Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-12T20:14:30.784Z Has data issue: false hasContentIssue false

27 - Remote sensing tools in tropical forest hydrology: new sensors

from Part IV - New methods for evaluating effects of land-use change

Published online by Cambridge University Press:  12 January 2010

A. A. Held
Affiliation:
CSIRO, Canberra, ACT Australia
E. Rodriguez
Affiliation:
Jet Propulsion Laboratory, National Aeronautics and Space Administration, Pasadena, CA, USA
M. Bonell
Affiliation:
UNESCO, Paris
L. A. Bruijnzeel
Affiliation:
Vrije Universiteit, Amsterdam
Get access

Summary

INTRODUCTION

Increasingly, the monitoring of forest condition and productivity requires better spatial context, more detail and higher temporal resolution, if we are to be able to visualise key environmental or biodiversity indicators and their changes across space and time. For the accurate prediction of how changes in climate, forest condition or land-use can impact large-scale hydrological processes, researchers and water managers are also faced with the need to extrapolate patch-scale measurements to whole catchments or river basin scales. This is especially challenging across large, often inaccessible areas or where the ground information available is sparse and where the costs and effort required in setting up a dedicated, sufficiently dense network of ground-based sampling sites are very high.

Although not always measuring the required hydrological variables directly, remote sensing techniques can provide valuable information about the spatial variability of key surface characteristics across large scales. For this reason it is often used as a cost-effective mechanism for extrapolation of point-based measurements, or as a constraint for hydrological model outputs. The key to the effective use of this type of data, in conjunction with hydrological models, lies in the recognition of the characteristics and trade-offs found in the different forms of remotely sensed derived variables, and how they can be used to complement ground-based hydrological measurements effectively.

Up to now, mostly broad-band, low resolution remotely sensed data have been used as input and constraints for regional/ continental hydrology and productivity models (e.g. Running and Coughlan, 1988; Schultz and Engman, 2000).

Type
Chapter
Information
Forests, Water and People in the Humid Tropics
Past, Present and Future Hydrological Research for Integrated Land and Water Management
, pp. 675 - 702
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aber, J. D. (1979). A method for estimating foliage-height profiles in broad-leaved forests. Journal of Ecology 67: 35–40CrossRefGoogle Scholar
Anger, C. D., Babey, S. K., and Adamson, R. A. (1990). A new approach to imaging spectroscopy. Proceedings of SPIE, 72:72–86CrossRefGoogle Scholar
Bailey, J. (1990). The potential value of remotely sensed data in the assessment of evapotranspiration and evaporation. In: Satellite Remote Sensing for Operational Hydrology. Ed. Francois Becker. Remote Sensing Reviews Vol 4. Harwood Academic Publishers. New York, p. 349–378CrossRef
Band, L. E., Patterson, P., Nemani., R., Running, S. (1993). Forest ecosystem processes at the watershed scale: incorporating hillslope hydrology. Agricultural and Forest. Meteorology, 63:93–126Google Scholar
Becker, F. and Choudhury, B. J. (1988). Relative Sensitivity of Normalized Difference Vegetation Index (NDVI) and Microwave Polarization Difference Index (MPDI) for Vegetation and Desertification monitoring. Remote Sensing of Environment, 24: 297–311CrossRefGoogle Scholar
Benson, M. L., Landsberg, J. J. and Borough, C. J. (1992). The biology of forest growth experiment: An introduction. Forest Ecology and Management, 52:1–311CrossRefGoogle Scholar
Blackburn, G. A. (1999). Relatonships between spectral reflectance and pigment concentrations in stacks of deciduous broadleaves. Remote Sensing of Environment 70:224–237CrossRefGoogle Scholar
Blackburn, G. A. (1998). Spectral indices for estimating photosynthetic pigment concentrations: a test using senescent tree leaves. International Journal of Remote Sensin 19:657–675CrossRefGoogle Scholar
Blair, J. B., Rabine, D. L., Hofton, M. A. (1999) The Laser Vegetation Imaging Sensor (LVIS): A medium-altitude, digitisation-only, airborne laser altimeter for mapping vegetation and topography. ISPRS Journal of Photogrammetry and Remote Sensing, 54:115–122CrossRefGoogle Scholar
Calvet, J. C., Wigneron, J. P., Mougin, E., Kerr, Y., and Brito, J. S. (1994). Plant water content and tempeatrue of the Amazon forest from satellite microwave radiometry. IEEE Transactions on Geoscience and Remote Sensing. 32:397–408CrossRefGoogle Scholar
Carter, G. A. (1998). Reflectance wavebands and inices for remote estimation of photosynthesis and stomatal conductance in pine canopies. Remote Sensing of Environment. 63:61–72CrossRefGoogle Scholar
Carter, G., (1994). Ratios of leaf reflectance in narrow wavebands as indicators of plant stress. International Journal of Remote Sensing. 15:697–703CrossRefGoogle Scholar
