlefish (Sepia officinalis) determined by a visual sensorimotor assay. Vision Research, 46, 17461753.CrossRefGoogle Scholar
Mäthger, L. M., Denton, E. J., Marshall, N. J., and Hanlon, R. T. (2009). Mechanisms and behavioural functions of structural coloration in cephalopods. Journal of the Royal Society Interface, 6, 149163.CrossRefGoogle ScholarPubMed
Mäthger, L. M., Roberts, S. B., and Hanlon, R. T. (2010). Evidence for distributed light sensing in the skin of cuttlefish, Sepia officinalis. Biology Letters, 6, 600603.CrossRefGoogle ScholarPubMed
Meisel, D. V., Byrne, R. A., Kuba, M. J., and Mather, J. A. (2006). Comparing the activity patterns of two Mediterranean octopus species. Journal of Comparative Psychology, 120, 191197.CrossRefGoogle Scholar
Messenger, J. B. (2001). Cephalopod chromatophores: neurobiology and natural history. Biological Reviews, 76, 473518.CrossRefGoogle ScholarPubMed
Messenger, J. B, Wilson, A. P., and Hedge, A. (1973). Some evidence for colour blindness in Octopus. Journal of Experimental Biology, 59, 7794.CrossRefGoogle ScholarPubMed
Morse, P., Zenger, K. R., McCormick, M. I., Meekan, M. G., and Huffard, C. L. (2017). Chemical cues correlate with agonistic behavior and female mate choice in the southern blue-ringed octopus, Hapalochlaena maculosa (Hoyle, 1883) (Cephalopoda, Octopodidae). Journal of Molluscan Studies, 83, 7987.CrossRefGoogle Scholar
Moynihan, M. (1975). Conservation of displays and comparable stereotyped patterns among cephalopods. In Function and evolution of behavior: essays in honour of Professor Nico Tinbergen, F. R. S. (pp. 276291). Oxford: Oxford University Press.Google Scholar
Moynihan, M. (1985). Why are cephalopods deaf? American Naturalist, 125, 465469.CrossRefGoogle Scholar
Muntz, R. A., and Gwyther, J. (1988). Visual acuity in Octopus pallidus and Octopus australis. Journal of Experimental Biology, 134, 119129.CrossRefGoogle Scholar
Nesher, N., Levy, G., Grasso, F. W., and Hochner, B. (2014). Self-recognition mechanism between skin and suckers prevents octopus arms from interfering with each other. Current Biology, 24, 12711275.CrossRefGoogle ScholarPubMed
Nixon, M., and Young, J. Z. (2003). The brains and lives of cephalopods. Oxford: Oxford University Press.Google Scholar
O’Brien, W. J., Browman, H. I., and Evans, B. I. (1990). Search strategies of foraging animals. American Scientist, 78, 152160.Google Scholar
O’Dor, R. K., and Webber, D. M. (1986). The constraints on cephalopods: why squid aren’t fish. Canadian Journal of Zoology, 64, 15911605.CrossRefGoogle Scholar
Onthank, K. L., and Cowles, D. L. (2011). Prey selection in Octopus rubescens: possible roles of energy budgeting and prey nutritional composition. Marine Biology, 158, 27952804.CrossRefGoogle Scholar
Packard, A. (1972). Cephalopods and fish: the limits of convergence. Biological Reviews, 47, 241307.CrossRefGoogle Scholar
Packard, A., and Hochberg, F. G. (1977). Skin patterning in Octopus and other genera. In The biology of cephalopods (pp. 191231). London: Academic Press.Google Scholar
Packard, A., and Sanders, G. (1971). Body patterns of Octopus vulgaris and maturation of the response to disturbance. Animal Behaviour, 19, 780790.CrossRefGoogle Scholar
Papini, M. R., and Bitterman, M. E. (1991). Appetitive conditioning in Octopus cyanea. Journal of Comparative Psychology, 105, 107113.CrossRefGoogle ScholarPubMed
Polese, G., Bertapelle, C., and Di Cosmo, A. (2015). Role of olfaction in Octopus vulgaris reproduction. General and Comparative Endocrinology, 210, 5562.CrossRefGoogle ScholarPubMed
Polese, G., Bertapelle, C., and Di Cosmo, A. (2016). Olfactory organ of Octopus vulgaris: morphology, plasticity, turnover and sensory characterization. Biology Open, 5, 611619.CrossRefGoogle ScholarPubMed
Pronk, R., Wilson, D. R., and Harcourt, R. (2010). Video playback demonstrates episodic personality in the gloomy octopus. The Journal of Experimental Biology, 213, 10351041.CrossRefGoogle ScholarPubMed
