Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-09T02:24:55.634Z Has data issue: false hasContentIssue false

14 - Runoff generation in tropical forests

from Part II - Hydrological processes in undisturbed forests

Published online by Cambridge University Press:  12 January 2010

M. Bonell
Affiliation:
Division of Water Sciences, UNESCO, 1 rue Miollis, 75732 Paris Cedex 15, France
M. Bonell
Affiliation:
UNESCO, Paris
L. A. Bruijnzeel
Affiliation:
Vrije Universiteit, Amsterdam
Get access

Summary

INTRODUCTION

The nature of the soil surface is the key factor in deciding how rainfall will infiltrate and move through the soil, i.e. whether water will move downwards or sideways. Surface soil hydraulic properties control the rate of entry (i.e. infiltration) but, if unimpeded vertically, incoming water will move through the regolith as percolation to reach the water table. More commonly, however, there is a reduction in the permeability in the upper soil horizons at various points because of the presence of more impervious soil layers. These deflect water laterally, either at the surface (as infiltration excess (Hortonian) overland flow, HOF (Horton, 1933; 1945)) or subsurface (as subsurface stormflow, SSF, or interflow) (Chorley, 1978). This SSF can emerge at the surface as return flow and combine with precipitation falling on saturated soils to produce saturation (or saturation-excess) overland flow, SOF. This is also known as the Dunne mechanism (Dunne and Black, 1970a, b).

As highlighted by Bonell and Williams (1989), the soil hydraulic properties of ‘undisturbed’ tropical landscapes tend to be in equilibrium with the prevailing rainfall characteristics (notably short-term rain intensities). Thus in closed tropical forest, HOF is not generally favoured (exceptions will be outlined later) because the dense root mat and the incorporation of soil organic matter in the topmost soil layers encourage very high infiltration rates. Annual erosion rates from closed tropical forests at the headwater catchment scale are thus small in comparison with disturbed landscapes (see Douglas and Guyot; Chappell, Tych et al., this volume).

Type
Chapter
Information
Forests, Water and People in the Humid Tropics
Past, Present and Future Hydrological Research for Integrated Land and Water Management
, pp. 314 - 406
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdul, Rahim N., 1988. Water yields changes after forest conversion to agricultural land use in peninsular Malaysia. J. Trop. Forest Sci. 1: 67–84Google Scholar
Abdul, A. S. and Gillham, R. W., 1984. Field studies of the effects of the capillary fringe on streamflow generation. Wat. Resour. Res., 10: 691–698CrossRefGoogle Scholar
Abdul, A. S. and Gillham, R. W., 1989. Field studies of the effects of the capillary fringe on streamflow generation. J. Hydrol., 112: 1–18CrossRefGoogle Scholar
Adejuwon, J. O., Jeje, L. K., and Ogunkoya, O. O., 1983. Hydrological response patterns of some third order streams on the Basement Complex of southwestern Nigeria. Hydrol. Sci. J., 28: 377–389CrossRefGoogle Scholar
Adokpo Migan, S., 2000. The impact of forest conversion on hydrology: A synthesis of French work in west Africa and Madagascar. IHP–VI Technical Documents in Hydrology, No 36 Unesco – Paris. 76pp
Ambroise, B., Beven, K. and Freer, J., 1996. Toward a generalization of the TOPMODEL concepts: Topographic indices of hydrological similarity. Wat. Resour. Res., 32: 2135–2145CrossRefGoogle Scholar
Anderson, M. G. and Burt, T. P., 1978. The role of topography in controlling throughflow generation. Earth Surf. Proc., 3: 331–344CrossRefGoogle Scholar
Anderson, M. G. and Burt, T. P., 1982. The contribution of throughflow to storm runoff: an evaluation of a chemical mixing model. Earth Surf. Proc. and Landf., 7: 565–574CrossRefGoogle Scholar
Anderson, M. G. and Burt, T. P., 1990. Process Sudies in Hillslope Hydrology. Wiley, Chichester, UK. 539pp
Anderson, S. P., Dietrich, W. E., Montgomery, D. R., Torres, R., Conrad, M. E. and Loague, K., 1997. Subsurface flow paths in a steep unchanneled catchment. Wat. Resour. Res., 33, 2637–2653CrossRefGoogle Scholar
Arnold, G. O. and Fawckner, J. F., 1980. The Broken River and Hodgkinson Provinces. In: The Geology and Geophysics of North-East Australia, R. A. Henderson and B. Stephenson (eds), Geology Society Australia Incorporated, Queensland Division. 175–189
Ayibotele, N. B., 1993. Regional Hydrology and Water Resources in the African Humid Tropics. In: Hydrology and Water Management in the Humid Tropics – Hydrological Research Issues and Strategies for Water Management, Bonell, M., Hufschmidt, M. M. and Gladwell, J. S., (eds), UNESCO-Cambridge University Press, Cambridge, UK. 112–134
Bariac, T., Millet, A., Ladouche, B., Mathieu, R., Grimaldi, C., Grimaldi, M., Hubert, P., Molicova, H., Bruckler, L., Bertuzzi, P., Boulegue, J., Brunet, Y., Tournebize, R. and Granier, A., 1995a. Stream hydrograph separation on two small Guianese catchments. In: Tracer Technologies for Hydrological Systems, IAHS Publication No 229: 193–209
Bariac, T., Millet, A., Ladouche, B., Mathieu, R., Grimaldi, C., Grimaldi, M., Hubert, P., Molicova, H., Bruckler, L., Bertuzzi, P., Boulegue, J., Brunet, Y., Tournebize, R. and Granier, A., 1995b. La dècomposition géochimique de l'hydrogramme de rive: le rôle du sol (les bassins versants de la piste Saite-Elie, Guyane). Comité National Français de Géodésie et de Géophysique, Rapport Quadriennal 1991–1994, juillet 1995. 271–282
Barnes, C. J. and Bonell, M., 1996 Application of unit hydrograph techniques to solute transport in catchments, Hydrol. Proc., 10: 793–8023.0.CO;2-K>CrossRefGoogle Scholar
Bazemore, D. E., Eshleman, K. N. and Hollenbeck, K. J., 1994. The role of soil water in stormflow generation in a forested headwater catchment: synthesis of natural tracer and hydrometric evidence. J. Hydrol., 162: 47–75CrossRefGoogle Scholar
Bear, J., 1979. Hydraulics of Groundwater. McGraw-Hill, New York, N.Y. 544pp
Bencala, K. E., 2000. Hyporheic zone hydrological processes. Hydrol. Proc., 14: 2797–27983.0.CO;2-6>CrossRefGoogle Scholar
Beven, K. J., 1981. Kinematic subsurface stormflow. Wat. Resour. Res., 17: 1419–1424CrossRefGoogle Scholar
Beven, K. J., 1982a. On subsurface stormflow: an analysis of response times. Hydrol. Sci. Bull., 4: 505–521CrossRefGoogle Scholar
Beven, K. J., 1982b. On subsurface stormflow: predictions with simple kinematic theory for saturated and unsaturated flows. Wat. Resour. Res., 18: 1627–1633CrossRefGoogle Scholar
Beven, K. J., 1986. Runoff production and flood frequency in catchments of order n: an alternative approach. In: Scales Problems in Hydrology, V. K. Gupta, I. Rodriguez-Iturbe and E. F. Wood (eds), Reidel, Dordrecht, The Netherlands. 107–131
Beven, K. J., 1989. Changing ideas in hydrology – the case of physically-based models. J. Hydrol., 105: 157–172CrossRefGoogle Scholar
Beven, K. J. 1989. Interflow. In: Unsatured Flow in Hydrologic Modelling, H. J. Morel-Seytoux (ed.), Kluwer, Germany. 191–219
Beven, K. J., 1997. TOPMODEL: A Critique. Hydrol. Process., 11: 1–173.0.CO;2-O>CrossRefGoogle Scholar
Beven, K. J. and Kirkby, M. J., 1979. A physically-based variable contribution area model of basin hydrology. Hydrol. Sci. Bull., 24: 43–69CrossRefGoogle Scholar
Beven, K. J. and Germann, P. F., 1981. Water flow in soil macropores II. A combined flow model. J. Soil Sci., 32: 15–29Google Scholar
Beven, K. J. and Germann, P. F., 1982. Macropores and water flow in soils. Wat. Resour. Res., 18: 1311–1325CrossRefGoogle Scholar
Beven, K. J., Kirkby, M. J., Schofield, N. and Tagg, A. F., 1984. Testing a physically-based flood forecasting model (TOPMODEL) for three UK catchments. J. Hydrol., 69: 119–143CrossRefGoogle Scholar
Beven, K., Lamb, R., Quinn, P., Romanowicz, R. and Freer, J., 1995, TOPMODEL (Chapter 18). In: Computer Models of Watershed Hydrology, V. P. Singh (ed.), Water Resources Publications, Boulder, USA. 627–668
Bidin, K., 1995. Subsurface flow controls of runoff in a Bornean natural rainforest. Unpublished MSc. Thesis, University of Manchester, UK. 128pp
Bidin, K., 2001. Spatio-temporal variability in rainfall and wet-canopy evaporation within a small catchment recovering from selective tropical forestry. Unpublished Ph. D. thesis, University of Lancaster, UK. 201 pp
Bishop, K. H., 1991. Episodic increases in stream acidity, catchment flow pathways and hydrograph separation. Unpublished Ph. D. Thesis, University of Cambridge, UK. 246pp
Blackie, R., Edwards, K. A. and Clarke, R. T. (Compiled), 1979. Hydrological Research in East Africa. E. Afr. Agric. For. J., 43, Special Issue: 1–313Google Scholar
Bloschl, G. and Sivapalan, M., 1995. Scale issues in hydrological modelling: A review. Hydrol. Process., 9: 251–290CrossRefGoogle Scholar
Boersma, L., 1965. Field measurement of hydraulic conductivity above a water table. In: Methods of Soil Analysis, C. A. Black (ed.), Agronomy 9, American Society of Agronomy, Madison, Wisconsin, 234–252
Bonell, M., 1993. Progress in the understanding of runoff generation dynamics in forests. J. Hydrol., 150: 217–275CrossRefGoogle Scholar
Bonell, M., 1998a. Possible impacts of climate variability and change on tropical forest hydrology. (Based on the WWF Conference on the Potential Impacts of Climate Change on Tropical Forest Ecosystems, Puerto Rico, 24–28 April 1995.)Climatic Change, 39: 215–272CrossRefGoogle Scholar
Bonell, M., 1998b. Challenges in runoff generation research in forests from the hillslope to headwater drainage basin scale. J. Amer. Water Resour. Assn., 34: 765–785CrossRefGoogle Scholar
Bonell, M., 1999. Tropical forest hydrology and the role of the UNESCO International Hydrological programme. Hydrol. Earth Syst. Sci., 3: 451–461CrossRefGoogle Scholar
Bonell, M., 2004. Selected Issues in Mountain Hydrology of the Humid Tropics. Keynote address at the Joint FRIM (Forest Research Institute Malaysia) – WWF (World Wildlife Fund, Malaysia) Conference on Forestry and Forest Products Research 1999 Series, Kuala Lumpur, 31-March-1 April 1999. Water: Forestry and Land Use Perspectives. UNESCO Technical Documents in Hydrology. (Abdul Rahim, M., ed.)
