Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-26T07:31:34.031Z Has data issue: false hasContentIssue false

Part I - Language and Its Power

Published online by Cambridge University Press:  20 July 2023

Anna M. Borghi
Affiliation:
University of Rome
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
The Freedom of Words
Abstractness and the Power of Language
, pp. 13 - 150
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Agrillo, C., & Roberson, D. (2009). Colour language and colour cognition: Brown and Lenneberg revisited. Visual Cognition, 17(3), 412430. https://doi.org/10.1080/13506280802049247Google Scholar
Ambrosini, E., Scorolli, C., Borghi, A. M., & Costantini, M. (2012). Which body for embodied cognition? Affordance and language within actual and perceived reaching space. Consciousness and Cognition, 21(3), 15511557. https://doi.org/10.1016/j.concog.2012.06.010Google Scholar
Anderson, M. L. (2010). Neural reuse: A fundamental organizational principle of the brain. The Behavioral and Brain Sciences, 33(4), 245266; discussion 266–313. https://doi.org/10.1017/S0140525X10000853Google Scholar
Anderson, M. L. (2014). After phrenology: Neural reuse and the interactive brain. MIT Press.CrossRefGoogle Scholar
Ardizzi, M., Ambrosecchia, M., Buratta, L., Ferri, F., Peciccia, M., Donnari, S., ... Gallese, V. (2016). Interoception and positive symptoms in schizophrenia. Frontiers in Human Neuroscience, 10, 379.CrossRefGoogle ScholarPubMed
Athanasopoulos, P., & Bylund, E. (2021). Whorf in the wild: Naturalistic evidence from human interaction. Applied Linguistics, 41(6), 947970. https://doi.org/10.1093/APPLIN/AMZ050Google Scholar
Athanasopoulos, P., Bylund, E., & Casasanto, D. (2016). Introduction to the Special Issue: New and interdisciplinary approaches to linguistic relativity. Language Learning, 66(3), 482486. https://doi.org/10.1111/lang.12196Google Scholar
Barrett, L. F., Wilson-Mendenhall, C. D., & Barsalou, L. W. (2015). The conceptual act theory: A roadmap. Barrett, In L. F. & Russell, J. A., eds., The psychological construction of emotion. The Guilford Press, pp. 83110.Google Scholar
Batisti, F. (2021). An argument for languages in languaging. Rivista Italiana di Filosofia del Linguaggio, 15(2), 159175.Google Scholar
Berlin, B., & Kay, P. (1969). Basic color terms: Their universality and evolution. University of California Press.Google Scholar
Binkofski, F., & Buxbaum, L. J. (2013). Two action systems in the human brain. Brain and Language, 127(2), 222229.Google Scholar
Blasi, D. E., Henrich, J., Adamou, E., Kemmerer, D., & Majid, A. (2022). Over-reliance on English hinders cognitive science. Trends in Cognitive Sciences. https://doi.org/10.1016/j.tics.2022.09.015Google Scholar
Bonfiglioli, C., Finocchiaro, C., Gesierich, B., Rositani, F., & Vescovi, M. (2009). A kinematic approach to the conceptual representations of this and that. Cognition, 111(2), 270274. https://doi.org/10.1016/j.cognition.2009.01.006CrossRefGoogle Scholar
Bonnardel, V. (2006). Color naming and categorization in inherited color vision deficiencies. Visual Neuroscience, 23(3–4), 637643. https://doi.org/10.1017/S0952523806233558Google Scholar
Borghi, A. M. (2012). Language comprehension: Action, affordances and goals. In Coello, Y., & Bartolo, A., eds., Language and action in cognitive neuroscience. Psychology Press, pp. 143162.Google Scholar
Borghi, A. M. (2016). Commentary: Weighty data: Importance information influences estimated weight of digital information storage devices. Frontiers in Psychology, 7, 709. https://doi.org/10.3389/fpsyg.2016.00709Google Scholar
Borghi, A. M. (2018). Affordances, context and sociality. Synthese. https://doi.org/10.1007/s11229–018-02044-1Google Scholar
Borghi, A. M., & Cimatti, F. (2010). Embodied cognition and beyond: Acting and sensing the body. Neuropsychologia, 48(3), 763773.Google Scholar
Borghi, A. M., Flumini, A., Natraj, N., & Wheaton, L. A. (2012). One hand, two objects: Emergence of affordance in contexts. Brain and Cognition, 80(1), 6473. https://doi.org/10.1016/j.bandc.2012.04.007CrossRefGoogle ScholarPubMed
Borghi, A. M., & Riggio, L. (2009). Sentence comprehension and simulation of object temporary, canonical and stable affordances. Brain Research, 1253, 117128. https://doi.org/10.1016/j.brainres.2008.11.064Google Scholar
Borghi, A. M., & Riggio, L. (2015). Stable and variable affordances are both automatic and flexible. Frontiers in Human Neuroscience, 9, 351. https://doi.org/10.3389/fnhum.2015.00351Google Scholar
Borghi, A. M., Scorolli, C., Caligiore, D., Baldassarre, G., & Tummolini, L. (2013). The embodied mind extended: Using words as social tools. Frontiers in Psychology, 4, 214. https://doi.org/10.3389/fpsyg.2013.00214Google Scholar
Brewer, R., Cook, R., & Bird, G. (2016). Alexithymia: A general deficit of interoception. Royal Society Open Science, 3(10), 150664.Google Scholar
Brouwer, A.-M., Georgiou, I., Glover, S., & Castiello, U. (2006). Adjusting reach to lift movements to sudden visible changes in target’s weight. Experimental Brain Research, 173(4), 629636.CrossRefGoogle ScholarPubMed
