3 - The Waving Sheet Model
from Part One - Fundamentals
Published online by Cambridge University Press: 09 September 2020
Summary
In this third chapter we introduce the historically important model of swimming at low Reynolds numbers originally proposed by G. I. Taylor (1951), which is now considered classical. In his paper, Taylor set out to investigate the possibility of swimming in a fluid without inertia at all, a possibility that was at odds with physical intuition at the time. Since waves are the fundamental non-reciprocal kinematics, and since microorganisms were observed to deform their flagella in a wave-like fashion, he focused on the simplest setup possible, namely that of a flexible two-dimensional sheet deforming as a travelling wave of transverse displacements. In this chapter, considering waves with both transverse and longitudinal motion, we show that indeed inertia-less swimming is possible, and that the sheet motion can be used to model both swimming using flagella and pumping using cilia. By computing the rate of working of the wave on the fluid, and its optimisation, we then illustrate how this simple two-dimensional model can be exploited to interpret the two modes of deformation of cilia arrays that are observed experimentally.
Keywords
- Type
- Chapter
- Information
- The Fluid Dynamics of Cell Motility , pp. 29 - 44Publisher: Cambridge University PressPrint publication year: 2020