Bonell, M. and Gilmour, D. A., 1978. The development of overland flow in a tropical rainforest catchment. J. Hydrol., 39: 365–382CrossRefGoogle Scholar
Bonell, M. and Gilmour, D. A., 1980. Variations in short-term rainfall intensity in relation to synoptic climatological aspects of the humid tropical north-east Queensland coast. Singapore J. Trop. Geog., 1: 16–30CrossRefGoogle Scholar
Bonell, M. and Williams, J., 1986a. The two parameters of the Philip infiltration equation: Their properties and the spatial and temporal heterogeneity in ared earth of tropical semiarid Queensland. J. Hydrol., 87: 9–31CrossRefGoogle Scholar
Bonell, M. and Williams, J., 1986b. The generation and redistribution of overland flow in a massive oxic soil in a eucalypt woodland within the semiarid tropics in north Australia. Hydrol. Proc., 1: 31–46CrossRefGoogle Scholar
Bonell, M. and Williams, J., 1989. Reply to P. I. A. Kinnells' Comments on ‘The generation and Redistribution of Overland Flow on a Massive Oxic Soil in a Eucalypt Woodland within the Semiarid Tropics of North Australia’ Mike Bonell and John Williams. Hydrol. Proc., 3: 97–100CrossRefGoogle Scholar
Bonell, M. with Balek, J., 1993, Recent scientific developments and research needs in hydrological processes of the humid tropics. In: Hydrology and Water Management in the Humid Tropics – Hydrological Research Issues and Strategies for Water Management, M. Bonell, M. M. Hufschmidt and J. S. Gladwell (eds), UNESCO-Cambridge University Press, Cambridge, UK. 167–260
Bonell, M. and Fristch, J. M., 1997. Combining hydrometric-hydrochemistry methods: a challenge for advancing runoff generation process research. IAHS publication No. 244: 165–184
Bonell, M. and Molicova, H., 2003. A hydrological approach to tropical reforestation: Controversial issues and possible applications of topographic-wetness models. J. Trop. Forest. Sci., 15: 411–431Google Scholar
Bonell, M., Gilmour, D. A. and Sinclair, D. F., 1979. A statistical method for modelling the fate of rainfall in a tropical rainforest catchment. J. Hydrol., 42: 251–257CrossRefGoogle Scholar
Bonell, M., Gilmour, D. A. and Sinclair, D. F., 1981, Soil hydraulic properties and their effect on surface and subsurface water transfer in a tropical rainforest catchment. Hydrol.Sci. Bull., 26, 1–18CrossRefGoogle Scholar
Bonell, M., Gilmour, D. A. and Cassells, D. S., 1982. Vertical and lateral soil water movement in a tropical rainforest catchment. First National Symposium on Forest Hydrology, Instn Engineers, Australia, National Conference Publication no. 82–6: 30–38Google Scholar
Bonell, M., Gilmour, D. A. and Cassells, D. S., 1983a, Vertical soil water movement in a tropical rainforest catchment in northeast Queensland. Earth Surf. Process. Landf., 8: 253–272CrossRefGoogle Scholar
Bonell, M., Gilmour, D. A. and Cassells, D. S., 1983b. A preliminary survey of the hydraulic properties of rainforest soils in tropical north-east Queensland and their implication for the runoff process. In: Rainfall Simulation, Runoff and Soil Erosion, J. de Ploey (ed.). Catena Suppl. 4: 57–78
Bonell, M., Gilmour, D. A. and Cassels, D. S., 1984. Tritiated water movement in clay soils of a small catchment under tropical rainforest in North-East Queensland. Proc. ISSS Symposium on water and solute movement in heavy clay soils, J. Bouma and P. A. C. Raats (eds). ILRI Publication 37: 197–204
Bonell, M., Cassels, D. S. and Gilmour, D. A., 1987. Spatial variations in soil hydraulic properties under tropical rainforest in north-eastern Australia. In: Proc. Int. Conf. On Infiltration Development and Application, Yu-Si Fok (ed.). Water Resour. Res. Center, Univ. of Hawaii, Manoa. 153–165
Bonell, M., Gilmour, D. A. and Cassells, D. S., 1991. The links between synoptic climatology and the runoff response of rainforest catchments on the wet tropical coast of north-eastern Queensland. In: The Rainforest Legacy – Australian National Rainforests Study Report Vol. 2, P. A. Kershaw and G. Werran (eds). Australian Heritage Commission, Canberra, Australia. 27–62
Bonell, M., Barnes, C. J., Grant, C. R., Howard, A. and Burns, J., 1998. High rainfall response-dominated catchments: A comparative study of experiments in tropical north-east Queensland with temperate New Zealand. In: Isotope Tracers in Catchment Hydrology, C. Kendall and J. J. McDonnell (eds), Elsevier. 347–390
Boulet, R., 1981. Etude ptographie. In: Le projet ECEREX – compte rendu des journées, 4–8 March 1983, GERDAT, INRA, MUSEUM, ORSTOM, 23–52
Boulet, R., Brugière, J. M. and Humbel, F. X., 1979. Relations entre organisation des sols et dynamique de l'eau en Guyane Française: conséquences agronomiques d'une évolution déterminée par un déséquilibre d'origine principalement téctonique. Sc. Sol., 13–18Google Scholar
Bouma, J. and Dekker, L. W., 1978. A case study on infiltration into dry clay soil, I: Morphological observations. Geoderma, 20: 24–40Google Scholar
Bouwer, H., 1966. Rapid field measurements of air entry value and hydraulic conductivity of soils as significant parameters in flow system analysis. Wat. Resour. Res., 2: 729–738CrossRefGoogle Scholar
Bouwer, H. and Jackson, R. D., 1974. Determining soil properties. In: Drainage for Agriculture. J. van Schilfgaarde (ed.), Agronomy 17, American Society of Agronomy, Madison, Wisconsin, USA. 611–616
Bowden, W. B., McDowell, W. H., Asbury, C. E. and Finley, A. M., 1992. Riparian nitrogen dynamics in two geomorphologically distinct tropical rainforest watersheds: nitrous oxide fluxes. Biogeoch., 18: 77–99CrossRefGoogle Scholar
Bronswijk, J. J. B., Hamminga, W. and Oostindie, K., 1995. Field-scale solute transport in a heavy clay soil. Wat. Resour. Res., 31: 517–526CrossRefGoogle Scholar
Brooks, R. H. and Corey, A. T., 1964. Hydraulic properties of porous media, Hydrology Paper 3, Colorado State University, Fort Collins, CO, USA. 27pp
Brooks, E. S., Boll, J. and McDaniel, P. S. 2004. A hillslope-scale experiment to measure later saturated hydraulic conductivity. Water Resour. Res., 40, WO4208. doi 10.1029/2003WR002858, 2004CrossRefGoogle Scholar
Bruijnzeel, L. A., 1989. (De)forestation and dry season flow in the tropics: A closer look, J. Trop. Forest Sc., 1: 229–243Google Scholar
Burch, G. J., Bath, R. K., Moore, I. D. and O'Loughlin, E. M., 1987. Comparative hydrologic behaviour of forsted and cleared catchments in south-eastern Australia. J. Hydrol., 90: 19–42CrossRefGoogle Scholar
Burch, G. J., Moore, I. D. and Burns, J., 1989. Soil hydrophobic effects on infiltration and catchment runoff. Hydrol. Proc., 3: 211–222CrossRefGoogle Scholar
Burr, E. J., 1970. Cluster sorting with mixed character types II. Fusion strategies. Austral. Computer J., 1: 97–99Google Scholar
Buttle, J. M., 1998. Fundamentals of small catchment hydrology. In: Isotope Tracers in Catchment Hydrology, C. Kendall, C. and J. McDonnell (eds). 1–50
Buttle, J. M. and House, D. A., 1997. Spatial variability of saturated hydraulic conductivity in shallow macroporous soils in a forested basin. J. Hydrol., 203: 127–142CrossRefGoogle Scholar
Campbell, G. S., 1985. Soil Physics with BASIC, Elsevier, New York, USA. 73–97
Cappus, P., 1960. Etude des lois de l'écoulement. Application au calcul et à la prévision des débits, bassin expérimental d'Alrance (Investigation of the laws of flow. Application to the computation and prediction of discharge, the Alrance experimental basin). La Houille Blanche A: 493–520CrossRefGoogle Scholar
Casenave, A., Flory, J., Mahieux, A. and Simon, J. M., 1984. Etude hydrologique des bassins de Tai, Campagne 1981, ORSTOM, Centre d'Adiopodocimé, Côte d'Ivoire
Cassells, D. S., Gilmour, D. A. and Bonell, M., 1985. Catchment response and watershed management in tropical rainforests in north-east Australia. Forest Ecol. Manage., 10: 155–175CrossRefGoogle Scholar