Chapin, F. S. III, (1991). Effects of multiple environmental stresses on nutrient avaiability and use. In: Response of Plants to Multiple Stresses. Academic Press Inc. pp 67–88
Choudhury, B. J., Idso, S. B. and Reginato, R. J. (1987). An analysis of infrared temperature observations over wheat and calculation of latent heat flux. Agricultural and Forest Meteorology. 37:75–88CrossRefGoogle Scholar
Clark, R. N., Trude, V. V., King, V. V., ager, C., Swayze, G. A. (1995). Initial vegetation species and senescence/stress indicator mapping in the San luis Valley, Colorado, using imaging spectrometer data. Pp. 35–38. In:. Proc. Fifth Airborne/Visible/Infrared Imaging Spectrometer (AVIRIS) Workshop. January, 1995
Close, D. C., Beadle, C. L., Brown, P.., and Holz, G. K.. (2000). Cold-induced photoinhibition affects establishment of Eucalyptus nitens (Deane and Maiden) and Eucalyptus globulus (Labill). Trees: Structure and Function. 15: 32–41CrossRefGoogle Scholar
Collins, J. B., Woodcock, C. E. (1999). Geostatistical estimation of resolution-dependednt variance in remotely-sensed images. Photogram. Eng. Remote Sens. 65:41–50Google Scholar
Cook, S. E., Corner, R. J., Groves, P. R., Grealish, G. J., (1996). Use of airborne gamma radiometric data for soil mapping. Aust. J. Soil Res. 34, 183–194CrossRefGoogle Scholar
Coops, N. C. (1999). Improvement in predicting stand growth of Pinus radiata (D.Don) across landscape using Noaa AVHRR and Landsat MSS imagery combined with a forest growth process model (3-PGS). Photogram. Eng. Remote Sens. 65:1149–1156Google Scholar
Coops, N. C., Ryan, P. J., Bishop, A. P. (1998). Investigating CASI responses to soil properties and disturbance across an Australian eucalypt forest. Can. J. Rem. Sens. 24:153–168CrossRefGoogle Scholar
Coops, N. C., Waring, R. H. and Landsberg, J. J. (1998). Assessing forest productivity in Australia and New Zealand using a physiologically-based model driven with average monthly weather data and satellite derived estimates of canopy photosynthetic capacity. Forest Ecology and Management 104, 113–127CrossRefGoogle Scholar
Curlis, J. D., Frost, V. S., and Dellwig, L. F. (1986) Geological mapping potential of computer-enhanced images from the shuttle imaging radar: Lisbon Valley Anticline, Utah. Photogram. Eng. And Remote Sensing 52:525–532Google Scholar
Curran, P. J., Kupiec, J. A., Smith, G. M. (1997) Remote sensing the biochemical composition of a slash pine canopy. IEEE Transactions on Geoscience and Remote Sensing. 35:415–420CrossRefGoogle Scholar
Curran, P. J. (1994). Imaging spectrometry – its present and future role in environmental research. In Imaging Spectrometry – a Tool for Environmental Observations. Joachim Hill and Jacques Megier (eds.). Kluwer Academic Publishers, Dotrecht. EU., pp. 1–24CrossRef
Demming-Adams, B., and Adams, W. W. III. (1992). Photoprotection and other responses of plants to high light stress. Ann. Rev. Plant Physiol. Plant Molec. Biol. 43:599–626CrossRefGoogle Scholar
Dobson, M. C., Ulaby, F. T. (1998). Mapping soil moisture distribution with imaging radar. In: Principles and applications of imaging radar. Manual of Remote Sensing, 3rd Edition. (R. A. Ryerson ED). John Wiley and Sons. New York
Dubayah, R., Blair, J. B., Bufton, J. L., Clark, D. B., JaJa, J., Knox, R. G., Luthcke, S. B., Prince, S., and Weishampel, J. F. (1997). The Vegetation Canopy Lidar mission. Pages 100–112. Land Satellite Information in the Next Decade II: Sources and Applications. American Society for Photogrammetry and Remote Sensing, Bethesda, MD, USA
Eagleson, P. S. (1982). Ecological optimality in water-limited natural soil-vegetation systems, I. Theory and hypothesis. Water Res. Research 18:325–340CrossRefGoogle Scholar
Elachi, C. (1980), Spaceborne imaging radar: geologic and oceanographic applications, Science, 209, 1073–1082CrossRefGoogle ScholarPubMed
FAO (Food and Agriculture Organisation of the United Nations) (1996). Forest Resources Assessment. Survey of tropical forest cover and study of change processes. FAO Forestry Paper 112, Food and Agricultural Organisation of the United Nations, Rome
FAO (Food and Agriculture Organisation of the United Nations) (1990). Forest Resources Assessment: Global Synthesis, FAO Forestry papers 124, Rome, Italy
Farquhar, G. D., Schulze, E.-D., and Küppers, . (1980). Responses to humidity by stomata of Nicotiana glauca L. and Corylus avellana L. are consistent with the optimisation of carbon dioxide uptake with respect to water loss. Aust. J. Plant Physiol., 7:315–327CrossRefGoogle Scholar
Field, C. B., Randerson, J. T., and Malmström, M. (1995). Global net primary production: Combining ecology and remote sensing. Remote Sensing of Environment 51:74–88CrossRefGoogle Scholar
Field, C. B. (1991). 2. Ecological scaling of carbon gain to multiple stress. In: Responses of Plants to Multiple Stresses. H. A. Mooney, W. E. Winner and E. J. Pell (eds.) Academic Press. Pp. 35–65
Foody, GM, Green, RM, Lucas, RM, (1997). ‘Observations on the relationship between SIR-C radar backscatter and the biomass of regenerating tropical forests’, International Journal of Remote Sensing 18: (3) 687–694CrossRefGoogle Scholar