Bub, D. N., Masson, M. E., & Cree, G. S. (2008). Evocation of functional and volumetric gestural knowledge by objects and words. Cognition, 106(1), 2758.Google Scholar
Bub, D. N., Masson, M. E., & Kumar, R. (2018). Time course of motor affordances evoked by pictured objects and words. Journal of Experimental Psychology: Human Perception and Performance, 44(1), 53.Google Scholar
Caldano, M., & Coventry, K. R. (2019). Spatial demonstratives and perceptual space: To reach or not to reach? Cognition, 191, 103989.Google Scholar
Calvino, I. (2012). Lezioni americane. Edizioni Mondadori.Google Scholar
Cardinali, L., Frassinetti, F., Brozzoli, C., Urquizar, C., Roy, A. C., & Farnè, A. (2009). Tool-use induces morphological updating of the body schema. Current Biology, 19(12), R478R479. https://doi.org/10.1016/j.cub.2009.05.009CrossRefGoogle ScholarPubMed
Carlson, L. E., & van der Zee, E. E. (2005). Functional features in language and space: Insights from perception, categorization, and development. Oxford University Press.Google Scholar
Cattaneo, L. (2010). Tuning of ventral premotor cortex neurons to distinct observed grasp types: A TMS-priming study. Experimental Brain Research, 207(3), 165172.Google Scholar
Chemero, A. (2003). An outline of a theory of affordances. Ecological Psychology, 15(2), 181195.Google Scholar
Chemero, A. (2011). Radical embodied cognitive science. MIT Press.Google Scholar
Cisek, P. (2007). Cortical mechanisms of action selection: The affordance competition hypothesis. Philosophical Transactions of the Royal Society B: Biological Sciences, 362(1485), 15851599.Google Scholar
Clark, A. (2013). Are we predictive engines? Perils, prospects, and the puzzle of the porous perceiver. The Behavioral and Brain Sciences, 36(3), 233253.Google Scholar
Clark, A., & Toribio, J. (2012). Magic words: How language augments human computation. In Clark, A., & Toribio, J., eds., Language and Meaning in Cognitive Science. Routledge, pp. 3351.Google Scholar
Clore, G. L., & Proffitt, D. R. (2016). The myth of pure perception. Behavioral and Brain Sciences, 39(1), e235.CrossRefGoogle ScholarPubMed
Costantini, M., Ambrosini, E., Scorolli, C., & Borghi, A. M. (2011). When objects are close to me: Affordances in the peripersonal space. Psychonomic Bulletin & Review, 18(2), 302308. https://doi.org/10.3758/s13423–011-0054-4Google Scholar
Coventry, K. R., & Garrod, S. C. (2004). Saying, seeing and acting: The psychological semantics of spatial prepositions. Psychology Press.Google Scholar
Cowley, S. J. (2019). Languaging evolved: Chinese Semiotic Studies, 15(4), 461482.Google Scholar
Davidoff, J., Davies, I., & Roberson, D. (1999). Colour categories in a stone-age tribe. Nature, 398(6724), 203204.Google Scholar
Di Paolo, E. A., Cuffari, E. C., & De Jaegher, H. (2018). Linguistic bodies: The continuity between life and language. MIT Press.Google Scholar
Diessel, H., & Coventry, K. R. (2020). Demonstratives in spatial language and social interaction: An interdisciplinary review. Frontiers in Psychology, 11. https://www.frontiersin.org/article/10.3389/fpsyg.2020.555265Google Scholar
Dils, A. T., & Boroditsky, L. (2010). Processing unrelated language can change what you see. Psychonomic Bulletin & Review, 17(6), 882888. https://doi.org/10.3758/PBR.17.6.882Google Scholar
Dove, G. (2020). More than a scaffold: Language is a neuroenhancement. Cognitive neuropsychology, 37(5–6), 288311.Google Scholar
Ehrsson, H. H., Fagergren, A., Jonsson, T., Westling, G., Johansson, R. S., & Forssberg, H. (2000). Cortical activity in precision-versus power-grip tasks: An fMRI study. Journal of Neurophysiology, 83(1), 528536.Google Scholar
Ellis, R. (2018). Bodies and other objects: The sensorimotor foundations of cognition. Cambridge University Press.Google Scholar
Farnè, A., Iriki, A., & Làdavas, E. (2005). Shaping multisensory action–space with tools: Evidence from patients with cross-modal extinction. Neuropsychologia, 43(2), 238248.Google Scholar
Ferretti, G. (2021). Visual phenomenology versus visuomotor imagery: How can we be aware of action properties? Synthese, 198(4), 33093338.Google Scholar
Flumini, A., Barca, L., Borghi, A. M., & Pezzulo, G. (2015). How do you hold your mouse? Tracking the compatibility effect between hand posture and stimulus size. Psychological Research, 79(6), 928938. https://doi.org/10.1007/s00426–014-0622-0Google Scholar
Foerster, F. R., Borghi, A. M., & Goslin, J. (2020). Labels strengthen motor learning of new tools. Cortex, 129, 110.Google Scholar
Forder, L., & Lupyan, G. (2019). Hearing words changes color perception: Facilitation of color discrimination by verbal and visual cues. Journal of Experimental Psychology: General, 148(7), 11051123. https://doi.org/10.1037/xge0000560Google Scholar
Franklin, A., Drivonikou, G. V., Bevis, L., Davies, I. R., Kay, P., & Regier, T. (2008). Categorical perception of color is lateralized to the right hemisphere in infants, but to the left hemisphere in adults. Proceedings of the National Academy of Sciences, 105(9), 32213225.Google Scholar