Chang, J-H and Lau, L. S., 1993. A definition of the humid tropics. In: Hydrology and Water Management in the Humid Tropics – Hydrological Research Issues and Strategies for Water Management, M. Bonell, M. M. Hufschmidt and J. S. Gladwell (eds). UNESCO – Cambridge University Press, Cambridge, UK. 571–574
Chappell, N. A. and Binley, A. M., 1992. The impact of rainforest disturbance upon near-surface groundwater flow: modelling of hillslope flow experiments. Annales Geophysicae, 10: 330Google Scholar
Chappell, N. A. and Ternan, J. L., 1992. Flow-path dimensionality and hydrologic modelling. Hydrol. Proc., 6: 327–345CrossRefGoogle Scholar
Chappell, N. A., Franks, S. W. and Larenus, J., 1998. Multi-scale permeability estimation for tropical catchment, Hydrol. Proc., 12, 1507–15233.0.CO;2-J>CrossRefGoogle Scholar
Chappell, N. A., McKenna, P., Bidin, K., Douglas, I. and Walsh, R. P. D., 1999. Parsimonious modelling of water and suspended-sediment flux from nested-catchments affected by selective tropical forestry. Phil. Trans. Royal Soc. London, Series B, 354: 1831–1846CrossRefGoogle ScholarPubMed
Chestnut, T. J. and McDowell, W. H., 2000. C and N dynamics in the riparian and hyporheic zones of a tropical stream, Luquillo Mountains, Puerto Rico. J. N. Amer. Benthol. Soc., 19: 199–214CrossRefGoogle Scholar
Chevallier, P. and Planchon, O., 1993. Hydrological processes in a small severe humid savanna basin (Ivory Coast). J. Hydrol., 151: 173–191CrossRefGoogle Scholar
Chorley, R. J., 1978. Glossary of terms. In: Hillslope Hydrology, M. J. Kirkby (ed.), Wiley, Chichester, UK. 365–375
Cook, P. G., Salomon, D. K., Plummer, L. N., Busenberg, E. and Schiff, S. L., 1995. Chlorofluorocarbons as tracers of groundwater transport processes in a shallow, silty sand aquifer. Wat. Resour. Res., 31: 425–434CrossRefGoogle Scholar
Cosandey, C. and Oliveira, M., 1996. Surfaces saturées, surfaces contributives: localisaton et extension dans l'espace du bassin versant. Hydrol. Sci. J., 41: 751–760CrossRefGoogle Scholar
Davis, S. H., Vertessy, R. A. and Silberstein, R. P., 1999. The sensitivity of a catchment model to soil hydraulic properties obtained by using different measurement techniques. Hydrol. Proc., 13: 677–6883.0.CO;2-N>CrossRefGoogle Scholar
Dawes, W. R., Zhang, L., Hatton, T. J., Reece, P. H., Beale, G. T. H. and Packer., I., 1997. Evaluation of a distributed parameter ecohydrological model (TOPOG_IRM) on a small cropping rotation catchment. J. Hydrol., 191: 64–86CrossRefGoogle Scholar
De Keyser, F., 1964. Explanatory Notes on the Innisfail, Qld. Sheet SE 55-G, Department of National Development, Bureau of Mineral Resources, Geology and Geophysics, Commonwealth of Australia. 30pp
Walle, D. R., Swistock, B. R. and Sharpe, W. E., 1988. Three-component tracer model for stormflow on a small Applachian forested catchment. J. Hydrol. 104: 301–310Google Scholar
Dietrich, W. E., Windsor, D. M. and Dunne, T. 1982. Geology, climate and hydrology of Barro Colorado Island. In: The Ecology of a Tropical Forest Seasonal Rhythms and Long-term Changes, E. G. Leigh, A. S. Rand and D. M. Windsor (eds). Smithsonian Institute Press, Washington, D.C. 21–46
Douglas, L. 1973. Rate of denudation in selected small catchments in eastern Australia. Occasional Paper in Geography No. 21, University of Hull, UK. 127 pp
Dubreuil, P. L., 1985. Review of field observations of runoff-generation in the tropics. J. Hydrol., 80: 237–264CrossRefGoogle Scholar
Dunne, T., 1978. Field studies of hillslope processes. In: Hillslope Hydrology, M. J. Kirkby (ed.) Wiley, Chichester, UK. 227–294
Dunne, T., 1983. Relation of field studies and modelling in the prediction of storm runoff. J. Hydrol., 65: 25–48CrossRefGoogle Scholar
Dunne, T. and Black, R. D., 1970a. An experimental investigation of runoff production in permeable soils. Wat. Resour. Res., 6: 179–191CrossRefGoogle Scholar
Dunne, T. and Black, R. D., 1970b. Partial area contributions to storm runoff in a small New England watershed. Wat. Resour. Res., 6: 1269–1311CrossRefGoogle Scholar
Dunne, T., Zhang, W. and Aubry, B., 1991. Effects of rainfall, vegetation, and microtopography on infiltration and runoff. Wat. Resour. Res., 27: 2271–2285CrossRefGoogle Scholar
Dykes, A. P. and Thornes, J. B., 2000. Hillslope hydrology in tropical rainforest steepland in Brunci. Hydrol. Proc., 14: 215–2353.0.CO;2-P>CrossRefGoogle Scholar
Elsenbeer, H., 2001. Hydrologic flowpaths in tropical rainforest soilscapes-a review. Hydrol. Proc., 15: 1751–1759CrossRefGoogle Scholar
Elsenbeer, H. and Cassel, D. K., 1990. Surficial processes in the rainforest of western Amazonia. In: Research Needs and Applications to Reduce Erosion and Sedimentation in Tropical Steeplands, R. R. Zimmer, C. L. O'Loughlin and L. S. Hamilton (eds). Int. Assoc. Hydrol. Sci. Publ. No. 192, 289–297
Elsenbeer, H. and Cassel, D. K., 1991. The mechanisms of overland flow generation in a small catchment in western Amazonia. In: Water Management of the Amazon Basin Symp., B.P.F. and Fernandez-Jauregui, C. A., (eds), Proc. Manaus Symp., Aug. 1990, Braga, UNESCO (ROSTLAC), Montevideo, Uruguay. 275–288
Elsenbeer, H. and Lack, A., 1996a. Hydrometric and hydrochemical evidence for fast flowpaths at La Cuenca, Western Amazonia. J. Hydrol., 180: 237–250CrossRefGoogle Scholar
Elsenbeer, H. and Lack, A., 1996b. Hydrological pathways and water chemistry in Amazonian rainforests. In: Advances in Hillslope Processes, Volume 2, M. G. Anderson and S. M. Brooks (eds), Wiley, Chichester, UK. 939–959
Elsenbeer, H. and Vertessy, R. A., 2000. Stormflow generation and flowpath characteristics in an Amazonian rainforest catchment. Hydrol. Proc., 14: 2367–23813.0.CO;2-H>CrossRefGoogle Scholar
Elsenbeer, H., Cassel, K. and Castro, J., 1992. Spatial analysis of soil hydraulic conductivity in a tropical rainforest catchment. Wat. Resour. Res., 28: 3201–3214CrossRefGoogle Scholar
Elsenbeer, H., West, A. and Bonell, M., 1994, Hydrologic pathways and stormflow hydrochemistry at South Creek, northeast Queensland. J. Hydrol., 162: 1–21CrossRefGoogle Scholar
Elsenbeer, H., Cassel, D. K. and Zuniga, L., 1994. Throughfall in the Terra Firme Forest of Western Amazonia. J. Hydrol.(NZ), 32: 30–34Google Scholar
Elsenbeer, H., Lorieri, D. and Bonell, M., 1995a. Mixing model approaches to estimate storm flow sources in an overland flow-dominated tropical rainforest catchment. Wat. Resour. Res. 31: 2267–2278CrossRefGoogle Scholar
Elsenbeer, H., Lack, A. and Cassel, K., 1995b. Chemical fingerprints of hydrological compartments and flow paths at La Cuenca, western Amazonia. Wat. Resour. Res. 31: 3051–3058CrossRefGoogle Scholar
Elsenbeer, H., Lack, A. and Cassel, K., 1996. The Stormflow chemistry at La Cuenca, western Amazonia. Intercienca, 21: 133–139Google Scholar
Elsenbeer, H., Bradley, E., Newton, Dunne T, and Moraes, J. M., 1999. Soil hydraulic conductivities of latosols under pasture, forest and teak in Rondonia, Brazil. Hydrol. Proc., 13: 1417–14223.0.CO;2-6>CrossRefGoogle Scholar
FAO-UNESCO, 1974. FAO-UNESCO Soil map of the world. Vol. 1, legend, UNESCO Press, Paris. Later revised as FAO-UNESCO (1988) Soil map of the world. Revised legend. World Soil Resources Report 60, FAO, Rome
Fernandes, N. F., 1990. Hidrologia superficial e propriedaes fisico-mecanicas dos «Complexo de rampa» Bananal (SP), tese de maestrado. Universitade federal do Rio de Janeiro, Instituto de Geosciencas, Rio de Janeiro, Brazil
Foster, S. S. D., 1993. Groundwater conditions and problems characteristic of the humid tropics. In: Hydrology of Warm Humid Regions, J. S. Gladwell (ed.). IAHS Publication No. 216, 433–449
Foster, S. S. D. and Smith-Carrington, A., 1980. The interpretation of tritium in the chalk unsaturated zone. J. Hydrol., 46: 343–364CrossRefGoogle Scholar
