Published online by Cambridge University Press: 04 November 2009
The only practical way of creating and studying hot and dense strongly interacting matter in the laboratory is by colliding heavy nuclei at high energies. Some of the pioneering studies have used nuclear emulsion data of highly energetic cosmic ray events. However, a serious handicap there is the lack of control over the physical beam characteristics. For a few decades now, there has existed a vibrant experimental program seeking to explore the physics of nuclear collisions in different energy regimes and with different combinations of beam and target nuclei. The pioneering experiments at the Lawrence Berkeley National Laboratory (Berkeley, USA) have been followed by several other experimental ventures. It is impossible to enumerate all the facilities, but some important efforts at the high end of the energy spectrum have been pursued at the GSI (Darmstadt, Germany), CERN (Geneva, Switzerland), and at Brookhaven National Laboratory (Upton, USA). The Relativistic Heavy Ion Collider (RHIC) is located at BNL, and the Large Hadron Collider (LHC) has a heavy ion program expected to begin at CERN around 2007. A healthy experimental program in high energy nuclear collisions requires a basis in nucleon–nucleon and nucleon–nucleus collisions. These in fact constitute a crucial category of control experiments for the more complex nucleus–nucleus events. The study of strongly interacting matter at high temperature and density enjoys an active and fruitful collaboration between the experimental and theoretical communities.
In relativistic nuclear collisions, multiple scatterings involving both the primary constituents (the original nucleons) and the secondary particles (mostly created pions) can, in principle, drive the system towards a state of local thermodynamic equilibrium. The reason for this originates in the phenomenology of hadronic collisions.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.