Foody, G. M., Palubinskas, G., Lucas, R. M., Curran, P. J., and Honzak, M. (1996), Identifying terrestrial carbon sinks: Classification of successional stages in regenerating tropical forest from Landsat TM data. Remote Sensing of Environment 55: 205–216CrossRefGoogle Scholar
Fransson, J. E. S., Walter, F, and Ulander, L. M. H. (2001) Estimation of Forest Parameters Using CARABAS-II VHF SAR Data, IEEE Transactions on Geoscience and Remote Sensing, Vol. 38, no. 02, p. 720CrossRefGoogle Scholar
Freemantle, J. R, Pu, R. and Miller, J. R. (1992). Calibration of imaging spectrometer data to reflectance using peudo-invariant features. Proc. 15th Canadian Symposium on Remote Sensing, Toronto, Ontario, June 1992
Gamon, J. A., Qiu, H.-L. (1999). Ecological applications of remote sensing at multiple scales. Pp 805–845. In: Handbook of Functional Ecology. Pugnaire, F. I. and Valladares, F. (eds). Marcel Dekker. New York
Gamon, J. A., Serrano, L., Surfus, J. S. (1997). The photochemical reflectance index: an optical indicator of photosynthetic radiation use efficiency across species, functional types, and nutrient levels. Oecologia, 112:492–501CrossRefGoogle ScholarPubMed
Gamon, J. A., Peñuelas, J., and Field, C. B., (1992). A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sensing of Environment. 41:35–44CrossRefGoogle Scholar
Gamon, J. A., Field, C. B., Bilger, W., Bjôrkman, O., Fredeen, A. L. and Peñuelas, J., (1990). Remote sensing of the xanthophyll cycle and chlorophyll fluorescence in sunflower leaves and canopies. Oecologia 85:1–7CrossRefGoogle ScholarPubMed
Ganapol, B. D., Johnson, L. F., Hlavka, C. A., Peterson, D. L., Bond, B. (1999) LCM2: A coupled leaf/canopy transfer model. Remote Sensing of Environment. 1999CrossRef
Gilmore, A. M., Yamamoto, H. Y. (1991). Resolution of lutein and zeaxanthin using a non-endcapped, lightly carbon-loaded C18 high-performance liquid chromatographic column. J Chromatography 543:137–145CrossRefGoogle Scholar
Gittelson., A. A., Merzlyak, M. N., Lichtenhaler, K. (1996). Detection of red edge and chlorophyll content by reflectance measurements near 700 nm. J. Plant Physiol. 148:501–508CrossRefGoogle Scholar
Goetz, A. F. H., Vane, G., Solomon, J. E., and Rock, B. N., (1985). Imaging spectrometers for earth remote sensing, Science, vol. 228, no. 4704, pp. 1147–1153CrossRefGoogle Scholar
Goetz, S. J. (1992). Multi-sensor analysis of NDVI, surface temperature and biophysical variables at a mixed grassland ite. International Journal of Remote Sensing. 18:71–94CrossRefGoogle Scholar
Gorte, B. G. H. (2000). Chapter 7: Land-use and catchment characteristics. In: Schultz, G. A. and Engman, T. E. (eds.), 2000. Remote sensing in hydrology and water management. P. 133. Springer Verlag, New York
Goetz, A. F. H. (1992). Imaging spectrometry for earth remote sensing. In: Imaging Spectroscopy: Fundamentals and Prospective Applications. F. Toselli and J. Bodechtel (eds.) pp. 1–19. ECSC, EEC, EAEC, Brussels and Louxenbourg
Gougeon, F. A. (1995). A crown-following approach to the automatic delineation of individual tree crowns in high spatial resolution aerial images. Can. J. Rem. Sens. V.21 no. 3Google Scholar
Grantz, D. A., and Meinzer, F. C. (1990). Stomatal response to humidity in a sugarcane field: Simultaneous porometric and micrometeorological measurements. Plant, Cell and Environ., 13:27–37CrossRefGoogle Scholar
Green, R. O.; Eastwood, M. L.; Sarture, C. M.; Chrien, T. G.; Aronsson, M.; Chippendale, B. J.; Faust, J. A.; Pavri, B. E.; Chovit, C. J.; Solis, M.; Olah, M. R.; and Williams, O. (1998). Imaging Spectroscopy and the Airborne/Infrared Imaging Spectrometer (AVIRIS). Remote Sensing of Environment., 65:227–248CrossRefGoogle Scholar
Green, R. O. and Roberts, D. A. (1995). Vegetation species copmposition and canopy architecture information expressed in leaf water absorption measured in the 1000 nm and 2200 nm spectral region by an imaging spectrometers. Proceedings, 5th Annual JPL Airborne Earth science Workshop, Pasadena, California. NASA JPL Publication 95-1, vol 1
Guillevic, P., and Gastellu-Etchegorry, J. P. (1999) Modelling BRDF and radiation regimes of tropical and boreal forests, part II:PAR regime. Remote Sensing of Environment, 68:317–340CrossRefGoogle Scholar
Gutelius, G., Carter, W. E., Shrestha, R. L., Medvedev, E., Gutierez, R., and Gibeaut, J. G. (1998) ‘Engineering Applications of Airborne Scanning Lasers: Reports from the Field,’ Journal of American Society for Photogrammetry and Remote Sensing, Vol. ⅬXIV, no. 4, pp. 246–253, 1998Google Scholar
Hallett, R. A., Martin, M. E., Hornbeck, J. W. (1997). Predicting elements in white pine and red oak foliage with near infrared reflectance spectroscopy. J. Near Infrared Spect. 5:77–82CrossRefGoogle Scholar
Harrell, P. A., Kasischke, E. S., BourgeauChavez, L. L., (1997), ‘Evaluation of approaches to estimating aboveground biomass in southern pine forests using SIR-C data’, Remote Sensing of Environment 59: 223–233,CrossRefGoogle Scholar
Harrison, B. A. and Jupp, D. L. B. (1998). Introduction to Remotely Sensed data. Part One Resource manual. CSIRO Publications, Melbourne, Australia
Hanssen, R. F. (2001). Radar Interferometry: Data Interpretation and Error Analysis. Kluwer Academic Publishers. Dotrecht, The NetherlansCrossRef