Foster, S. S. D. and Chilton, P. J., 1993. Groundwater Systems in the Humid Tropics. In: Hydrology and Water Management in the Humid Tropics – Hydrological Research Issues and Strategies for Water Management, M. Bonell, M. M Hufschmidt and J. S. Gladwell, J. S. (eds), UNESCO – Cambridge University Press, Cambridge, UK. 261–272
Foster, S., Smedley, P. and Candela, L., 2002. Groundwater quality in the humid tropics: an overview. In: IHP Technical Document in Hydrology No 52: UNESCO – Paris. 441–468
Franchini, M., Wendling, J., Obled, C. and Todini, E., 1996. Physical interpretation and sensitivity analysis of the TOPMODEL. J. Hydrol. 175: 293–338CrossRefGoogle Scholar
Franken, W., 1979. Untersuchungen im Einzugsgibiet des zentralamazonishen Urwaldbaches ‘Barro Branco’ auf der ‘terra firme’. 1. Abflussverhalten des Baches. Amazoniana, 6: 459–466Google Scholar
Freer, J., McDonnell, J., Beven, K. J., Brammer, D., Burns, D., Hooper, R. P. and Kendall, C., 1997. Topographic controls on subsurface storm flow at the hillslope scale for two hydrologically distinct small catchments. Hydrol. Proc., 11: 1347–13523.0.CO;2-R>CrossRefGoogle Scholar
Freeze, R. A., 1972. Role of subsurface flow in generating surface runoff, 2. Upstream source areas. Wat. Resour. Res., 8: 1272–1283CrossRefGoogle Scholar
Freeze, R. A. and Cherry, J. A., 1979. Groundwater, Prentice-Hall, Englewood Cliffs, New Jersey, USA. 604pp
Fritsch, J.-M., 1990. The effects of manual and mechanized clear-cut of the Amazonian moist forest and of alternative land uses of small experimental watersheds, PhD Thesis, Université des Sciences et Techniques du Languedoc, Montpellier, 391 pp. [in French]
Fritsch, J-M., 1992. Les effets du défrichement de la forêt amazonienne et de la mise en culture sur l'hydrologie de petits bassins versants: Opération ECEREX en Guyane Française. Editions de l'ORSTOM, Institut Français de Recherche Scientifique pour le Développement en Coopération, Collection Etudes et Thèses, Paris. 392pp
Garstang, M., Massie, H. L. Jr., Halverson, J., Greco, S. and Scala, J., 1994. Amazon Coastal Squall Lines. Part I: Structure and Kinematics. Mon. Weath. Rev., 122: 608–6222.0.CO;2>CrossRefGoogle Scholar
Generaux, D. P. and Hooper, R. P., 1998. Oxygen and hydrogen isotopes in rainfall-runoff studies. In: Isotope Tracers in Catchment Hydrology, C. Kendall and J. J. McDonnell (eds), Elsevier, Amsterdam. 319–346
Germann, P. F., 1990a. Macropores and hydrologic hillslope processes. In: Process Studies in Hillslope Hydrology, M. G. Anderson and T. P. Burt (eds.), John Wiley and Sons, Chichester, UK. 327–363
Germann, P. F., 1990b. Preferential Flow and the Generation of Runoff. 1. Boundary Layer Flow Theory. Wat. Resour. Res., 26: 3055–3063Google Scholar
Germann, P. F. and Di Pietro, L., 1999. Scales and dimensions of momentum dissipation during preferential flow in soils. Wat. Resour. Res., 35: 1443–1454CrossRefGoogle Scholar
Gillham, R. W. and Jayatilaka, C. J., 1996. A deterministic-empirical model of the effect of the capillary fringe on near-stream area runoff 1. Description of the model. J. Hydrol., 184: 299–315Google Scholar
Gillham, R. W. and Jayatilaka, C. J., 1998. Response to Comment by Jeffrey J. McDonnell and James Buttle on ‘A deterministic-empirical model of the effect of the capillary fringe on near-stream area runoff. 1. Description of the model’ (Journal of Hydrology Vol. 184 (1996) 299–315). J. Hydrol., 207: 286–289CrossRefGoogle Scholar
Gilmour, D. A., 1975. Catchment Water Balance Studies on the Wet Tropical Coast of North Queensland. Unpublished Ph. D. Thesis, Dept. of Geography, James Cook Univ. of North Queensland, Townsville, Australia. 254 pp
Gilmour, D. A., 1977. Effects of logging and clearing on water yield and quality in a high rainfall zone of north-east Queensland. In: The Hydrology of Northern Australia (Proc. Brisbane Symp. June 1977), Inst. Engrs. Austral., Canberra, A. C. T., Nat. Conf. Publ., 77/5. 156–160
Gilmour, D. A. and Bonell, M., 1979. Runoff processes in tropical rainforests with special reference to study in north-east Australia. In: Geographical Approches to Fluvial processes, A. F. Pitty (ed.), Geo Books, Norwich, UK. 73–92
Gilmour, D. A., Bonell, M. and Sinclair, D. F., 1980. An investigation of storm drainage processes in a tropical rainforest catchment, Australian Government Publ. Service, Canberra, A. C. T. Australian Water Resources Council Tech. Paper 56. 93pp
Godsey, S. and Elsenbeer, H., 2002. The soil hydrologic response to forest regrowth: A case study from southwestern Amazonia. Hydrol. Proc., 16: 1519–1522CrossRefGoogle Scholar
Grayson, R. B., Moore, I. D. and McMahon, T. A., 1992. Physically based hydrologic modelling, 2. Is the concept realistic?Wat. Resour. Res., 26: 2659–2666CrossRefGoogle Scholar
Grayson, R. B., Western, A. W, Chiew, F. H. S. and Bloschl, G., 1997. Preferred states in spatial soil moisture patterns: Local and non local controls. Wat. Resour. Res., 33: 2897–2908CrossRefGoogle Scholar
Grimaldi, C., 1988. Origine de la composition chimique des eaux superficielles en milieu tropical humide: Exemple de deux petits bassins versants sous forêt en Guyane Française. Sci. G. Bull. 41 Strasbourg, France: 247–262
Grimaldi, C., Fritsch, J. M. and Boulet, R., 1994. Composition chimique des eaux de nappe et évolution d'un matériau ferralitique en présence du système muscovite-kaolinite-quartz. Compte-Rendu de l'Académie des Sciences de Paris. Série III. 319: 1383–1389Google Scholar
Guntner, A., Uhlenbrook, J., Seibert, J. and Leibundgut, Ch., 1999. Multi-criterial validation of TOPMODEL in a mountainous catchment. Hydrol. Proc., 13: 1603–16203.0.CO;2-K>CrossRefGoogle Scholar
Haria, A. H., Johnson, A. C., Bell, J. P. and Batchelor, C. H., 1994. Water movement and isoproturon behaviour in a drained heavy clay soil: 1. Preferential flow process. J. Hydrol., 163: 20–216CrossRefGoogle Scholar
Harr, R. D., 1977. Water flux in soil and subsoil on a steep forested slope. J. Hydrol., 33: 37–58CrossRefGoogle Scholar
Hendrickx, J. M. H., 1990. Determination of soil hydraulic properties. In: Process Studies in Hillslope Hydrology, M. G. Anderson and T. P. Burt (eds). Wiley, Chichester, UK. 43–92
Herwitz, S. R., 1986. Infiltration-excess caused by stemflow in a cyclone-prone tropical rainforest, Earth Surf. Proc. Landf., 11: 401–412CrossRefGoogle Scholar
Hewlett, J. D., 1961a. Soil moisture as a source of base flow from steep mountain watersheds. US Dept. Agric. Forest Ser., Southeastern Forest Experiment Station, Asheville, North Carolina, Station Paper No. 132. 11pp
Hewlett, J. D., 1961b. Watershed management. US Dept. Agric. Forest Ser., Southeastern Forest Experiment Station, Asheville, North Carolina, Report for 1961. 61–66
Hewlett, J. D. and Hibbert, A. R., 1963. Moisture and energy conditions within a sloping soil mass during drainage. J. Geoph. Res., 68: 1081–1087CrossRefGoogle Scholar
Hewlett, J. D., 1974. Comments on letters relating to ‘The role of subsurface flow in generating surface runoff, 2. Upstream source areas,’ by R. A. Freeze. Water Resour. Res., 10: 605–607CrossRefGoogle Scholar
Hewlett, J. D. and Hibbert, A. R., 1967. Factors affecting the response of small watersheds to precipitation in humid areas. In: International Symp. on Forest Hydrology, W. E. Sopper and H. W. Lull (eds), Pergamon, Oxford, UK. 275–290
Hewlett, J. D., Forston, J. C. and Cunningham, G. B., 1977: The effect of rainfall intensity on stormflow and peak discharge from forest land. Wat. Resour. Res., 13: 259–266CrossRefGoogle Scholar
Hillel, D., 1980. Fundamentals of Soil Physics. Academic press, New York. USA. 413pp
Hillel, D., Krentos, J. D. and Stylianou, Y., 1972. Procedure and test of an internal drainage method for measuring soil hydraulic characteristics in situ. Soil Sci., 114: 395–400CrossRefGoogle Scholar
Hinton, M. J., Schiff, S. L. and English, M. C., 1994. Examining the contributions of glacial till water to storm runoff using two- and three-componenthydrograph separations. Wat. Resour. Res., 30: 983–993CrossRefGoogle Scholar