Fugate, J. M., & Wilson-Mendenhall, C. D. (2022 ). Embodied emotion, emotional granularity, and mindfulness: Improved learning in the classroom. In Macrine, S. L., and Fugate, J. M. B. (eds.). Movement Matters: How Embodied Cognition Informs Teaching and Learning. MIT Press, ch. 18. https://doi.org/10.7551/mitpress/13593.003.0027Google Scholar
Gallese, V. (2008). Mirror neurons and the social nature of language: The neural exploitation hypothesis. Social Neuroscience, 3(3–4), 317333. https://doi.org/10.1080/17470910701563608Google Scholar
Garfinkel, S. N., Seth, A. K., Barrett, A. B., Suzuki, K., & Critchley, H. D. (2015). Knowing your own heart: Distinguishing interoceptive accuracy from interoceptive awareness. Biological Psychology, 104, 6574.Google Scholar
Garofalo, G., Marino, B. F., Bellelli, S., & Riggio, L. (2021). Adjectives modulate sensorimotor activation driven by nouns. Cognitive Science, 45(3), e12953.CrossRefGoogle ScholarPubMed
Garofalo, G., & Riggio, L. (2022). Influence of colour on object motor representation. Neuropsychologia, 164, 108103.Google Scholar
Gentilucci, M., Benuzzi, F., Bertolani, L., Daprati, E., & Gangitano, M. (2000). Language and motor control. Experimental Brain Research, 133(4), 468490. https://doi.org/10.1007/s002210000431Google Scholar
Gerlach, C., Law, I., & Paulson, O. B. (2002). When action turns into words. Activation of motor-based knowledge during categorization of manipulable objects. Journal of Cognitive Neuroscience, 14(8), 12301239.Google Scholar
Geurts, K. (2003). Culture and the senses. University of California Press.Google Scholar
Gibson, J. J. (1966). The senses considered as perceptual systems. Houghton Mifflin.Google Scholar
Gibson, J. J. (1979). The ecological approach to visual perception. Psychology Press.Google Scholar
Gilbert, A. L., Regier, T., Kay, P., & Ivry, R. B. (2006). Whorf hypothesis is supported in the right visual field but not the left. Proceedings of the National Academy of Sciences, 103(2), 489494.Google Scholar
Glenberg, A. M. (1997). What memory is for. Behavioral and brain sciences, 20(1), 119.Google Scholar
Glenberg, A. M., & Robertson, D. A. (2000). Symbol grounding and meaning: A comparison of high-dimensional and embodied theories of meaning. Journal of Memory and Language, 43(3), 379401.CrossRefGoogle Scholar
Glover, S., & Dixon, P. (2002). Semantics affect the planning but not control of grasping. Experimental Brain Research, 146(3), 383387.Google Scholar
Glover, S., Rosenbaum, D. A., Graham, J., & Dixon, P. (2004). Grasping the meaning of words. Experimental Brain Research, 154(1), 103108. https://doi.org/10.1007/s00221–003-1659-2Google Scholar
Goldstone, R. L., & Hendrickson, A. T. (2010). Categorical perception. WIREs Cognitive Science, 1(1), 6978. https://doi.org/10.1002/wcs.26Google Scholar
González-Peña, P., Coventry, K. R., Bayliss, A. P., & Doherty, M. J. (2022). The extended development of mapping spatial demonstratives onto space. Journal of Experimental Child Psychology, 215, 105336. https://doi.org/10.1016/j.jecp.2021.105336Google Scholar
Gough, P. M., Riggio, L., Chersi, F., Sato, M., Fogassi, L., & Buccino, G. (2012). Nouns referring to tools and natural objects differentially modulate the motor system. Neuropsychologia, 50(1), 1925. https://doi.org/10.1016/j.neuropsychologia.2011.10.017Google Scholar
Gudde, H. B., Coventry, K. R., & Engelhardt, P. E. (2016). Language and memory for object location. Cognition, 153, 99107.Google Scholar
Hatfield, T. R., Brown, R. F., Giummarra, M. J., & Lenggenhager, B. (2019). Autism spectrum disorder and interoception: Abnormalities in global integration? Autism, 23(1), 212222. https://doi.org/10.1177/1362361317738392Google Scholar
Heider, E. R. (1972). Universals in color naming and memory. Journal of Experimental Psychology, 93(1), 1020. https://doi.org/10.1037/h0032606Google Scholar
Hobson, H., Hogeveen, J., Brewer, R., Catmur, C., Gordon, B., Krueger, F., ... Grafman, J. (2018). Language and alexithymia: Evidence for the role of the inferior frontal gyrus in acquired alexithymia. Neuropsychologia, 111, 229240.CrossRefGoogle ScholarPubMed
Hurley, S. L. (1998). Consciousness in action. Harvard University Press.Google Scholar
Jax, S. A., & Buxbaum, L. J. (2010). Response interference between functional and structural actions linked to the same familiar object. Cognition, 115(2), 350355.Google Scholar
Jenmalm, P., Schmitz, C., Forssberg, H., & Ehrsson, H. H. (2006). Lighter or heavier than predicted: Neural correlates of corrective mechanisms during erroneously programmed lifts. Journal of Neuroscience, 26(35), 90159021.Google Scholar
Jonauskaite, D., Camenzind, L., Parraga, C. A., Diouf, C. N., Ducommun, M. M., Müller, , … Mohr, C. (2021). Colour-emotion associations in individuals with red-green colour blindness. PeerJ, 9, e11180.Google Scholar
Kalénine, S., Shapiro, A. D., Flumini, A., Borghi, A. M., & Buxbaum, L. J. (2014). Visual context modulates potentiation of grasp types during semantic object categorization. Psychonomic Bulletin & Review, 21(3), 645651. https://doi.org/10.3758/s13423–013-0536-7Google Scholar
Kay, P., & Regier, T. (2007). Color naming universals: The case of Berinmo. Cognition, 102(2), 289298. https://doi.org/10.1016/j.cognition.2005.12.008Google Scholar