Held, A., Phinn, S., Scarth, P., Stanford, M. Ticehurst, C., Hartini, S. and Lymburnber, L. (2001). Hyperspectral Mapping of Rainforests and Mangroves. In: Proceedings of the International Geosciences and Remote Sensing Symposium July 9–13, 2001, Sydney, CD-ROM Proceedings, IEEE-Piscataway NY, USA
Held, A. A. and Billings, S. (1996). Automatic Tree Crown Recognition and Counting from high resolution casi data. Proceedings, 7th Australasian Remote Sensing Conference, Sydney – Australia. July 1996
Held, A. A., D. Pidsley, T. J. Hatton and D. L. B. Jupp. (1995). Use of Landsat TM data to scale measurements of evapotranspiration in the Northern Territory of Australia. Proceedings of the 2nd North Australian Remote Sensing and GIS Forum. Darwin, July 1995, Darwin, Australia. AURISA Monograph No. 11
Hoekman, D. H. and Quiňones, M. J. (2000). Land cover type and biomass classification using Air SAR data for evaluation of monitoring scenarious in the Colombian Amazon. IEEE Transactions on Geoscience and Remote Sensing. March 2000CrossRef
Horler, D. N. H., Dockray, M., Barber, J. (1983) The red-edge of plant leaf reflectance. International Journal of Remote Sensing, 4:273–289CrossRefGoogle Scholar
Hunt, G. R. and Ashley, R. P., (1979). Spectra of altered rocks in the visible and near-IR. Economic Geology 74:1613-1629CrossRefGoogle Scholar
Imhoff, M. L., Johnson, P., Carson, S., Lawrence, W., Condit, R., Stutzer, D. and Wright, J. (2001). VHF radar mapping of forest biomass in Panama. In: Proceedings of the International Geosciences and Remote Sensing Symposium July 9–13, 2001, Sydney, CD-ROM Proceedings, IEEE-Piscataway NY, USA
Imhoff, M. (1998). A low frequency radar experiment for vegetation biomass measurement. IEEE Transactions on Geoscience and Remote Sensing, 36:1988–1991CrossRefGoogle Scholar
Imhoff, M. L. (1995a). A theoretical analysis of the effect of forest structure on synthetic aperture radar backscatter and the remote sensing of biomass. IEEE Transactions on Geoscience and Remote Sensing 33:341–351CrossRefGoogle Scholar
Imhoff, M. L. (1995b). Radar backscatter and biomass saturation: Ramifications for global biomass inventory. IEEE Transactions on Geoscience and Remote Sensing. 33:511–518CrossRefGoogle Scholar
Jacquemoud, S., Bacour, C., Poilvé, H., Frangi, J.-P. (2001) Comparison of four radiative transfer models to simulate plant canopies reflectance – Direct and inverse mode. Remote Sensing of Environment. (in press)Google Scholar
Jacquemoud, S., and Baret, F, (1990). PROSPECT: a model of leaf optical properties spectra. Remote Sensing of Environment, 34:75–91CrossRefGoogle Scholar
Jupp, D. L. B. and Kalma, J. D. (1989). Distributing evapotranspiration in a catchment using airborne remote sensing. Asian-Pacific Remote Sensing Journal. 2:13–25Google Scholar
Kaufman, Y. J., Justice, C. O., Flynn, L. P., Kendall, J. D., Prins, E. M., Giglio, L., Ward, D. E., Menzel, W. P., and Setzer, A. W., (1998), Potential global fire monitoring from EOS-MODIS. Journal of Geophysical Research, 103:32215–32238CrossRefGoogle Scholar
Kite, G. W. and Droogers, P. (2000). Comparing evapotranspiration estimates from satellites, hydrological models and field data
Kraus, K., Pfeifer, N. (1998). Determination Of Terrain Models In Wooded Areas With Airborne Laser Scanning Data. ISPRS J. Photogramm. Remote Sensing 53 (4), 193–203CrossRefGoogle Scholar
Kruse, F. A., (1999), Visible/Infrared Sensors and Case Studies, Chapter 11, in Rencz, A., (ed.), Remote Sensing for the Earth Sciences, Manual of Remote Sensing, Volume 3, p. 567 -606
Kustas, W. P., Perry, E. M., Doraiswamy, P. C., Moran, M. S. (1994). Using satellite remote sensing to extrapolate evapotranspiration estimates in ime and space over a semiarid rangeland basin. Remote Sensing of Environment., 49:275–286CrossRefGoogle Scholar
Lambin, E. F., Strahler, A. H. (1994). Indicators of land cover change for change-vector analysis in multitemporal space at coarse spatial scales. International Journal of Remote Sensing. 15:2099–2119CrossRefGoogle Scholar
Lambin, E. (2000). Land cover assessment and monitoring. In Encyclopedia of analytical chemistry. J. Wiley. Sept. 2000. P. 2311Google Scholar
Landsberg, J. J. and Coops, N. C. (1999) Modelling forest productivity across large areas and long periods. Nat. Res. Model. 12:1–28Google Scholar
Leckie, D. G. (1990) Advances in remote sensing technologies for forest surveys and management. Can. J. For. Res. 20:464–483CrossRefGoogle Scholar
Lefsky, M., Cohen, W., Acker, S., Parker, G., Spies, T. and Harding, D., (1999). Lidar remote sensing of biophysical properties and canopy structure of forests of Douglas-fir and western hemlock. Remote Sensing of Environment 70, pp. 339–361CrossRefGoogle Scholar
Liang, S., Strahler, A. H., Barnsley, M. J., Borel, C. C., Gerstl, S. A. W., Diner, D. J., Prata, A. J., and Walthall, C. L., (2000), Multiangle Remote Sensing:Past, Present and Future, Remote Sens. Rev., 18, 83–102CrossRefGoogle Scholar
