Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-14T09:58:48.940Z Has data issue: false hasContentIssue false

10 - Spin-resolved atomic (e,2e) processes

Published online by Cambridge University Press:  05 January 2013

Julian Lower
Affiliation:
Institut für Kernphysik
Colm T. Whelan
Affiliation:
Old Dominion University
Colm T. Whelan
Affiliation:
Old Dominion University, Virginia
Get access

Summary

Introduction

The (e,2e) process for an atom describes an electron-impact-induced ionization event in which the momentum states of the incident and two outgoing electrons are defined, i.e., the reaction kinematics is fully specified. Due to its highly differential nature, the cross section describing this process provides a stringent test of electron-scattering theory. However, a quantum mechanically complete description of the (e,2e) process requires additional variables to be specified, namely the spin projection states of the continuum electrons, as well as angular momentum, and its projection state for the target atom before and the residual ion after the collision, respectively. While the goal of performing such a complete measurement is presently beyond experimental capabilities, (e,2e) experiments for which a subset of the quantum mechanical variables were determined have been performed. All employed beams of polarized electrons, enabling cross sections to be determined individually for the two spin states of the projectile (namely ms = ±½); others additionally resolved the angular momentum state of the target atom prior to the collision. In this chapter we will illustrate how the resolution of angular momentum states can powerfully highlight and provide new insight into specific aspects of the (e,2e) collision dynamics.

Electron spin emerges naturally from the relativistic treatment of quantum mechanics and, as a consequence, spin-resolved experiments are ideally suited to probe aspects of relativity in electron–atom scattering. Less obvious is that in the non-relativistic limit, spin-resolved measurements provide a sensitive probe to the nature of electron exchange processes in the (e,2e) ionization dynamics.

Type
Chapter
Information
Fragmentation Processes
Topics in Atomic and Molecular Physics
, pp. 243 - 267
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] R., Panajotović, J., Lower, E., Weigold, A., Prideaux and D. H., Madison, Phys. Rev.A, 73, 052701 (2006).
[2] J., Lower, E., Weigold, J., Berakdar and S., Mazevet, Phys. Rev. Lett., 86, 624 (2001).
[3] G., Baum et al., Phys. Rev. Lett., 69, 3037 (1992).
[4] T., Nakanishi et al., Phys. Lett.A, 158, 345 (1991).
[5] D. T., Pierce et al., Rev. Sci. Instrum., 51, 478 (1980).
[6] M., Streun et al., J. Phys.B, 31, 4401 (1998).
[7] X., Zhang, Colm T., Whelan and H. R. J., Walters, J. Phys.B, 25, L457 (1992).
[8] Colm T., Whelan, this volume.
[9] Jens, Rasch, unpublished PhD thesis, University of Cambridge (1996).
[10] Colm T., Whelan, R. J., Allan, H. R. J., Walters and X., Zhang, in (e,2e) and Related Processes, ed. Colm T., Whelan, H. R. J., Walters, A., Lahmam-Bennani and H., Ehrhardt (The Netherlands: Kluwer, 1993), p. 33.Google Scholar
[11] J. B., Furness and I. E., McCarthy, J. Phys.B, 6, 2280 (1973).
[12] M. E., Riley and D. G., Truhlar, J. Chem. Phys., 63, 2182 (1975).
[13] J., Lower, E., Weigold, J., Berakdar and S., Mazevet, Phys. Rev.A, 64, 042701 (2001).
[14] G. F., Hanne, in Proceedings of the 6th International Symposium on Correlation and Polarization of Electronic and Atomic Collisions and (e,2e) Reactions, Adelaide 1991, ed. P. J. O., Teubner and E., Weigold, IOP Conf. Proc., No. 122 (Bristol: Institute of Physics and Physical Society, 1991), p. 15.Google Scholar
[15] S., Jones, D. H., Madison and G. F., Hanne, Phys. Rev. Lett., 72, 2554 (1994).
[16] J., Kessler, Polarized Electrons, 2nd edn. (Berlin: Springer-Verlag, 1985).Google Scholar
[17] X., Guo et al., Phys. Rev. Lett., 76, 1228 (1996).
[18] G. F., Hanne, Can. J. Phys., 74, 811 (1996).
[19] M., Dümmler, G. F., Hanne and J., Kessler, J. Phys.B, 28, 2985 (1995).
[20] J. P. D., Cook, I. E., McCarthy, J., Mitroy and E., Weigold, Phys. Rev.A, 33, 211 (1986).
[21] A., Dorn et al., J. Phys.B, 30, 4097 (1997).
[22] U., Lechner, S., Keller, E., Engel, H. J., Lüdde and R. M., Dreizler, in Electron Scattering from Atoms, Molecules, Nuclei and Bulk Matter, ed. Colm T., Whelan and N. J., Mason (New York: Kluwer/Plenum, 2005), p. 131.Google Scholar
[23] R., Panajotović, J., Lower, E., Weigold, A., Prideaux and D., Madison, Phys. Rev.A, 73, 052701 (2006).
[24] S., Bellm, J., Lower, Z., Stegen, D. H., Madison and H. P., Saha, Phys. Rev.A, 77, 032722 (2008).
[25] S., Bellm et al., Phys. Rev.A, 78, 062707 (2008).
[26] S., Bellm, J., Lower, M., Kampp and Colm T., Whelan, J. Phys.B, 39, 4759 (2006)
see also S., Bellm, J., Lower, Marco, Kampp and Colm T., Whelan, J. Elec. Spect. Rad. Phenom., 161, 6 (2007).
[27] M., Kampp et al., J. Eur. Phys.D, 29, 17 (2004).
[28] W., Nakel and C. T., Whelan, Phys. Rep., 315, 499 (1999).
[29] S., Keller, R. M., Dreizler, H., Ast, C. T., Whelan and H. R. J., Walters, Phys. Rev.A, 53, 2295 (1996).
[30] N. C., Pyper, Marco, Kampp and C. T., Whelan, Phys. Rev.A, 71, 052701 (2005).
[31] H., Ast, S., Keller, Colm T., Whelan, H. R. J., Walters and R. M., Dreizler, Phys. Rev.A, 50, R1 (1994).
[32] Colm T., Whelan, H., Ast, H. R. J., Walters, S., Keller and R. M., Dreizler, Phys. Rev.A, 53, 3262 (1996).
[33] S., Keller, R. M., Dreizler, H., Ast, Colm T., Whelan and H. R. J., Walters, Phys. Rev.A, 53, 2295 (1996).
[34] H. T., Prinz, K. H., Besch and W., Nakel, Phys. Rev. Lett., 74, 243 (1995).
[35] R., Tenzer and N., Grün, Phys. Lett.A, 194, 300 (1994).
[36] D. H., Jakubaßa-Amundsen, J. Phys.B, 28, 259 (1995).
[37] D. H., Jakubaßa-Amundsen, J. Phys.B, 25, 1297 (1992).
[38] H-Th., Prinz and S., Keller, J. Phys.B, 29, L651 (1996).
[39] S., Keller, Colm T., Whelan, H., Ast, H. R. J., Walters and R. M., Dreizler, Phys. Rev.A, 50, 3865 (1994).
[40] T., Kull, W., Nakel and C. D., Schröter, J. Phys.B, 30, L815 (1997).
[41] K.-H., Besch, M., Sauter and W., Nakel, Phys. Rev.A, 58, R2638 (1998).
[42] M., Kampp, N. C., Pyper, Colm T., Whelan and H. R. J., Walters, Phys. Rev.A, 67, 044702 (2003).

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×