Kemmerer, D. (2019). Concepts in the brain: The view from cross-linguistic diversity. Oxford University Press.Google Scholar
Kidd, D. C., & Castano, E. (2013). Reading literary fiction improves theory of mind. Science, 342(6156), 377380. https://doi.org/10.1126/science.1239918Google Scholar
Kidd, D., & Castano, E. (2019). Reading literary fiction and theory of mind: Three preregistered replications and extensions of Kidd and Castano (2013). Social Psychological and Personality Science, 10(4), 522531.Google Scholar
Kiverstein, J., & Rietveld, E. (2021). Scaling-up skilled intentionality to linguistic thought. Synthese, 198(1), 175194.Google Scholar
Kiverstein, J., Van Dijk, L., & Rietveld, E. (2021). The field and landscape of affordances: Koffka’s two environments revisited. Synthese, 198(9), 22792296.Google Scholar
Kundera, M. (2020). The unbearable lightness of being. Faber & Faber.Google Scholar
Lalumera, E. (2014). Whorfian effects in color perception: Deep or shallow? The Baltic International Yearbook of Cognition, Logic and Communication, 9(1), 113.Google Scholar
Liberman, A. M., Harris, K. S., Hoffman, H. S., & Griffith, B. C. (1957). The discrimination of speech sounds within and across phoneme boundaries. Journal of Experimental Psychology, 54(5), 358.Google Scholar
Lindsey, D. T., & Brown, A. M. (2006). Universality of color names. Proceedings of the National Academy of Sciences, 103(44), 1660816613. https://doi.org/10.1073/pnas.0607708103CrossRefGoogle ScholarPubMed
Lindsey, D. T., Brown, A. M., Brainard, D. H., & Apicella, C. L. (2015). Hunter-gatherer color naming provides new insight into the evolution of color terms. Current Biology, 25(18), 24412446.Google Scholar
Lupyan, G. (2015). Cognitive penetrability of perception in the age of prediction: Predictive systems are penetrable systems. Review of Philosophy and Psychology, 6(4), 547569.Google Scholar
Lupyan, G., & Bergen, B. (2016). How language programs the mind. Topics in Cognitive Science, 8(2), 408424. https://doi.org/10.1111/tops.12155Google Scholar
Lupyan, G., & Clark, A. (2015). Words and the world: Predictive coding and the language-perception-cognition interface. Current Directions in Psychological Science, 24(4), 279284.Google Scholar
Lupyan, G., Rahman, R. A., Boroditsky, L., & Clark, A. (2020). Effects of language on visual perception. Trends In Cognitive Sciences, 24(11), 930944.Google Scholar
Mahon, B. Z., & Kemmerer, D. (2020). Interactions between language, thought, and perception: Cognitive and neural perspectives. Cognitive Neuropsychology, 37(5–6), 235240.Google Scholar
Ma-Kellams, C. (2014). Cross-cultural differences in somatic awareness and interoceptive accuracy: A review of the literature and directions for future research. Frontiers in Psychology, 5, 1379.Google Scholar
Maravita, A., & Iriki, A. (2004). Tools for the body (schema). Trends in Cognitive Sciences, 8(2), 7986.Google Scholar
Marino, B. F., Sirianni, M., Volta, R. D., Magliocco, F., Silipo, F., Quattrone, A., & Buccino, G. (2014). Viewing photos and reading nouns of natural graspable objects similarly modulate motor responses. Frontiers in Human Neuroscience, 8, 968.Google Scholar
Mehling, W. E., Acree, M., Stewart, A., Silas, J., & Jones, A. (2018). The multidimensional assessment of interoceptive awareness, version 2 (MAIA-2). PLoS ONE, 13(12), e0208034.Google Scholar
Mirolli, M., & Parisi, D. (2011). Towards a Vygotskyan cognitive robotics: The role of language as a cognitive tool. New Ideas in Psychology, 29(3), 298311. https://doi.org/10.1016/j.newideapsych.2009.07.001Google Scholar
Mohr, C., Jonauskaite, D., Dan-Glauser, E. S., Uusküla, M., & Dael, N. (2018). Unifying research on colour and emotion. Progress in Colour Studies: Cognition, Language and Beyond, 209.Google Scholar
Moreira, H., Lillo, J., & Álvaro, L. (2021). “Red-green” or “brown-green” dichromats? The accuracy of dichromat basic color terms metacognition supports denomination change. Frontiers in Psychology, 12. https://www.frontiersin.org/article/10.3389/fpsyg.2021.624792Google Scholar
Morlino, G., Gianelli, C., Borghi, A. M., & Nolfi, S. (2015). Learning to manipulate and categorize in human and artificial agents. Cognitive Science, 39(1), 3964. https://doi.org/10.1111/cogs.12130Google Scholar
Myung, J., Blumstein, S. E., & Sedivy, J. C. (2006). Playing on the typewriter, typing on the piano: Manipulation knowledge of objects. Cognition, 98(3), 223243.Google Scholar
Peeters, D., Hagoort, P., & Özyürek, A. (2015). Electrophysiological evidence for the role of shared space in online comprehension of spatial demonstratives. Cognition, 136, 6484. https://doi.org/10.1016/j.cognition.2014.10.010Google Scholar
Proctor, R. W., & Miles, J. D. (2014). Does the concept of affordance add anything to explanations of stimulus–response compatibility effects? In Ross, B. H., ed., Psychology of learning and motivation, vol. 60. Elsevier, pp. 227266.Google Scholar
Pylyshyn, Z. (1999). Is vision continuous with cognition?: The case for cognitive impenetrability of visual perception. Behavioral and Brain Sciences, 22(3), 341365.Google Scholar