Lucas, R., Held, A., Phinn, S. (2002) ‘Remote sensing of tropical rainforests,’ In: Manual of Remote Sensing Volume 4 – Remote Sensing of Natural Resources, Editor S. Ustin, American Society for Photogrammetry and Remote Sensing, Bethesda, Maryland, United States, 90p., (in press)
Lucas, R. M., Honzak, M., Curran, P. J., Foody, G. M., Mline, R., Brown, T. and Amaral, S. (2001). The regeneration of tropical forests within the Legal Amazon. International Journal of Remote SensingGoogle Scholar
Lucas, R. M., Honzak, M., Foody, G. M., Curran, P. J., Corves, C. (1993). Characterising tropical secondary forests using multi-temporal landsat sensor imagery. International Journal of Remote Sensing. 14:3061–3067CrossRefGoogle Scholar
Luckman, A, Baker, J, Kuplich, TM, (1997). A study of the relationship between radar backscatter and regenerating tropical forest biomass for spaceborne SAR instruments, Remote Sensing of Environment 60: (1) 1–13CrossRefGoogle Scholar
Malingreau, J. P., Achard, F., D'Souza, G., Stibig, H. J., DSouza, J., Estreguil, C., Eva, H. (1995). AVHRR for global tropical forest monitoring: The lessons of the TREES project. Remote Sens., Review. 12:29–40CrossRefGoogle Scholar
Manual of Remote Sensing. Second Edition (1983). Volume 1: Theory, Instruments and Techniques. David Simonett (ed.). American Socienty of Photogrammetry and Remote Sensing. Bethesda, Maryland, USA
Manual of Remote Sensing. Second Edition (1983). Volume 2: Interpretation and Applications. John E. Estes (ed.). American Socienty of Photogrammetry and Remote Sensing. Bethesda, Maryland, USA
Martin, M. E., Newman, S. D., Aber, J. D., and Congalton, R. G. (1998) Determining forest species composition using high spectral resolution remote sensing data. Remote Sensing of Environment. 65:249–254CrossRefGoogle Scholar
Martin, M. E., and Aber, J. D. (1997). Estimation of forest canopy lignin and nitrogen concentration and ecosystem processes by high spectral resolution remote sensing. Ecol. Appl. 7:431–443CrossRefGoogle Scholar
Martin, ME and JD Aber (1996). Estimating canopy characteristics as inputs for models of forest carbon exchange by high spectral resolution remote sensing. In The use of remote sensing in the modeling of forest productivity. eds. Gholz, HG, K Nakane and H Shimoda. Kluwer Academic, Dordrecht, The Netherlands, pp 61–72
McKenzie, N. J. and Ryan, P. J. (1999). Spatial prediticons of soil properties using environmental correlation. Geoderma 89:67–94CrossRefGoogle Scholar
McVicar, T. R., and Bierwith, P. (2001). Rapidly assessing the 1997 drought in Papua New Guinea using composite AVHRR imagery. International Journal of Remote Sensing, 22:2109–2128CrossRefGoogle Scholar
McVicar,, T. R. and Jupp, D. L. B. (2000) Using covariates to spatially interpolate moisture availability in the Murray-Darling Basin: a novel use of remotely sensed data. Remote Sensing of Environment. (in press)Google Scholar
Menenti, M. (2000). Chapter 8: Evaporation. In: Schultz, G. A. and Engman, T. E. (eds.), Remote sensing in hydrology and water management. P. 157. Springer Verlag, New York
Merton, R. (1999). Monitoring community hysteresis using spectral shift analysis and the red-edge vegetation stress index. Proceedings, 8th AVIRIS Earth Science Workshop, JPL, Pasadena, California
Miller, J. R., Jiyou, Wu, Boyer, M. G., Belanger,, M. and Hare, E. W. (1991). Seasonal patterns in leaf reflectance red-edge characteristics. International Journal of Remote Sensing. 12:1509–1523CrossRefGoogle Scholar
Minty, B. R. S. (1997). Fundamentals of gamma ray spectroscopy. Journal of Australian Geology and Geophysics. 17:39–38Google Scholar
Monteith, J. L., (1972). Solar radiation and productivity in tropical ecosystems. J. Appl. Ecology, 9, 747–766CrossRefGoogle Scholar
Moore, R. K. (1983). Chapter 10. Imaging Radar Systems. In: Manual of Remote Sensing. Second Edition Volume 1: Theory, Instruments and Techniques. David Simonett (ed.). American Socienty of Photogrammetry and Remote Sensing. Bethesda, Maryland, USA
Moran, M. S., Jackson, R. D., Raymond, L. H., Gay,, L. W. and Slater, P. N. (1989). Mapping surface energy balance components by combining Landsat thematic mapper and ground-based meteorological data. Remote Sensing of Environment. 30:77–87CrossRefGoogle Scholar
Mumby, P. J., Green, E. P., Edwards, A. J. and Clark, C. D. (1999). The cost-effectiveness of remote sensing for tropical coastal resources assessment and management. Journal of Environmental Management 55:157–166CrossRefGoogle Scholar
Nelson, R. F., Oderwald, R. G., and Gregoire, T. G., (1997). Separating the ground and airborne sampling phases to estimate tropical forest basal area, volume, and biomass, Remote Sensing of Environment, 60 (3), 311–326CrossRefGoogle Scholar
Nemani, R. R., Pierce, L., Running, S. W., Goward, S. (1993). Developing satellite-derived estimates of soil moisture status. J. Appl. Meteorol. 32:548–5572.0.CO;2>CrossRefGoogle Scholar
Nemani, R. R. and Running, S. W. (1989). Estimation of regional resistance to evapotranspiraion from NDVI and thermal—IR AVHRR data. J. Appl. Meteorol. 28:276–2842.0.CO;2>CrossRefGoogle Scholar
Nichol., C. J., Huemmrich, K. F., Black, T. A., Jarvis, P. G., Walthall, C. L., Grace, J., Hall, F. G. (2000). Remote sensing of photosynthetic-light-use efficiency of boreal forest. Agric. For. Meteorol., 191:131–142CrossRefGoogle Scholar