Ramirez, M. D., and Oakley, T. H. (2015). Eye-independent light-activated chromatophore expansion (LACE) and expression of phototransduction genes in the skin of Octopus bimaculoides. Journal of Experimental Biology, 218, 15131520.CrossRefGoogle ScholarPubMed
Richter, J. N., Hochner, B., and Kuba, M. J. (2015). Octopus arm movements under constrained conditions: adaptation, modification and plasticity of motor primitives. Journal of Experimental Biology, 218, 10691076.CrossRefGoogle ScholarPubMed
Richter, J. N., Hochner, B., and Kuba, M. J. (2016). Pull or push? Octopuses solve a puzzle problem. PLoS ONE, 11(3), e0152048.CrossRefGoogle ScholarPubMed
Scata, G., Jozet-Alves, C., Thomasse, C., Josef, N., and Shashar, N. (2016). Spatial learning in the cuttlefish Sepia officinalis: preference for vertical over horizontal information. Journal of Experimental Biology, 219, 29282933.CrossRefGoogle ScholarPubMed
Scheel, D., and Bisson, L. (2010). Movement patterns of giant Pacific octopuses, Enteroctopus dofleini. Journal of Experimental Marine Biology and Ecology, 416, 2131.Google Scholar
Scheel, D., Godfrey-Smith, P., and Lawrence, M. (2016). Signal use by octopuses in agonistic interactions. Current Biology, 26, 377382.CrossRefGoogle ScholarPubMed
Shashar, N., and Cronin, T. W. (1996). Polarized contrast vision in Octopus. The Journal of Experimental Biology, 199, 99104.CrossRefGoogle ScholarPubMed
Shashar, N., Rutledge, P. S., and Cronin, T. W. (1996). Polarization vision in cuttlefish – a concealed communication channel. Journal of Experimental Biology, 199, 20772084.CrossRefGoogle ScholarPubMed
Smith, J. A., Andrews, P. L. R., Hawkins, P., Louhimus, S., Ponte, G., and Dickel, L. (2013). Cephalopod research and EU Directive 2010 63 EU: requirements, impacts, and ethical reviews. Journal of Experimental Marine Biology and Ecology, 447, 3145.CrossRefGoogle Scholar
Stubbs, A. L. and Stubbs, C. W. (2016). Spectral discrimination in color blind animals via chromatic aberration and pupil shape. Proceedings of the National Academy of Sciences, 113, 82068211.CrossRefGoogle ScholarPubMed
Sutherland, N. S. (1969). Shape discrimination in rat, octopus and goldfish: a comparative study. Journal of Comparative and Physiological Psychology, 67, 160176.CrossRefGoogle ScholarPubMed
Tidbal, J. G. (2012). Cnidaria: secreted surface in biology of the integument. In Biology of the integument: invertebrates (pp. 6976). Berlin: Springer.Google Scholar
Tricarico, E., Borelli, L., Gherardo, F., and Fiorito, G. (2011). I know my neighbour: individual recognition in Octopus vulgaris. PLoS ONE, 6(4), e18710.CrossRefGoogle ScholarPubMed
Walderon, M. D., Nolt, K. J., Haas, R. E., et al. (2011). Distance chemoreception and the detection of conspecifics in Octopus bimaculoides. Journal of Molluscan Studies, 77, 309311.CrossRefGoogle Scholar
Wells, M. J. (1978). Octopus: physiology and behaviour of an advanced invertebrate. London: Chapman and Hall.CrossRefGoogle Scholar
Williamson, R., and Chrachri, A. (2007). A model biological neural network: the cephalopod vestibular system. Philosophical Transactions of the Royal Society B: Biological Sciences, 362, 473481.CrossRefGoogle Scholar
Wood, J. B., and Anderson, R. C. (2004). Interspecific evaluation of octopus escape behavior. Journal of Applied Animal Welfare Science, 7, 95106.CrossRefGoogle ScholarPubMed
Yasumura, H., and Ikeda, Y. (2011). Effects of environmental enrichment on the behavior of the tropical octopus Callistoctopus apiliosomaus. Marine and Freshwater Behaviour and Physiology, 44, 143157.CrossRefGoogle Scholar
Zullo, L., Sumbre, G., Agnisola, C., Flash, T., and Hochner, B. (2009). Nonsomatotopic organization of the higher motor centers in Octopus. Current Biology, 19, 16321636.CrossRefGoogle ScholarPubMed
Zylinski, S., and Osorio, D. (2014). Cuttlefish camouflage: vision and cognition. In Cephalopod cognition (pp. 197222). Cambridge: Cambridge University Press.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×