Regier, T., & Kay, P. (2009). Language, thought, and color: Whorf was half right. Trends in Cognitive Sciences, 13(10), 439446. https://doi.org/10.1016/j.tics.2009.07.001Google Scholar
Regier, T., Kay, P., & Cook, R. S. (2005). Focal colors are universal after all. Proceedings of the National Academy of Sciences, 102(23), 83868391.Google Scholar
Rietveld, E., & Kiverstein, J. (2014). A rich landscape of affordances. Ecological Psychology, 26(4), 325352.Google Scholar
Roberson, D., Davidoff, J., Davies, I. R., & Shapiro, L. R. (2005). Color categories: Evidence for the cultural relativity hypothesis. Cognitive Psychology, 50(4), 378411.Google Scholar
Roberson, D., Davies, I., & Davidoff, J. (2000). Color categories are not universal: Replications and new evidence from a stone-age culture. Journal of Experimental Psychology: General, 129(3), 369398. https://doi.org/10.1037/0096-3445.129.3.369Google Scholar
Roberson, D., & Hanley, J. R. (2009). Only half right: Comment on Regier and Kay. Trends in Cognitive Sciences, 13(12), 500501. https://doi.org/10.1016/j.tics.2009.10.004Google Scholar
Rocca, R., Tylén, K., & Wallentin, M. (2019). This shoe, that tiger: Semantic properties reflecting manual affordances of the referent modulate demonstrative use. PLoS ONE, 14(1), e0210333.CrossRefGoogle ScholarPubMed
Rueschemeyer, S.-A., van Rooij, D., Lindemann, O., Willems, R. M., & Bekkering, H. (2010). The function of words: Distinct neural correlates for words denoting differently manipulable objects. Journal of Cognitive Neuroscience, 22(8), 18441851.Google Scholar
Saccuman, M. C., Cappa, S. F., Bates, E. A., Arevalo, A., Della Rosa, P., Danna, M., & Perani, D. (2006). The impact of semantic reference on word class: An fMRI study of action and object naming. NeuroImage, 32(4), 18651878. https://doi.org/10.1016/j.neuroimage.2006.04.179Google Scholar
Sakreida, K., Effnert, I., Thill, S., Menz, M. M., Jirak, D., Eickhoff, C. R., Ziemke, T., Eickhoff, S. B., Borghi, A. M., & Binkofski, F. (2016). Affordance processing in segregated parieto-frontal dorsal stream sub-pathways. Neuroscience and Biobehavioral Reviews, 69, 89112. https://doi.org/10.1016/j.neubiorev.2016.07.032Google Scholar
Samaha, J., Boutonnet, B., Postle, B. R., & Lupyan, G. (2018). Effects of meaningfulness on perception: Alpha-band oscillations carry perceptual expectations and influence early visual responses. Scientific Reports, 8(1), 6606. https://doi.org/10.1038/s41598–018-25093-5Google Scholar
Saysani, A., Corballis, M. C., & Corballis, P. M. (2021). Seeing colour through language: Colour knowledge in the blind and sighted. Visual Cognition, 29(1), 6371. https://doi.org/10.1080/13506285.2020.1866726Google Scholar
Schnall, S. (2017). Social and contextual constraints on embodied perception. Perspectives on Psychological Science, 12(2), 325340. https://doi.org/10.1177/1745691616660199CrossRefGoogle ScholarPubMed
Schneider, I. K., Parzuchowski, M., Wojciszke, B., Schwarz, N., & Koole, S. L. (2015). Weighty data: Importance information influences estimated weight of digital information storage devices. Frontiers in Psychology, 5, 1536.Google Scholar
Scorolli, C., & Borghi, A. M. (2015). Square bananas, blue horses: The relative weight of shape and color in concept recognition and representation. Frontiers in Psychology, 6, 1542. https://doi.org/10.3389/fpsyg.2015.01542Google Scholar
Scorolli, C., Borghi, A. M., & Glenberg, A. (2009). Language-induced motor activity in bi-manual object lifting. Experimental Brain Research, 193(1), 4353. https://doi.org/10.1007/s00221–008-1593-4Google Scholar
Scorolli, C., Borghi, A. M., & Tummolini, L. (2018). Cues of control modulate the ascription of object ownership. Psychological Research, 82(5), 929954. https://doi.org/10.1007/s00426–017-0871-9Google Scholar
Scorolli, C., Daprati, E., Nico, D., & Borghi, A. M. (2016). Reaching for objects or asking for them: Distance estimation in 7- to 15-year-old children. Journal of Motor Behavior, 48(2), 183191. https://doi.org/10.1080/00222895.2015.1070787Google Scholar
Shah, P., Hall, R., Catmur, C., & Bird, G. (2016). Alexithymia, not autism, is associated with impaired interoception. Cortex, 81, 215220.Google Scholar
Stokes, D. (2013). Cognitive Penetrability of Perception. Philosophy Compass, 8(7), 646663. https://doi.org/10.1111/phc3.12043Google Scholar
Trevisan, D. A., Altschuler, M. R., Bagdasarov, A., Carlos, C., Duan, S., Hamo, E., … McPartland, J. C. (2019). A meta-analysis on the relationship between interoceptive awareness and alexithymia: Distinguishing interoceptive accuracy and sensibility. Journal of Abnormal Psychology, 128(8), 765776. https://doi.org/10.1037/abn0000454Google Scholar
Tsakiris, M., & Critchley, H. (2016). Interoception beyond homeostasis: Affect, cognition and mental health. In Philosophical Transactions of the Royal Society B: Biological Sciences (vol. 371, 1708, p. 20160002). The Royal Society.Google Scholar
Tucker, M., & Ellis, R. (1998). On the relations between seen objects and components of potential actions. Journal of Experimental Psychology: Human Perception and Performance, 24(3), 830.Google Scholar