Hodnett, M. G., Da Silva, L. P., Da Rocha, H. R. and Cruz, Senna R., 1995. Seasonal soil water storage changes beneath central Amazonian rainforest and pasture. J. Hydrol., 170: 233–254CrossRefGoogle Scholar
Hodnett, M. G., Oyama, M. D., Tomasella, J. and Marques Filho, A de O., 1996a. Comparisons of long-term soil water storage behaviour under pasture and forest in three areas of Amazonia. In: Amazonian Deforestation and Climate, J. Gash, C. A. Nobre, J. M. Roberts and R. L. Victoria (eds), Wiley, Chichester, UK. 57–77
Hodnett, M. G., Oyama, M. D., Tomasella, J. and Marques Filho, A de O., 1996b. Deep soil water uptake by forest and pasture in central Amazonia: predictions from long-term daily rainfall using a simple water balance model. In: Amazonian Deforestation and Climate, J. Gash, C. A. Nobre, J. M. Roberts and R. L. Victoria (eds), Wiley, Chichester, UK. 79–99
Hodnett, M. G., Vendrame, I., O. Marques Filho, A., Oyama, M. D. and Tomasella, J., 1997a. Soil water storage and groundwater behaviour in a catenary sequence beneath forest in central Amazonia: I Comparisons between plateau, slope and valley floor. Hydrol. Earth Sys. Sci., 2: 265–278CrossRefGoogle Scholar
Hodnett, M. G., Vendrome, I., O. Marques Filho, A., Oyama, M. D. and Tomasella, J., 1997b. Soil water storage and groundwater behaviour in a catenary sequence beneath forest in central Amazonia II. Floodplain water table behaviour and implications for streamflow generation, Hydrol. Earth Sys. Sci., 2: 279–290CrossRefGoogle Scholar
Horton, R. E., 1933. The role of infiltration in the hydrological cycle. Trans. Amer. Geophys. Union 14: 446–460CrossRefGoogle Scholar
Horton, R. E., 1945. Erosional development of streams and their drainage basins: Hydrological approach to quantitative morphology. Bull. Geol. Soc. Amer., 56: 275–370CrossRefGoogle Scholar
Howard, A. J., 1993. The effect of rainfall intensity on stormflow peak flow within the humid tropics of Northeastern Queensland. Unpublished honours thesis, Dept. of Geography, James Cook Univ. of North Queensland, 141pp
Hubbert, M. K., 1940. The theory of groundwater motion. J. Geol., 48: 785–944CrossRefGoogle Scholar
Humbel, F. X., 1978. Caractérisation par des méthodes physiques, hydriques et d'enracinement des sols de Guyane Française à dynamique de l'eau superficielle. Sci. Sol., 2: 83–93Google Scholar
Hvorslev, M. J., 1951. Time lag and soil permeability in groundwater observations. US Army Corps of Engineers, Waterways Experimental Station Bulletin 36. US Army Corps of Engineers, Vicksburg, Mississipi, USA. 50pp
Isbell, R. F. 2002. Australian Soil Classification, revd edn, Australian Soil and Land Survey Handbooks Series, vol. 4. Melbourne: CSIRO Publishing
Isbell, R. F., Webb, A. A. and Murtha, G. G., 1968. Atlas of Australian Soils. Sheet 7, North Queensland with explanatory data. C.S.I.R.O and Melbourne University Press, Melbourne, Australia. 99pp
Jeje, L. K., Ogundoya, O. O. and Uyi, O. E., 1986. Subsurface flow from a forested slope in Ife area of southwestern Nigeria. Hydrol. Sci. J., 31: 584–594CrossRefGoogle Scholar
Jenssen, P. D., 1990. Methods for measuring the saturated hydraulic conductivity of tills. Nordic Hydrol., 21: 95–106CrossRefGoogle Scholar
Jetten, V. G., 1994. Modelling the effects of logging on the water balance of a tropical rainforest: A study in Guyana, Tropenbos Series 6, Universiteit Utrecht, Department of Physical Geography, Faculty of Geographical Sciences, P.O. Box 80.115, 3508 TC Utrecht, The Netherlands/Tropenbos, Wageningen, The Netherlands. 196pp
Jones, J. A. A., 1990. Piping effects in humid lands. In: Groundwater Geomorphology, C. G. Higgins and Coates, D. R., Boulder (eds): Geological Society of America Special Paper 252: 111–138
Kauffmann, S., Sombroek, W. and Mantel, S., 1998. Soils of rainforest. Characterization and major constraints of dominant forest soils in the humid tropics. In: Soils of Tropical Forest Ecosystems, A. Schulte and D. Ruheyat (eds), Springer, Berlin, Germany. 9–20
Kendall, C. and McDonnell, J. J., 1998. Isotope Tracers in Catchment Hydrology, Elsevier, Amsterdam, The Netherlands. 839 pp
Kirkby, M. J., 1975. Hydrograph modelling strategies. In: Processes in Physical and Human Geography R. Peel, R. Chisholm. and P. Haggett (eds), Heinemann, Oxford, UK. 69–90
Kirkby, M. J. (ed.), 1978, Hillslope Hydrology. Wiley, Chichester, UK. 389pp
Kirkham, D., 1955. Measurement of the hydraulic conductivity of soil in place. Symposium on permeability of soils. American Society for Testing Materials, Special Technical Publication 163: 80–97Google Scholar
Kirkham, D. and Bavel, C. H. M., 1948. Theory of seepage into auger holes. Soil Sci. Soc. Amer., Proc., 13: 75–89CrossRefGoogle Scholar
Knudby, C. J., 1996. Runoff generation from hillslopes in the southern Tanzanian highlands. M.Sc. Thesis, Dept. of Hydrodynamics and Water Resources, Tech. Univ. of Denmark. 147pp
Kozlowski, T. T. (ed.), 1981. Water Deficits and Plant Growth, Vol. VI (Woody plant Communities). Academic Press, New York, USA. 672pp
Lancaster, J., 2000. Multi-scale estimation of effective permeability within the Greenholes Beck catchment. Unpublished Ph. D Thesis, University of Lancaster, UK. 389pp
Lange, H., Lischeid, G., Hoch, R. and Hauhs, M., 1996. Water flow paths and residence times in a small headwater catchment at Gardsjon, Sweden, during steady state storm flow conditions. Wat. Resour. Res., 32: 1689–1698CrossRefGoogle Scholar
Larsen, C., Wieczorek, G. F., Eaton, L. S., Morgan, B. A. and Torres-Sierra, H., 2001. Venezuelan debris flow and flash flood disaster of 1999 studied. EOS, 82, no. 47: 572–573CrossRefGoogle Scholar
Law, K. F. and Cheong, C. W., 1987. Effects of land use changes on the hydrological characteristics of Sungai Tekam experimental basin. Paper presented at UNESCO/MRP Workshop on Impact on Operations in Natural and Plantation Forest on Conservation of Soil and Water Resources, 23–26 June 1987, Universiti Pertanian, Malaysia
Lean, J., Bunton, C. B., Nobre, C. A. and Rowntree, P. R., 1996. The simulated impact of Amazonian deforestation on climate using measured ABRACOS vegetation characteristics. In: Amazonian Deforestation and Climate, J. Gash, C. A. Nobre, J. M. Roberts and R. L. Victoria (eds), Wiley, Chichester, UK. 549–576
Lee, D. R. and Cherry, J. A., 1979. A field exercise on groundwater flow using seepage meters and minipiezometers. J. Geol. Educ., 27: 6–10CrossRefGoogle Scholar
Leigh, C. H., 1978a. Slope hydrology and denudation in the Pasoh Forest Reserve. I- Surface wash: experimental techniques and some preliminary results. Malay. Nat. J., 30: 179–97Google Scholar
Leigh, C. H., 1978b. Slope hydrology and denudation in the Pasoh Forest Reserve. II-Throughflow: experimental techniques and some preliminary results. Malay. Nat. J., 30: 199–210Google Scholar
Leopoldo, P. R., Franken, W. K. and Villa, Nova N. A., 1995. Real evapo-transpiration and transpiration through a tropical rainforest in central Amazzonia as estimated by the water balance method. For. Ecol. Manag., 73: 185–195CrossRefGoogle Scholar
Lesack, L. F. W., 1993a. Export of Nutrients and Major Ionic Solutes From a Rain Forest Catchment in the Central Amazon Basin. Wat. Resour. Res. 29: 743–758CrossRefGoogle Scholar
Lesack, L. F. W., 1993b. Water Balance and Hydrologic Characteristics of a Rain Forest Catchment in the Central Amazon Basin. Wat. Resour. Res. 29: 759–773CrossRefGoogle Scholar
Lewis, L. A., 1976. Soil movement in the tropics – a general model. Z. Geomorph., N. F., Suppl. – Bd. 25, 132–44Google Scholar
Loague, K. and Kyriakidis, P. C., 1997. Spatial and temporal variability in the R-5 infiltration data set: Déjà vu and rainfall-runoff simulations. Wat. Resour. Res., 33: 2883–2895CrossRefGoogle Scholar