Nilsson, M. (1996). Estimation of tree heights and stand volume using an airborne lidar system. Remote Sensing of Environment, 56, 1–7CrossRefGoogle Scholar
Njoku, E. G. and Li, L. (1999) Retrieval of Land Surface Parameters Using Passive Microwave Measurements at 6–18 GHz. IEEE Transactions on Geoscience and Remote Sensing. 17:79–93CrossRefGoogle Scholar
Ollinger, S. V., Smith, M. L., Martin, M. E., Hallett, R. A.Aber, J. D., Goodale, C. L. (2001). Regional variation in foliar chemistry and soil nitrogen status among forests of diverse history and composition. Ecology, in pressGoogle Scholar
Owe, M., Jeu, R. A. M., and Walker, J. (2001) A Methodology for Surface Soil Moisture and Vegetation Optical Depth Retrieval Using the Microwave Polarization Index. IEEE Transactions on Geoscience and Remote sensing August (In Press)CrossRefGoogle Scholar
PawU, K. T., Suchanek, T. H., Ustin, S. L., Chen, J., Hsiao, T., Shaw. R., Falk, M., King, T., Pyles, R. D., Matista., A. (2000). A new view of carbon flux in old-growth forests, Science (submitted)
Peñuelas, J. and Filella, I. (1998). Visible and near-infrared reflectance techniques for diagnosing plant physiological status. Trends in Plant Science 3:151–156CrossRefGoogle Scholar
Peterson, D. L. (2000) NIR spectroscopy in space?NIR News. 11:10–12CrossRefGoogle Scholar
Pickup, G., Marks, A. (2000). Identifying large-scale erosion and deposition processes from airborne gamma radiometrics and digital elevation models in a weathered landscape. Earth Surface Processes and Landforms. 25:535–5573.0.CO;2-N>CrossRefGoogle Scholar
Prata, A. J., Caselles, V., Coll, C., Ottle, C., and Sobrino, J. (1995) Thermal remote sensing of land surface temperature from satellites: current status and future prospects. Remote Sensing Reviews, 12:175–224CrossRefGoogle Scholar
Price, J. C. (1990). Using spatial context in satellite data to infer regional scale evapotranspiration. IEEE Transactions Geoscience and Remote Sensing 28:940–948CrossRefGoogle Scholar
Price, J. C. (1982). On the use of satellite data to infer surface fluxes at meteorological scales. J. Appl. Meteorol. 21:1111–11222.0.CO;2>CrossRefGoogle Scholar
Raupach, M. R. and Barret, D. (2002) In: Vertessy, R. A. and Elsenbeer, H. (eds.) The State of the Art in Forest Hydrology. Union of Forestry Research Organizations (IUFRO)
Raupach, M. R. (1998). Influences of local feedbacks on land-air exchanges of energy and carbon. Global Change Biology. 4, 477–494CrossRefGoogle Scholar
Raupach, M. R. and Finnigan, J. J., (1995). Scale issues in boundary layer meteorology: surface energy balances in heterogeneous terrain. Hydrological Processes 9, 589–612CrossRefGoogle Scholar
Rawson, H. H., Begg, J. E., and Woodward, R. G. (1977). The effect of atmospheric humidity on photosynthesis, transpiration and water use efficiency of leaves of several plant species. Planta, 134:5–10CrossRefGoogle ScholarPubMed
Reich, P., Walters, M., Ellsworth, D. (1992). Leaf life-span in relation to leaf, plant and stand characteristics among diverse ecosystems. Ecological Monographs 62:365–392CrossRefGoogle Scholar
Roberts, D. A., Dennison, P., Ustin, S., Reith, E., Morais, M. (1999). Development of a regionally specific library for the santa monica mountains using high resolution AVIRIS data. Proceedings, 8th AVIRIS Earth Science Workshop, JPL, Pasadena, California
Roberts, D. A., Batista, G., Pereira, J., Waller, E., Nelson, B. (1998). Change identification using multitemporal spectral mixture analysis: Applications in eastern amazonia, Chapter 9 in Remote Sensing Change Detection: Environmental Monitoring Applications and Methods. Elvidge., C and Lunetta, R., (EDS.), Ann Arbor Press, Ann Arbor MI, 137–161
Roberts, D. A., Brown, K. J., Green, K. J., Ustin, S., Hinckley, T. (1998). Investigating the relationship between liquid water and leaf area in clonal populus. Proceedings 7th JPL Airborne Earth Science Workshop. January 1998, JPL – Publication 97–21, Pasadena, California
Rock, B. N., Vogelman, J. E., Williams, D. L., Vogelman, A. F., Hoshizaki, T. (1996). Remote detection of forest damage. BioScience 36:439–445CrossRefGoogle Scholar
Roderick, M. L., Noble, I. R., Cridland, S. W. (1999). Estimating woody and herbaceous vegetation cover from time series satellite observations. Global Ecology and Biogeography 8:501–508CrossRefGoogle Scholar
Rosen, P. A., Hensley, S., Joughin, I. R., (2000). Synthetic aperture radar interferometry – Invited paper', Proceedings of the IEEE 88: (3) 333–382CrossRefGoogle Scholar
Rosenqvist, A., Shimada, M., Chapman, B., (2000). The Global Rain Forest Mapping project – a review', International Journal of Remote Sensing 21: (6–7) 1375–1387CrossRefGoogle Scholar
Running, S. W., P. E. Thornton, R. R. Nemani, J. M. Glassy. (2000) Global Terrestrial Gross and Net Primary Productivity from the Earth Observing System. In: Methods in Ecosystem Science, O. Sala, R. Jackson, and H. Mooney Eds. Springer-Verlag New York
