Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-14T10:10:16.682Z Has data issue: false hasContentIssue false

6 - (e,2e) spectroscopy using fragmentation processes

Published online by Cambridge University Press:  05 January 2013

Julian Lower
Affiliation:
Institut für Kernphysik
Masakazu Yamazaki
Affiliation:
Tohoku University
Masahiko Takahashi
Affiliation:
Tohoku University
Colm T. Whelan
Affiliation:
Old Dominion University, Virginia
Get access

Summary

Introduction

The ionization of atoms and molecules by electron impact is of considerable technological and theoretical relevance. From the practical perspective it plays a central role in many atmospheric, industrial and environmental processes. Examples include the physics and chemistry of the upper atmosphere, the operation of discharges and lasers, radiation-induced damage in biological material and plasma etching processes [1–3]. The extent to which such processes can be controlled and/or optimized is limited by our ability to describe the underlying physical mechanisms which drive them. To refine our understanding, new experimental and theoretical results are required. From a broader perspective, the process of electron-impact-induced ionization of atoms and molecules provides an ideal testbed to refine models for the few- and many-body behaviour of identical particles whose interaction is mediated through the Coulomb potential. Moreover, as the ionization process is extremely sensitive to the electronic structure of the target, comparison of experimentally derived ionization cross sections with calculation provides a powerful means to refine models for the target electronic structure. Historically, (e,2e) measurements can be divided into two categories, namely, those whose primary aim is the determination of the target electronic structure and those whose focus is revealing underlying ionization mechanisms. For the former case (so-called electron momentum spectroscopy (EMS) studies), measurements are performed at relatively high impact energies and for roughly equal energies for the two scattered electrons. Under such conditions the ionization mechanism is quite well understood, with the primary electron interacting predominantly with a single bound target electron.

Type
Chapter
Information
Fragmentation Processes
Topics in Atomic and Molecular Physics
, pp. 137 - 154
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] V. I., Shematovich, R. E., Johnson, M., Michael and J. G., Luhmann, J. Geophys. Res., 108, 5087 (2003).
[2] J., Liu, F., Sun and H., Yu, Current Appl. Phys., 5, 625 (2005).
[3] I., Ipolyi et al., Int. J. Mass. Spectrom., 252, 228 (2006).
[4] I. E., McCarthy and E., Weigold, Electron-Atom Collisions (Cambridge: Cambridge University Press, 1995).Google Scholar
[5] X., Ren et al., Phys. Rev.A, 82, 032712 (2010).
[6] C. A., Coulson, Math. Proc. Cambridge Philos. Soc., 37, 55 (1941).
[7] H., Sakai et al., J. Chem. Phys., 110, 10235 (1999).
[8] M., Leibscher, I. Sh., Averbukh and H., Rabitz, Phys. Rev. Lett., 90, 213001 (2003).
[9] J. J., Larsen, K., Hald, N., Bjerre, H. Stapelfeldt and T., Seideman, Phys. Rev. Lett., 85, 2470 (2000).
[10] H. J., Loesch and A., Remscheid, J. Chem. Phys., 93, 4779 (1990).
[11] K. H., Kramer and R. B., Bernstein, J. Chem. Phys., 42, 767 (1965).
[12] R. N., Zare, Mol. Photochem., 4, 1 (1972).
[13] M., Takahashi et al., J. Electron. Spectrosc. Relat. Phenom., 141, 83 (2004).
[14] M., Takahashi, N., Watanabe, Y., Khajuria, Y., Udagawa and J. H. D., Eland, Phys. Rev. Lett., 94, 213202 (2005).
[15] M., Takahashi, Bull. Chem. Soc. Jpn., 82, 751 (2009).
[16] S., Bellm, J., Lower, E., Weigold and D. W., Mueller, Phys. Rev. Lett., 104, 023202 (2010).
[17] A., Senftleben et al., J. Phys.B, 43, 081002 (2010).
[18] A., Senftleben et al., J. Chem. Phys., 133, 044302 (2010).
[19] R. D, örner et al., Phys. Rep., 330, 95 (2000).
[20] C.R., Stia, O.A., Fojón, P. F., Weck, J., Hanssen and R. D., Rivarola, J. Phys. B: At. Mol. Opt. Phys., 36, L257 (2003).
[21] J., Gao, J. L., Peacher and D. H., Madison, J. Chem. Phys., 123, 204302 (2005).
[22] J., Gao, D. H., Madison and J. L., Peacher, J. Chem. Phys., 123, 204314 (2005).
[23] J., Gao, D. H., Madison and J. L., Peacher, J. Phys.B, 39, 1275 (2006).
[24] O., Al-Hagan, C., Kaiser, D., Madison and A. J., Murray, Nat. Phys., 5, 59 (2009).
[25] M. S., Pindzola et al., J. Phys.B, 40, R39 (2007).
[26] J., Colgan et al., Phys. Rev. Lett., 101, 233201 (2008).
[27] J., Colgan and M. S., Pindzola, J. Phys. Conf. Ser., 288, 012001 (2011).
[28] C., Champion, J., Hanssen and P. A., Hervieux, Phys. Rev.A, 63, 052720 (2001).
[29] C., Champion, J., Hanssen and P. A., Hervieux, Phys. Rev.A, 72, 059906(E) (2005).
[30] C., Champion, D., Oubaziz, H., Aouchiche, Yu. V., Popov and C. Dal, Cappello, Phys. Rev.A, 81, 032704 (2010).
[31] C., Champion and R. D., Rivarola, Phys. Rev.A, 82, 042704 (2010).
[32] C. Dal, Cappello, I., Kada, A., Mansouri and C., Champion, J. Phys. Conf. Ser., 288, 012004 (2011).
[33] M., Inokuti, Rev. Mod. Phys., 43, 297 (1971).
[34] E., Weigold and I. E., McCarthy, Electron Momentum Spectroscopy (New York: Kluwer Academic/Plenum Press, 1999).Google Scholar
[35] M., Takahashi and Y., Udagawa, in Nanoscale Interactions and Their Applications: Essays in Honour of Ian McCarthy, ed. F., Wang and M. J., Brunger (Kerala, India: Transworld Research Network, 2007), p. 157.Google Scholar
[36] R. J., Le Roy, Comput. Phys. Commun., 52, 383 (1989).
[37] T. E., Sharp, Atomic Data, 2, 119 (1971).
[38] M., Takahashi, Y., Khajuria and Y., Udagawa, Phys. Rev.A, 68, 042710 (2003).
[39] M., Yamazaki et al., Meas. Sci. Technol., 22, 075602 (2011).
[40] A. T. J. B., Eppink and D. H., Parker, Rev. Sci. Instrum., 68, 3477 (1997).
[41] M., Takahashi, J. P., Cave and J. H. D., Eland, Rev. Sci. Instrum., 71, 1337 (2000).
[42] J., Lower, R., Panajotovic, S., Bellm and E., Weigold, Rev. Sci. Instrum., 78, 111301 (2007).
[43] G. H., Dunn and L. J., Kieffer, Phys. Rev., 132, 2109 (1963).
[44] J., Gao, D. H., Madison, J. L., Peacher, A. J., Murray and M. J. H., Hussey, J. Chem. Phys., 124, 194306 (2006).

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×