L⊘rup, J. K., 1998. Effects of land use on the water resources in the southern Tanzania highlands, Ph. D. Thesis, Institute of Hydrodynamics and Water Resources, Technical University of Denmark. 201pp
Luthin, J. N. and Kirkham, D., 1949. A piezometer method for measuring permeability of soil in sites below a water table. Soil Sci., 68: 349–358CrossRefGoogle Scholar
Lyne, V. D. and Hollick, M., 1979. Stochastic time-varying rainfall-runoff modelling. In: Proc. Hydrology and Water Resources Symposium, Perth. Inst. Engrs, Canberra, Australia. 89–92
Malmer, A., 1993. Dynamics of hydrology and nutriend losses as response to establishment of forest plantation: a case study on tropical rainforest land in Sabah, Malaysia. Dissertation, Department of Forest Ecology, Swedish University of Agricultural Sciences, Umea. 54pp + 6 supporting manuscripts
Malmer, A., 1996. Hydrological effects and nutrient losses of forest plantation establishment on tropical rainforest land in Sabah, Malaysia. J. Hydrol., 174: 129–148CrossRefGoogle Scholar
Maloswewski, P. and Zuber, A., 1998. A general lumoed parameter model for the interpretation of tracer data and transit time calculation in hydrologic systems. (Comments on Amin, I. E. and Campana, M. E., 1996. A general lumped parameter model for the interpretation of tracer data and transit time calculation in hydrologic systems. J. Hydrol. 179:1–21). J. Hydrol., 204: 297–300Google Scholar
Manton, M. J. and Bonell, M., 1993. Climate and rainfall variability in the humid tropics. In: Hydrology and Water Management in the Humid Tropics – Hydrological Research Issues and Strategies for Water Management, M. Bonell, M. M Hufschmidt and J. S. Gladwell (eds), UNESCO-Cambridge University Press, Cambridge, UK. 13–33
Masiyandima, M. C., Giesen, N., Diatta, S.et al., 2003. The hydrology of inland valleys in the sub-humid zone of West Africa: rainfall—runoff processes in the M'bé experimental watershed. Hydro. Process., 17: 1213–1225CrossRefGoogle Scholar
McClain, M. E. and Elsenbeer, H., 2001. Terrestrial inputs to Amazon streams and internal biogeochemical processing. In: Biogeochemistry of the Amazon basin, M. E. McClain. R. Victoria and J. E. Richey (eds), Oxford University Press, UK. 185–208
McClain, M. E., Richey, J. E. and Pimentel, T. P., 1994. Groundwater nitrogen dynamics at the terrestrial-lotic interface of a small catchment in the Central Amazon Basin. Biogeoch., 27: 113–127CrossRefGoogle Scholar
McClain, M. E., Richey, J. E., Brandes, J. A. and Pimentel, T. P., 1997. Dissolved organic matter and terrestrial-lotic linkages in the central Amazon basin of Brazil. Glob. Biogeoch. Cycles 11: 295–311CrossRefGoogle Scholar
McDonnell, J. J., 1990. A rationale for old water discharge through macropores in a steep, humid catchment. Wat. Resour. Res., 26: 2821–2831CrossRefGoogle Scholar
McDonnell, J. J. and Buttle, J. M., 1998. Comment on ‘A deterministic-empirical model of the effect of the capillary-fringe on near-stream area runoff.1. Description of the model’ by Jayatilaka, C. J. and Gillham, R. W., Journal of Hydrology, (1996) Vol. 184: 299–315. J. Hydrol., 207: 280–285CrossRefGoogle Scholar
McDonnell, J. J., Freer, J., Hooper, R., Kendall, C., Burns, D., Beven, K. and Peters, J., 1996. New method developed for studying flow on hillslopes. EOS, Transactions, Am. Geophys. Union 77, no. 47: 465–472CrossRefGoogle Scholar
McDowell, W. H., Bowden, W. B. and Asbury, C. E., 1992. Riparian nitrogen dynamics in two geomorphologically distinct tropical rainforest watersheds: subsurface solute patterns. Bioch. 18: 53–75Google Scholar
McKenzie, N., Jacquier, D., Isbell, R. F. and Brown, K. 2004. Australian Soils and Landscapes: An Illustrated Compendium, Melbourne: CSIRO Publishing, 432pp
Mein, R. G. and Larson, C. L., 1973, Modelling infiltration during a steady rain. Wat. Resour. Res., 9: 384–394CrossRefGoogle Scholar
Millet, A., 1996. Bilan hydrique et grandes forêts tropicales. Ph. D. Thesis, Mem. Sc. Terre Univ. P. et M. Curie, Paris 6, France. 199pp
Molicova, H., Bonell, M., Grimaldi, M. and Hubert, P., 1997. Using TOPMODEL towards identifying and modelling the hydrological patterns within a headwater humid tropical catchment. Hydrol. Proc., 11: 1169–11963.0.CO;2-W>CrossRefGoogle Scholar
Montgomery, D. R. and Dietrich, W. E., 2002. Runoff generation in a steep, soil-mantled landscape. Wat. Resour. Res., 38: 7–1 to 7–8CrossRefGoogle Scholar
Montgomery, D. R., Dietrich, W. E., Torres, S. P., Anderson, S. P., Heffner, J. T. and Loague, K., 1997. Piezometric response of a steep unchanneled valley to natural and applied rainfall. Wat. Resour. Res., 33: 91–109CrossRefGoogle Scholar
Moore, I. D., Grayson, R. B. and Ladson, A. R., 1991. Digital terrain modelling: A review of hydrological, geomorphological and biological applications. Hydrol. Process., 5: 3–30CrossRefGoogle Scholar
Mulholland, P. J., 1993. Hydrometric and stream chemistry evidence of three storm flowpaths in Walker Branch Watershed. J. Hydrol., 151: 291–316CrossRefGoogle Scholar
Murtha, G. G., Cannon, M. G. and Smith, C. D., 1996. Soils of the Babinda-Cairns area, north Queensland. CSIRO Div. Soils, Div. Report, No 123. 79 pp
Nash, J. E. and Sutcliffe, J. V. 1970. River flow forecasting through conceptual models, part 1 – a discussion of principles. J. Hydrol., 10: 282–290CrossRefGoogle Scholar
Noguchi, S., Abdul, Rahim N., Kasran, B., Tani, M.Sammori, T. and Morisada, K., 1997a. Soil physical properties and preferential flow pathways in tropical rainforest, Bukit Tarek, Peninsular Malaysia. J. For. Res., 2: 115–120CrossRefGoogle Scholar
Noguchi, S., Abdul, Rahim N., Yusop, Z., Tani, M. and Sammori, T., 1997b. Rainfall-runoff responses and roles of soil moisture variations to the response in tropical rainforest, Bukit Tarek, Peninsular Malaysia. J. For. Res. 2: 125–132CrossRefGoogle Scholar
Nortcliff, S. and Thornes, J. B., 1981, Seasonal variations in the hydrology of a small forested catchment near Manaus, Amazonia, and the implications for its management. In: Tropical Agricultural Hydrology – Watershed Management and Land Use, R. Lal and E. W. Russell (eds), Wiley, Chichester, UK. 37–57
Nortcliff, S. and Thornes, J. B., 1984. Floodplain response of a small tropical stream. In: Catchment Experiments in Fluvial Hydrology, T. P. Burt and D. E. Walling (eds), Geo-Books, Norwich, UK. 73–85
Nortcliff, S. and Thornes, J. B., 1988. The dynamics of a tropical floodplain environment with reference to forest ecology. J. Biogeog., 15: 49–59CrossRefGoogle Scholar
Nortcliff, S. and Thornes, J. B., 1989. Variations in soil nutrients in relation to soil moisture status in a tropical forested ecosystem. Mineral Nutrients and Tropical Forest and Savenna, J. Proctor (ed.). Publ. No. 9, British Ecological Society, Blackwell, Oxford, UK. 43–54
Nortcliff, S., Thornes, J. B. and Waylen, M. J., 1979. Tropical Forest Systems: A Hydrological Approach. Amazonia, VI, 4: 557–568Google Scholar
Northcote, K. H., 1979. A Factual Key for the Recognition of Australian Soils. 4th Edition, Rellim Technical Publications, Glenside, South Australia, 124 pp
Ogunkoya, O. O., 1988. Towards a delimitation of southwestern Nigeria into hydrological regions. J. Hydrol., 99: 165–177CrossRefGoogle Scholar
Ogunkoya, O. O. and Jenkins, A., 1993. Analysis of storm hydrograph and flow pathways using a three-component hydrograph separation model. J. Hydrol., 97: 23–32Google Scholar
Ogunkoya, O. O., Adejuwon, J. O. and Jeje, L. K., 1984. Runoff response to basin parameters in southwestern Nigeria. J. Hydrol., 72: 667–84CrossRefGoogle Scholar
Ogunkoya, O. O., Jeje, L. K. and Aina, P. O., 2000. Spatial variability of soil moisture in a small catchment in western Nigeria. Nigerian George. J. (n.s.), 3/4: 183–198