Tucker, M., & Ellis, R. (2004). Action priming by briefly presented objects. Acta Psychologica, 116(2), 185203.Google Scholar
Tversky, B. (2019). Mind in motion: How action shapes thought. Hachette UK.Google Scholar
Tylén, K., Weed, E., Wallentin, M., Roepstorff, A., & Frith, C. D. (2010). Language as a tool for interacting minds. Mind & Language, 25(1), 329. https://doi.org/10.1111/j.1468-0017.2009.01379.xGoogle Scholar
van Elk, M., van Schie, H., & Bekkering, H. (2014). Action semantics: A unifying conceptual framework for the selective use of multimodal and modality-specific object knowledge. Physics of Life Reviews, 11(2), 220250.Google Scholar
Vicario, C. M., Nitsche, M. A., Salehinejad, M. A., Avanzino, L., & Martino, G. (2020). Time processing, interoception, and insula activation: A mini-review on clinical disorders. Frontiers in Psychology, 11, 1893.Google Scholar
Vygotsky, L. S. ([1934] 1986). Thought and language, rev. ed. MIT Press.Google Scholar
Wilson-Mendenhall, C. D., Henriques, A., Barsalou, L. W., & Barrett, L. F. (2019). Primary interoceptive cortex activity during simulated experiences of the body. Journal of Cognitive Neuroscience, 31(2), 221235.Google Scholar
Winawer, J., Witthoft, N., Frank, M. C., Wu, L., Wade, A. R., & Boroditsky, L. (2007). Russian blues reveal effects of language on color discrimination. Proceedings of the National Academy of Sciences, 104(19), 77807785.Google Scholar
Wittgenstein, L. (1953/2009). Philosophical investigations. (Trans. Anscombe, G. E. M., Hacker, P. M. S., & Schulte, J.. Wiley Blackwell.Google Scholar
Zaslavsky, N., Kemp, C., Tishby, N., & Regier, T. (2020). Communicative need in colour naming. Cognitive Neuropsychology, 37(5–6), 312324. https://doi.org/10.1080/02643294.2019.1604502Google Scholar

References

Alderson-Day, B., & Fernyhough, C. (2015). Inner speech: Development, cognitive functions, phenomenology, and neurobiology. Psychological Bulletin, 141(5), 931.Google Scholar
Alderson-Day, B., Mitrenga, K., Wilkinson, S., McCarthy-Jones, S., & Fernyhough, C. (2018). The varieties of inner speech questionnaire–revised (VISQ-R): Replicating and refining links between inner speech and psychopathology. Consciousness and Cognition, 65, 4858.Google Scholar
Alderson-Day, B., Weis, S., McCarthy-Jones, S., Moseley, P., Smailes, D., & Fernyhough, C. (2016). The brain’s conversation with itself: Neural substrates of dialogic inner speech. Social Cognitive and Affective Neuroscience, 11(1), 110120.Google Scholar
Al-Namlah, A. S., Fernyhough, C., & Meins, E. (2006). Sociocultural influences on the development of verbal mediation: Private speech and phonological recoding in Saudi Arabian and British samples. Developmental Psychology, 42(1), 117.Google Scholar
Alogna, V. K., Attaya, M. K., Aucoin, P., Bahník, Š., Birch, S., Birt, A. R., … & Buswell, K. (2014). Registered replication report: Schooler and Hengstler-Schooler (1990). Perspectives on Psychological Science, 9(5), 556578.Google Scholar
Andrews, M., Vigliocco, G., & Vinson, D. (2009). Integrating experiential and distributional data to learn semantic representations. Psychological Review, 116(3), 463498. https://doi.org/10.1037/a0016261Google Scholar
Aziz-Zadeh, L., Cattaneo, L., Rochat, M., & Rizzolatti, G. (2005). Covert speech arrest induced by rTMS over both motor and nonmotor left hemisphere frontal sites. Journal of Cognitive Neuroscience, 17(6), 928938.Google Scholar
Baddeley, A. (1992). Working memory. Science, 255(5044), 556559.Google Scholar
Baddeley, A. (2000). The episodic buffer: A new component of working memory? Trends in Cognitive Sciences, 4(11), 417423.Google Scholar
Baddeley, A. (2012). Working memory: Theories, models, and controversies. Annual Review of Psychology, 63, 129.Google Scholar
Baddeley, A., Gathercole, S., & Papagno, C. (1998). The phonological loop as a learning language device. Psychological Review, 105, 158173.Google Scholar
Baddeley, A. D., & Hitch, G. (1974). Working memory. In Psychology of learning and motivation, vol. 8. Elsevier, pp. 4789.Google Scholar
Baddeley, A. D., & Larsen, J. D. (2007). The phonological loop: Some answers and some questions. Quarterly Journal of Experimental Psychology, 60(4), 512518.Google Scholar
Barsalou, L. W. (1983). Ad hoc categories. Memory & Cognition, 11(3), 211227.Google Scholar
Barsalou, L. W. (1985). Ideals, central tendency, and frequency of instantiation as determinants of graded structure in categories. Journal of Experimental Psychology: Learning, Memory, and Cognition, 11(4), 629.Google Scholar
Barsalou, L. W. (1999). Perceptual symbol systems. Behavioral and Brain Sciences, 22(4), 577660.Google Scholar
Barsalou, L. W., Santos, A., Simmons, W. K., & Wilson, C. D. (2008). Language and simulation in conceptual processing. Symbols, embodiment, and meaning. Oxford University Press, 245283.Google Scholar
Basho, S., Palmer, E. D., Rubio, M. A., Wulfeck, B., & Müller, R. A. (2007). Effects of generation mode in fMRI adaptations of semantic fluency: Paced production and overt speech. Neuropsychologia, 45(8), 16971706.Google Scholar