Running, S. W., Baldocchi, D. D., Turner, D. P., Gower, S. T., Bakwin, P. S., Hibbard, K. A. (1999). A global terrestrial monitoring network integrating tower fluxes, flask sampling, ecosystems modelling and EOS satellite data. Remote Sensing of Environment. 70:108–127CrossRefGoogle Scholar
Running, S. R. and Nemani, R. R. (1988). Relating seasonal patterns of the AVHRR vegetation index to simulated photosynthesis and transpiration of forests in different climates. Remote Sensing of Environment. 24:347–367CrossRefGoogle Scholar
Running, S. W. and Coughlan, J. C. (1988). A general model of forest ecosystem processes for regional applications. 1. Hydrologic balance, canopy gas exchange and primary production processes. Ecological Modelling, 42, 125–154CrossRefGoogle Scholar
Ryan, P. J., McKenzie, N. J., O'Connell, D., Lounghead, A. N., Leppen, P. M., Jacquier, D., Ashton, L. (2000). Integrating forest soils information across scales: spatial prediction of soil properties under Australian forests. Forest Ecology and Management 138:139–157CrossRefGoogle Scholar
Saatchi, SS, Nelson, B, Podest, E, et al. (2000), Mapping land cover types in the Amazon Basin using 1 km JERS-1 mosaic, International Journal of Remote Sensing 21: (6–7) 1201–1234CrossRefGoogle Scholar
Saatchi, S. S., and Moghaddam, M., (2000). Estimation of crown and stem water content and biomass of boreal forest using polarimetric SAR imagery, IEEE Transactions on Geoscience and Remote Sensing 38: (2) 697–709 Part 1CrossRefGoogle Scholar
Sabol, D., E., Smith, M. O., Adams, J. B., Zukin, J. H., Tucker, C. J., Roberts, D. A., Gillespie, A., R. (1995). Proceedings, 5th Annual JPL Airborne Earth science Workshop, Pasadena, California. NASA JPL Publication 95–1, vol 1Google Scholar
Schmugge, T. J. (1983). Remote sensing of soil moisture: Recent Adavnces. IEEE Transactions on Geoscience and Remote Sensing. GE21(3):33–344Google Scholar
Schmugge, T. J. (1985) Remote sensing of soil moisture, In Hydrological Forecasting, M. G. Anderson and T. P. Burt (Eds), John Wiley, New York
Schultz, G. A. and Engman, T. E. (2000). Remote sensing in hydrology and water management. Springer Verlag, New York
Schulze, E.-D. and Hall, A. E. (1982). Chapter 7. Stomatal responses, water loss and CO2 assimilation rates of plants in contrasting environments. in: Encyclop. of Plant Physiol 12B. Physiological Plant Ecology II. O. L. Lange, P. S. Nobel, C. B. Osmond and Zeigler, H. (eds.) Springer Verlag, Berlin
Sellers, P. J., Los, S. O., Tucker, C. J., Justice, C. O., Dazlich, D. A., Collatz, G. J., and Randall, D. A. (1996). A revised land surface parameterisation (SiB-2) for atmospheric GCMs. Part 2: The generation of global fields of terrestrial biophysical parameters from satellite data. Journal of Climate, 9:706–7372.0.CO;2>CrossRefGoogle Scholar
Sellers, P. J., (1987). Canopy reflectance, photosynthesis, and transpiration. II. The role of biophysics in the linearity of their interdependence. Remote Sensing of Environment. 21:143–183CrossRefGoogle Scholar
Seguin, B., Courault, D., Guerif, Martine. (1994). Surface temperature and evapotranspiration: Application of local scale methods to regional scales using satellite data. Remote Sensing of Environment. 49:287–295CrossRefGoogle Scholar
Siqueira, P., Chapman, B., Saatchi, S., Freeman, A., (1997). Amazon rainforest visualization/classification by orbiting radar, enabled by supercomputers (ARVORES). In: Proceedings of the International Geosciences and Remote Sensing Symposium, Singapore. July, 1997, IEEE-Piscataway NY, USACrossRef
Skidmore, A. K., Varekamp, C,. Wilson, L., Knowles, E., Delaney, J., (1997). Remote sensing of soils in a eucalypt forest environment. International Journal of Remote Sensing 18:39–56CrossRefGoogle Scholar
Skole, D. L. and Tucker, C. J. (1993). Tropical deforestation and habitat fragmentation in the Amazon: satellite data from 1978 to 1988. Science, 260, 1905–10CrossRefGoogle ScholarPubMed
Smith, M. L., Ollinger, S. V., Martin, M. E., Aber, J. D., Hallett, R. A., Goodale, C. L. (2001). Direct prediction of aboveground forest productivity by hyperspectral remote sensing of canopy nitrogen. Oecologia (in review)
Snowdon, P., and Benson, M. L. (1992). Effects of combinations of irrigation and fertilization on the growth and above-ground biomass production of Pinus radiata. Forest Ecology and Management 52:87–116CrossRefGoogle Scholar
Stone, T. A., Schlesinger, P., Houghton, R. A. and Woodwell, G. M., (1994). A map of the vegetation of South America based on satellite imagery. Photogrammetric Engineering and Remote Sensing, Vol 60, 541–551Google Scholar
Sun, J., Mahrt, L. (1994). Spatial distribution of surface fluxes estimated from remotely sensed variables. J. Appl. Meteorology 33:1341–13532.0.CO;2>CrossRefGoogle Scholar
Tenhunen, J. D., Pearcy, R. W., Lange, O. L. (1987) Diurnal variations in leaf conductance and gas-exchange in natural environments, pp. 323–351. In: Zeiger, E., farquhar, G. D. and Cowan, I. R. (eds.) Stomatal Function. Stanford University Press. Stanford California
Thayer, S. S. and Björkman, O. (1990). Leaf xanthophyll content and composition in sun and shade determined by HPLC. Photosynthesis Research 23:331–343CrossRefGoogle Scholar