Ogunkoya, O. O., Aina, P. O. and Nurudeen, O., 2003. Temporal variability of soil water in a small catchment in Ile, Ife, southwestern Nigeria. J. Mining Hydrol., 39: 53–59Google Scholar
Ohta, S. and Effendi, S., 1992. Ultisols of ‘lowland Dipterocarp forest’ in East Kalimantan, Indonesia. I. Morphology and physical properties. Soil Science and Plant Nutrition, 38: 197–206CrossRefGoogle Scholar
O'Loughlin, E. M., 1981. Saturation regions in catchments and their relations to soil and topographic properties. J. Hydrol., 53: 229–246CrossRefGoogle Scholar
O'Loughlin, E. M., 1986. Prediction of surface saturation zones in natural catchments by topographic analysis. Wat. Resour. Res., 22: 794–804CrossRefGoogle Scholar
O'Loughlin, E. M. 1990a. Perspectives on hillslope research. In: Process Studies in Hillslope Hydrology, M. G. Anderson and T. P. Burt (eds), Wiley, Chichester, UK. 501–516
O'Loughlin, E. M., 1990b. Modelling soil water status in complex terrain. Agric. Forest Meteorol., 50: 23–38CrossRefGoogle Scholar
Oster, H., Sonntage, C. and Münnich, K. O., 1996. Groundwater age dating with chlorofluorocarbons. Wat. Resour. Res., 32: 2989–3001CrossRefGoogle Scholar
Peh, C. J., 1978. Rates sediment transport by surface wash in three forested areas of peninsular Malaysia. Department of Geography, University of Malya, Kuala Lumpur Occasional Paper No. 13, 130pp
Pereira, H. C., 1991. The role of forestry in the management of tropical watershed. In: Forests, A Heritage for the Future, J. Parde and G. Blanchard (eds). Proc. 10th World Forestry Congress, Paris, Sept 1991 Revue Forestière Française, Hors Série No. 3 (Proc. 3), ENGREF, F-54042 Nancy Cedex, 139–150 (English), 151–160 (French), 161–170 (Spanish)
Perroux, K. M. and White, I., 1988. Designs for disc permeameters. Soil Sci. Amer. J., 52: 1205–1215CrossRefGoogle Scholar
Peters, D. L., Buttle, J. M., Taylor, J. M. and LaZerte, B. D., 1995. Runoff production in a forested, shallow soil, Canadian Shield basin. Wat. Resources Res. 31: 1291–1304CrossRefGoogle Scholar
Philip, J. R., 1986. Steady infiltration from spheroidal cavities in isotropic and anisotropic soils. Wat. Resour. Res., 22: 1874–1880CrossRefGoogle Scholar
Prove, B. G., 1991. A study of the Hydrological and Erosional Processes under Sugar cane Culture on the Wet Tropical Coast of North Eastern Australia. Unpublished PhD Thesis, James Cook University of North Queensland. 273pp
Putty, M. R. Y. and Prasad, R., 2000a. Understanding runoff processes using a watershed model – a case study in the Western Ghats in South India. J. Hydrol., 228: 215–227CrossRefGoogle Scholar
Putty, M. R. Y. and Prasad, R., 2000b. Runoff processes in headwater catchments – an experimental study in Western Ghats, South India. J. Hydrol., 235: 63–71CrossRefGoogle Scholar
Quinn, P. F., Beven, K. J., Chevallier, P. and Planchon, O., 1991. The prediction of hillslope flow paths for distributed hydrological modelling using digital terrain models. Hydrol. Process., 5: 59–79CrossRefGoogle Scholar
Raats, P. A. C., 1978. Convective Transport of solutes by steady flows. II Specific flow problems. Agric. Water Manage. 1: 219–232CrossRefGoogle Scholar
Rasmussen, T. C., Baldwin, R. H., Dowd, J. F. and Williams, A. G., 2000. Tracer vs pressure wave velocities through unsaturated saprolite. Soil Sci. Soc. Am. J., 64: 75–85CrossRefGoogle Scholar
Reeve, R. C. and Kirkham, D., 1951. Soil anistropy and some field methods for measuring permeability. Trans. Am. Geophys. Un., 32: 582–596CrossRefGoogle Scholar
Reynolds, W. D., Elrick, D. E. and Topp, G. C., 1983. A reexamination of the constant head well permeameter method for measuring saturated hydraulic conductivty above the water table. Soil Sci., 136: 250–268CrossRefGoogle Scholar
Reynolds, W. D., Elrick, D. E., and Clothier, B. E., 1985. The constant head well permeameter: Effect of unsaturated flow. Soil Sci., 139: 172–180CrossRefGoogle Scholar
Robson, A. J., Neal, C. and Beven, K. J., 1995. Linking mixing techniques to a hydrological framework – an upland application. In: Solute Modelling in Catchment Systems, S. Trudgill (ed.), Wiley, Chichester, UK. 347–370
Ruxton, B. P., 1967. Slopewash under Mature Primary Rainforest in Northern Papua. In: Ladform Studies from Australia and New Guinea, J. N. Jennings and J. A. Mabbutt (eds), Australian National University Press, Canberra, A.C.T. 85–94
Sandstrom, K., 1995. Forests and water – friends or foes? Hydrological implications of deforestation and land degradation in semi-arid Tanzania. Ph. D. thesis, Linkoping Studies in Arts and Science 120, Linkoping University, S-581 83 Linkoping, Sweden. 69pp + 6 supporting manuscripts
Sandstrom, K., 1996. Hydrochemical deciphering of streamflow generation in semi-arid East Africa. Hydrol. Process., 10: 703–7203.0.CO;2-#>CrossRefGoogle Scholar
Sandstrom, K., 1998. Can forests ‘provide’ water: Widespread myth or scientific reality?, Ambio, 27: 132–138Google Scholar
Sarrailh, J. M., 1990. Mise en valeur de l'écosystème forestier guyanais (Opération ECEREX). INRA, CTFT, Paris. 273 pp
Saulnier, G. M., Obled, C. and Beven, K., 1997. Analytical compensation between DTM grid resolution and effective values of saturated hydraulic conductivity within a TOPMODEL framework. Hydrol. Process., 11: 1331–13463.0.CO;2-9>CrossRefGoogle Scholar
Scatena, F. N., 1989. An introduction to the physiography and history of the Bilsey Experimental Watersheds in the Luquillo Mountains of Puerto Rico. Gen. Tech. Rep. SO-72, USDA, Forest Service, Southern Forest Experiment Station, New Orleans, USA. 22pp
Schellekens, J., 2000. Hydrological processes in a humid rainforest: A combined experimental and modelling approach. Vrije Universiteit, Amsterdam, The Netherlands. 158pp
Shah, S. M. S., O'Connell, P. E. and Hosking, J. R. M., 1996. Modelling the effects of spatial variability in rainfall on catchment response2. Experiments with distributed and lumped models. J. Hydrol., 43: 45–65Google Scholar
Sherlock, M. D., 1997. Plot-scale hydrometric and tracer characterisation of soil water flow in two tropical rainforest catchments in South East Asia. Unpublished Ph. D thesis, University of Lancaster, UK. 352pp
Sherlock, M. D., Chappell, N. A. and Greer, T., 1995. Tracer and Darcy-based identification of subsurface flow, Bukit Timah forest, Singapore. Singapore J. Tropic. Geogr., 16: 197–215CrossRefGoogle Scholar
Sherlock, M. D., Chappell, N. A. and McDonnell, J. J., 2000. Effects of experimental uncertainty on the calculation of hillslope flow paths. Hydrol. Process., 14: 2457–24713.0.CO;2-I>CrossRefGoogle Scholar
Smith, R. E., 1977. Approximate soil water movement by kinematic characteristics. Soil. Sci. Soc. Amer. J., 47: 3–8CrossRefGoogle Scholar
Sokal, R. R. and Michener, C. D., 1958. A statistical method for evaluating systematic relationships. University of Kansas, Scientific Bulletin, 38: 1409–1438Google Scholar
Soil Survey Staff, 1975. Soil Taxonomy. USDA Handbook 436. US Government Printing Office, Washington, DC, USA. 754pp
Solomon, D. K., Cook, P. G. and Sanford, W. E. 1998. Dissolved gases in sub-surface hydrology. In: Isotope Tracers in Catchment Hydrology, C. Kendall and J. J. McDonnell (eds.), Elsevier, Amsterdam, 291–318
Stace, H. C. T, Hubble, G. D., Brewer, R., Northcote, K. H., Sleeman, J. R., Mulcahy, M. J. and Hallsworth, E. G., 1968. A Handbook of Australian Soils. Rellim Technical Publications, Glenside, South Australia. 435pp
Stewart, M. K. and McDonnell, J. J., 1991. Modeling base flow soil water residence times from deuterium concentrations. Wat. Resour. Res., 27: 2681–2693CrossRefGoogle Scholar
Szabo, Z., Rice, D. E., Plummer, L. N., Busenberg, E., Drenkard, S. and Schlosser, P., 1996. Age dating of shallow groundwater with chlorofluorocarbons, tritium/helium 3, and flow path analysis, southern New Jersey coastal plain. Wat. Resour. Res., 32: 1023–1038CrossRefGoogle Scholar