Bastian, M., Lerique, S., Adam, V., Franklin, M. S., Schooler, J. W., & Sackur, J. (2017). Language facilitates introspection: Verbal mind-wandering has privileged access to consciousness. Consciousness and Cognition, 49, 8697.Google Scholar
Bermudez, J. L. (2018). Inner speech, determinacy, and thinking consciously about thoughts. In Langland-Hassan, P. & Vicente, A., eds., Inner speech: New voices. Oxford University Press, 199.Google Scholar
Borghi, A. M., Barca, L., Binkofski, F., & Tummolini, L. (2018). Abstract concepts, language and sociality: From acquisition to inner speech. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 373(1752). https://doi.org/10.1098/rstb.2017.0134Google Scholar
Borghi, A. M., & Cangelosi, A. (2014). Action and language integration: From humans to cognitive robots. Topics in Cognitive Science, 6(3), 344358.Google Scholar
Borghi, A. M., & Fernyhough, C. (2023). Concepts, abstractness, and inner speech. Philosophical Transactions of the Royal Society B: 378(1870), 20210371.Google Scholar
Borghi, A. M., Fini, C., & Tummolini, L. (2021). Abstract concepts and metacognition: Searching for Meaning in Self and Others. In Robinson, M. D. & Roberts, L. E., eds., Embodied psychology: Thinking, feeling, and acting. Springer.Google Scholar
Borghi, A. M., Scorolli, C., Caligiore, D., Baldassarre, G., & Tummolini, L. (2013). The embodied mind extended: Using words as social tools. Frontiers in Psychology, 4, 214. https://doi.org/10.3389/fpsyg.2013.00214Google Scholar
Brinthaupt, T. M., Hein, M. B., & Kramer, T. E. (2009). The self-talk scale: Development, factor analysis, and validation. Journal of Personality Assessment, 91(1), 8292.Google Scholar
Carruthers, P. (1998). Language, thought and consciousness: An essay in philosophical psychology. Cambridge University Press.Google Scholar
Ciaramelli, E., & Treves, A. (2019). A mind free to wander: Neural and computational constraints on spontaneous thought. Frontiers in Psychology, 10, 39.Google Scholar
Clark, A. (1996). Linguistic anchors in the sea of thought. Pragmatics and Cognition, 4, 1, 93103.Google Scholar
Clark, A. (1998). Magic words: How language augments human computation. In Carruthers, P. & Boucher, J., eds., Language and thought: Interdisciplinary themes. Cambridge University Press, pp. 162183.Google Scholar
Clark, A., & Toribio, J. (2012). Magic words: How language augments human computation. In Language and meaning in cognitive science. Routledge, pp.3351.Google Scholar
Connell, L. (2019). What have labels ever done for us? The linguistic shortcut in conceptual processing. Language, Cognition and Neuroscience, 34(10), 13081318. https://doi.org/10.1080/23273798.2018.1471512Google Scholar
Connell, L., & Lynott, D. (2013). Flexible and fast: Linguistic shortcut affects both shallow and deep conceptual processing. Psychonomic Bulletin & Review, 20(3), 542550. https://doi.org/10.3758/s13423–012-0368-xGoogle Scholar
Connell, L., & Lynott, D. (2014). Principles of representation: Why you can’t represent the same concept twice. Topics in Cognitive Science, 6(3), 390406. https://doi.org/10.1111/tops.12097Google Scholar
Conrad, B., & Schönle, P. (1979). Speech and respiration. ArchivfürPsychiatrie und Nervenkrankheiten, 226(4), 251268.Google Scholar
Davis, P. E., Meins, E., & Fernyhough, C. (2013). Individual differences in children’s private speech: The role of imaginary companions. Journal of Experimental Child Psychology, 116(3), 561571.Google Scholar
Deacon, T. W. (1998). The symbolic species: The co-evolution of language and the brain. W.W. Norton.Google Scholar
Dell, G. S., & Oppenheim, G. M. (2015). Insights for speech production planning from errors in inner speech. The handbook of speech production, John Wiley & Sons. 404418.Google Scholar
Dennett, D. C. (1993). Consciousness explained. Penguin.Google Scholar
Di Paolo, E. A., Cuffari, E. C., & De Jaegher, H. (2018). Linguistic bodies: The continuity between life and language. MIT Press.Google Scholar
Dolcos, S., & Albarracín, D. (2014). The inner speech of behavioral regulation: Intentions and task performance strengthen when you talk to yourself as a You. European Journal of Social Psychology, 44(6), 636642.Google Scholar
Fatzer, S. T., & Roebers, C. M. (2012). Language and executive functions: The effect of articulatory suppression on executive functioning in children. Journal of Cognition and Development, 13(4), 454472.Google Scholar
Fernyhough, C. (2016). The voices within: The history and science of how we talk to ourselves. Basic Books.Google Scholar
Flavell, J. H. (1979). Metacognition and cognitive monitoring: A new area of cognitive-developmental inquiry. American Psychologist, 34, 906911. doi: 10.1037/0003-066X.34.10.906.Google Scholar
Fodor, J. A. (1998). Concepts: Where cognitive science went wrong. Oxford University Press.Google Scholar
Frankish, K. (2018). Inner speech and outer thought. In Langland-Hassan, P. & Vicente, A., eds., Inner speech: New voices. Oxford University Press, 221243.Google Scholar
Gathercole, S. E. (1998). The development of memory. Journal of Child Psychology and Psychiatry, 39(1), 327.Google Scholar
Gathercole, S. E., Pickering, S. J., Ambridge, B., & Wearing, H. (2004). The structure of working memory from 4 to 15 years of age. Developmental Psychology, 40(2), 177.Google Scholar