Ticehurst, C., Lymburner, L., Held, A., Palylyk, C., Martindale, D., Sarosa, W., Phinn, S., and Stanford, M. (2001). Mapping tree crowns using hyperspectral and high spatial resolution imagery. Proceedings Third International Conference on Geospatial Information in Agriculture and Forestry, Denver, Colorado, 5–7 November 2001
Treuhaft, R. N., Madsen, S. N., Moghaddam, M., Zyl, J. (1996). Vegetation characteristics and underlying topography from interferometric radar. Radio Science 31:1449–1485CrossRefGoogle Scholar
Tucker, C. J. (1979). Red and photographic infrared linear combinations monitoring vegetation. Remote Sensing of Environment, 8:127–150CrossRefGoogle Scholar
Ulaby, F. T., and Elachi, C., (eds). (1990). Radar Polarimetry for Geoscience Applications, Artech House
Ulaby, F. T., R. K. Moore, and A. K. Fung. (1986). Microwave Remote Sensing, Volume III, Artech House
Ustin, S. L., Roberts, D. A., Pinzon, J. E., Jacquemoud, S., Scheer, G., Castaneda, C. M., and Palacios, A. (1998). Estimating canopy water content of chaparral shrubs using optical methods. Remote Sensing of Environment. 65:280–291CrossRefGoogle Scholar
Ustin, S. L., Smith, M. O. and Adams, J. B. (1993). Remote sensing of ecological processes: A strategy for developing and testing ecological models using spectral mixture analysis. In: Scaling Physiological Processes: Leaf to Globe. Academic Press IncCrossRef
Sanden, J. J. and Hoekman, D. H. (1999) Potential of Airborne radar to support the assessment of land cover in a tropical rainforest environment. Remote Sensing of Environment. 68:26–40CrossRefGoogle Scholar
Zyl, J. (1993). The effect of topography on radar scattering from vegetated areas. IEEE Transactions on Geoscience and Remote Sensing. 31:153–160Google Scholar
Varekamp, C., Hoekman, D. H., (1998). An inversion algorithm for automatic retrieval of tree crown characteristics from high-resolution interferometric SAR data. Proc. 2nd Intl. Workshop on Retrieval of bio- and Go-physical parameters from SAR data for land applications. 21–23 October, 1998. ESTEC, Noordwik, The Netherlands
Vertessy, R. A., Watson, F. G. R. and O'Sullivan, S. K. (2001). Factors determining relations between stand age and catchment water yield in mountain ash forests. Forest Ecology and Management, in pressCrossRefGoogle Scholar
Vertessy, R. A., Hatton, T. J., O'Shaughnessy, P. J., Jayasuriya, M. D. A., (1993). Predicting water yield from a mountain ash forest catchment using a terrain analysis based catchment model. Journal of Hydrology. 150:665–700CrossRefGoogle Scholar
Walker, J. P., Kurera, D. F., and Houser, P. R. (2000). A field evaluation of ERS-2 synthetic aperture radar data for soil moisture measurement, EOS, Transactions on the American Geophysical Union, 81:S207Google Scholar
Wang, J. R., Schmugge, T. J. (1980). An empirical model for the complex dielectric permittivity of soils as a function of water content. IEEE Transactions on Geoscience and Remote Sensing, 18:288–295CrossRefGoogle Scholar
Watson, F. G. R., Vertessy, R. A., McMahon, T. A., Rhodes, B. and Watson, I., (2001). Improved methods to assess water yield changes from paired catchment studies: Application to the Maroondah catchments. Forest Ecology and Management, in pressCrossRefGoogle Scholar
Watson, F. G. R., Vertessy, R. A., Grayson, R. B. (1999) large-scale modelling of forest hydrological processes and their long-term effects on water yield. Hydrological Processes 13:689–7003.0.CO;2-D>CrossRefGoogle Scholar
Wehr, A. and Lohr, U., (1999). Airborne laser scanning – an introduction and overview, ISPRS Journal of Photogrammetry and Remote Sensing, 54 (2–3), 68–82CrossRefGoogle Scholar
Weishampel, J. F., Blair, J. B., Knox., R. G., Dubayah, R., Clark, D. B. (2000) Volumetric lidar return patterns from and old-growth tropical rainforest canopy. International Journal of Remote Sensing 21:409–415CrossRefGoogle Scholar
Wendlandt, W. W., and H. G. Hecht, (1966). Reflectance Spectroscopy, Interscience Publisher, New York, 298p
Wessman, C. A. (1994) Estimating canopy biochemistry through imaging spectrometry. In. Imaging Spectrometry – a Tool for Environmental Observations, pp. 57–70 J. Hill and J. Megier (eds.) Kulwer Academic Publishers, Dotrecht
Wessman, C. A. (1989). Evaluation of Canopy Biochemistry. In: Remote Sensing of Biosphere Functioning. R. J. Hobbs and H. A. Mooney (Eds.). Springer Verlag, New York. pp. 65–86
Wickland, D., (1989). Future directions for remote sensing in terrestrial ecological research. In Theory and Applications of Optical Remote Sensing. G. Asrar (Ed.), Wiley – New York, 691–724
Wilford, J., Bierworth, P. N., Craig, M. A. (1997). Application of airborne gamma-ray spectrometry in soil/regolith mapping. Australian Geological Survey Organization Journal of Australian Geology and Geophysics 17:201–216Google Scholar
Zarco-Tejjada, P. J., Miller, J. R., Noland, T. L., Mohammed, G. H., Sampson, P. H. (2001). Scaling-up and model inversion methods with narrowband optical indices for chlorophyll content estimation in closed forest canopies with hyperspectral data. IEEE Transactions on Geoscience and Remote Sensing. 39:1491–1507CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×