Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-28T17:22:18.100Z Has data issue: false hasContentIssue false

4 - Definability in classes of finite structures

Published online by Cambridge University Press:  01 June 2011

Dugald Macpherson
Affiliation:
University of Leeds
Charles Steinhorn
Affiliation:
Vassar College, New York
Javier Esparza
Affiliation:
Technische Universität München
Christian Michaux
Affiliation:
Université de Mons, Belgium
Charles Steinhorn
Affiliation:
Vassar College, New York
Get access

Summary

Introduction

This paper provides an overview of recent work by the authors and others on two topics in the model theory of finite structures. The point of view here differs from that usually associated with the term ‘finite model theory’, as presented for example in [21] or [46], in which the emphasis and motivation come primarily from computer science. Instead, the inspiration for this work has its origins in contemporary (infinite) model theoretic themes such as dimension, independence, and various measures of the complexity of definable sets. Each of the topics deals with classes of finite structures for first-order logic that are isolated by conditions that are drawn from these model-theoretic considerations. Moreover, in both cases, connections exist to areas in infinite model theory such as stability and simplicity theory, and o-minimality. This survey is intended for both mathematical logicians and computer scientists whose work focuses on logical aspects of the subject.

The first theme concerns asymptotic classes of finite structures. This subject has its origins in the model theory of finite fields, via the work of Chatzidakis, van den Dries and Macintyre [13] (see Theorem 4.2.1) and the earlier model theory of finite fields developed by Ax [4], and ultimately rests on the Lang-Weil bounds for the number of points in a finite field of an irreducible variety defined over that field.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×