Talsma, T., 1969. In situ measurement of sorptivity. Austral. J. Soil Res., 7: 269–276CrossRefGoogle Scholar
Talsma, T. and Hallam, P. M., 1980. Hydraulic conductivity measurement of forest catchments. Austral. J. Soils Res., 18: 139–148CrossRefGoogle Scholar
Thomas, M., 1973. Landforms in Equatorial Forest Areas. In: The Unquiet landscape, D. Brunsden and J. C. Doornkamp (eds.), David and Charles, Newton Abbott, UK. 141–146
Tomasella, J. and Hodnett, M. G., 1996. Soil hydraulic properties of an oxisol under pasture in central Amazonia. In: Amazonian Deforestation and Climate, J. H. C. Gash, C. A. Nobre, J. M. Roberts and R. L. Victoria, R. L., (eds.), Wiley, Chichester, UK. 101–124
Topalidis, S. and Curtis, A. A., 1982. The effect of antecedent soil water conditions and rainfall variations on runoff generation in a small eucalypt catchment. In: The First National Symposium on Forest Hydrology, E. M. O'Loughlin and K. J. Bren (eds.), Melbourne. Vic. Inst. Eng., Aust., Canberra, A. C. T. Australia. 43–49
Torres, R., Dietrich, W. E., Montgomery, D. R., Anderson., S. P., Conrad, M. E. and Loague, K., 1998. Unsatured zone processes and the hydrologic response of a steep, unchanneled catchment. J. Hydrol., 57: 1865–1879Google Scholar
Uehara, G., 1995. Management of Isoelectric Soils of the Humid Tropics. In: Soil Management and the Greenhouse Effect, R. Lal, J. Kimble, E. Levine and B. A. Stewart (eds.), CRC Lewis Publishers, Boca Raton, FL, USA. 271–278
Uhlenbrook, S., 1999. Untersuchung und Modellierung der Abflußbildung in einem mesoskaligen Einzugsgebiet (Examination and modelling of runoff generation in a mesoscaled basin). PhD Thesis, Institute of Hydrology, University of Freiburg, Germany. 201pp
Uhlenbrook, S., Frey, M., Leibundgut, C. and Maloszewski, P., 2002. Hydrograph separations in a mesoscale mountainous basin at event and seasonal time scales. Wat. Resour. Res., 38: 31–1 to 31–14CrossRefGoogle Scholar
van Beers, W. F. J., 1958. The auger hole method, a field measurement of the hydraulic conductivity of soil below the water table. Int. Inst. Land Reclam. Improv. Bull. 1, Wageningen, The Netherlands. 32 pp
Genuchten, M. Th., 1980. A closed-form equation for the predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Amer. J., 44: 892–898CrossRefGoogle Scholar
van Genuchten, M. Th. and Leij, F. J., 1992. On estimating the hydraulic properties of unsaturated soils. In: Indirect methods for estimating hydraulic properties of unsaturated soils, M. Th. van Genuchten, F. J. Leij and L. J. Lund (eds.), Proc. Int. Workshop, Riverside, California, October 11–13, 1989, Univ. California, CA 92521, USA. 1–14
Giesen, N. C., Stomph, T. J. and Ridder, N., 2000. Scale effects of Hortonian overland flow and rainfall-runoff dynamics in a West African catena landscape. Hydrol. Proc., 14: 165–1753.0.CO;2-1>CrossRefGoogle Scholar
Vertessy, R. A., Hatton, T. J., O'Shaughnessy, P. J. and Jayasuriya, M. D. A., 1993. Predicting water yield from a mountain ash forest catchment using a terrain analysis-based catchment model. J. Hydrol., 150: 665–700CrossRefGoogle Scholar
Vertessy, R. A., Hatton, T. J., Benyon, R. J. and Dawes, W. R., 1996. Long term growth and water balance predictions for a mountain ash (E. regnans) forest subject to clearfelling and regeneration. Tree Physiol., 16: 221–232CrossRefGoogle Scholar
Vertessy, R. A. and Elsenbeer, H., 1999. Distributed modeling of storm flow generation in an Amazonian rainforest catchment: Effects of model parameterization. Wat. Resour. Res., 35: 2173–2187CrossRefGoogle Scholar
Walsh, R. P. D., 1980. Runoff processes and models in the humid tropics, Z. Geomorphol. N. F. Suppl.-Bd. 36, 176–202Google Scholar
Waterloo, M. J., 1994. Water and nutrient dynamics of Pinus caribaea plantation forests on former grassland soils in southwest Viti Levu, Fiji. Thesis, Vrije Universiteit Amsterdam, The Netherlands. 478 pp
Wenzel, W. W., Unterfrauner, H, Schulte, A., Ruhiyat, D., Simorangkir, D., Kuraz, V., Brandstetter, A. and Blum, W. E. H., 1998. Hydrology of acrisols beneath Dipterocarp forests and plantations in East Kalimantan, Indonesia. In: Soils of Tropical Forest Ecosystems, A. Schulte and D. Ruhiyat (eds.), Springer, Berlin, Germany. 62.72
Western, A. W., Grayson, R. B. and Green, T. R., 1999. The Tarrawarra project: High resolution spatial measurement, modelling and analyis of soil moisture and hydrological response. Hydrol. Process., 13: 633–6523.0.CO;2-8>CrossRefGoogle Scholar
Weyman, D. R., 1973. Measurements of the downslope flow of water in a soil. J. Hydrol., 20: 267–288CrossRefGoogle Scholar
Whipkey, R. Z., 1965. Subsurface storm flow from forested slopes. Int. Assoc. Sci. Hydro. Bull., 10: 74–85CrossRefGoogle Scholar
Whipkey, R. Z., 1969. Storm runoff from forested catchments by subsurface routes. In: Floods and their Computation, Studies and Reports in Hydrology, Leningrad, UNESCO-IASH-WMO, 3. 773–779
Wierda, A., Veen, A. W. L. and Hutjes, R. W. A., 1989. Infiltration at the Tai rainforest (Ivory Coast): measurements and modelling. Hydrol. Proc., 3: 371–382CrossRefGoogle Scholar
Williams, J. and Bonell, M., 1988. The influence of scale of measurement on the spatial and temporal variability of the Philip infiltration parameters – an experimental study in an Australian savannah woodland. J. Hydrol., 104: 33–51CrossRefGoogle Scholar
Williams, J., and Coventry, R. J., 1979. The contrasting soil hydrology of red and yellow earths in a landscape of low relief. In: The hydrology of areas of low precipitation., Int. Assoc. of Hydrol. Sci. Publ. no. 128: 385–395Google Scholar
Wilson, G. V., Jardine, P. M., Luxmoore, R. J., Zelazny, L. W. and Todd, D. E., 1991a. Hydrogeochemical processes controlling subsurface transport form an upper Walker Branch Watershed during storm events. 1. Hydrologic transport processes. J. Hydrol., 123: 297–316CrossRefGoogle Scholar
Wilson, G. V., Jardine, P. M., Luxmoore, R. J., Zelazny, L. W. and Todd, D. E., 1991b. Hydrogeochemical processes controlling subsurface transport form an upper Walker Branch Watershed during storm events. 2. Solute transport processes. J. Hydrol., 123: 317–336CrossRefGoogle Scholar
Wood, E. F., Sivapalan, M., Beven, K. J. and Band, L., 1998. Effects of spatial variability and scale with implications to hydrologic modelling. J. Hydrol., 102: 29–47CrossRefGoogle Scholar
Woods, R. A., Grayson, R. B., Western, A. W., Duncan, M. J., Wilson, D. J., Young, R. I., Ibbit, R. P., Henderson, R. D. and McMahon, T. A., 2001. Experimental design and initial results from the Mahurangi river variability experiment: MARVEX. In: Land Surface Hydrology, Meteorology and Climate: Observations and Modelling, V. Lakhsmi, J. D. Albertson. and J. Schaake (eds). Water Resources Monograph, AGU. 201–213
Wrinkler, R. L. and Hays, W. L., 1975. Statistics: probability, inference and decision, 2nd Edition, Holt, Rinehart and Winston, New York, USA. 889pp
Youngs, E. G., 1983. Soil physical theory and heterogeneity. Agric. Wat. Manage., 6: 145–159CrossRefGoogle Scholar
Zaslavsky, D. and Sinai, G., 1981. Surface hydrology: I. Explanation of phenomena, II. Distribution of raindrops, III. Causes of lateral flow, IV. Flow in sloping layered soil, V. In-surface transient flow. Proc. Am. Soc. Civil Engrs. J. Hydraulics Div. HY 1: 1–93Google Scholar
Zimmermann, U., Munnich, K. O. and Roether, W., 1967. Downward movement of soil moisture traced by means of hydrogen isotopes. In: Isotope techniques in the hydrological cycle, G. E. Stout (ed.), American Geophys. Un., Geophysical Monograph Series no. 1, Washington, DC, USA. 28–36
Zuber, A. and Maloszewski, P., 2001. Lumped parameter models. In: Environmental isotopes in the hydrological cycle, Principles and applications. W. G. Mook (ed.), IHP-V, Technical Documents in Hydrology, No 39, Vol. VI, UNESCO, Paris. 5–35

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×