Geva, S., Jones, P. S., Crinion, J. T., Price, C. J., Baron, J.-C., & Warburton, E. A. (2011). The neural correlates of inner speech defined by voxel-based lesion-symptom mapping. Brain, 134(10), 30713082.Google Scholar
Gianelli, C., Farnè, A., Salemme, R., Jeannerod, M., & Roy, A. C. (2011). The agent is right: When motor embodied cognition is space-dependent. PLoS ONE, 6(9), e25036.Google Scholar
Gianelli, C., Scorolli, C., & Borghi, A. M. (2013). Acting in perspective: The role of body and language as social tools. Psychological Research, 77(1), 4052.Google Scholar
Gilhooly, K. J. (2005). Working memory and strategies in reasoning. In Roberts, M. J. & Newton, E. J., eds., Methods of thought: Individual differences in reasoning strategies, Psychology Press, 5780.Google Scholar
Granato, G., Borghi, A. M., & Baldassarre, G. (2020). A computational model of language functions in flexible goal-directed behaviour. Scientific Reports, 10(1), 113.Google Scholar
Granato, G., Borghi, A. M., Mattera, A., & Baldassarre, G. (2022). A computational model of inner speech supporting flexible goal-directed behaviour in Autism. Scientific Reports, 12(1), 14198.Google Scholar
Grush, R. (2004). The emulation theory of representation: Motor control, imagery, and perception. Behavioral and Brain Sciences, 27(3), 377396. https://doi.org/10.1017/S0140525X04000093Google Scholar
Hardy, J., Hall, C. R., & Hardy, L. (2005). Quantifying athlete self-talk. Journal of Sports Sciences, 23, 905917. http://dx.doi.org/10.1080/02640410500130706.Google Scholar
Hauk, O., Johnsrude, I., & Pulvermüller, F. (2004). Somatotopic representation of action words in human motor and premotor cortex. Neuron, 41(2), 301307.Google Scholar
Hurlburt, R. T. Alderson-Day, B., Kühn, S., & Fernyhough, C. (2016). Exploring the ecological validity of thinking on demand: Neural correlates of elicited vs. spontaneously occurring inner speech. PLoS ONE, 11(2), e0147932.Google Scholar
Hurlburt, R. T. (2017). Descriptive experience sampling. The Blackwell Companion to Consciousness, Wiley, 740753.Google Scholar
Hurlburt, R. T., Heavey, C. L., & Kelsey, J. M. (2013). Toward a phenomenology of inner speaking. Consciousness and Cognition, 22(4), 14771494.Google Scholar
Jackendoff, R. (1996). How language helps us think. Pragmatics & Cognition, 4(1), 134.Google Scholar
James, W. (1890). The perception of reality. Principles of Psychology, 2, 283324.Google Scholar
Jarrold, C., & Citroën, R. (2013). Reevaluating key evidence for the development of rehearsal: Phonological similarity effects in children are subject to proportional scaling artifacts. Developmental Psychology, 49(5), 837.Google Scholar
Johns, B. T., & Jones, M. N. (2012). Perceptual inference through global lexical similarity. Topics in Cognitive Science, 4(1), 103120.Google Scholar
Jones, P. E. (2009). From “external speech” to “inner speech” in Vygotsky: A critical appraisal and fresh perspectives. Language & Communication, 29, 166181.Google Scholar
Kiverstein, J., & Rietveld, E. (2020). Scaling-up skilled intentionality to linguistic thought. Synthese, 1–20.Google Scholar
Korba, R. J. (1990). The rate of inner speech. Perceptual and Motor Skills, 71(3), 10431052.Google Scholar
Kray, J., Gaspard, H., Karbach, J., & Blaye, A. (2013). Developmental changes in using verbal self-cueing in task-switching situations: The impact of task practice and task-sequencing demands. Frontiers in Psychology, 4, 940.Google Scholar
Langland-Hassan, P., & Vicente, A. (2018). Inner Speech: New Voices. Oxford University Press.Google Scholar
Lidstone, J. S., Meins, E., & Fernyhough, C. (2010). The roles of private speech and inner speech in planning during middle childhood: Evidence from a dual task paradigm. Journal of Experimental Child Psychology, 107(4), 438451.Google Scholar
Linden, D. E. J., Thornton, K., Kuswanto, C. N., Johnston, S. J., van de Ven, V., & Jackson, M.C. (2011). The brain’s voices: Comparing non clinical auditory hallucinations and imagery. Cerebral Cortex, 21(2), 330337.Google Scholar
Løevenbruck, H., Grandchamp, R., Rapin, L., Nalborczyk, L., & Dohen, M. (2018). A cognitive neuroscience view of inner language. In Langland-Hassan, P. & Vicente, A., eds., Inner speech: New voices. Oxford University Press, 131.Google Scholar
Louwerse, M. (2021). Keeping those words in mind: How language creates meaning. Rowman & Littlefield.Google Scholar
Louwerse, M. M., & Connell, L. (2011). A taste of words: Linguistic context and perceptual simulation predict the modality of words. Cognitive Science, 35, 381398.Google Scholar
Louwerse, M. M., & Jeuniaux, P. (2010). The linguistic and embodied nature of conceptual processing. Cognition, 114(1), 96104. https://doi.org/10.1016/j.cognition.2009.09.002Google Scholar
Mani, N., & Plunkett, K. (2010). In the infant’s mind’s ear evidence for implicit naming in18-month-olds. Psychological Science, 21, 908913.Google Scholar
Martínez-Manrique, F., & Vicente, A. (2015). The activity view of inner speech. Frontiers in Psychology, 6, 32. https://doi.org/10.3389/fpsyg.2015.00232Google Scholar
McCarthy-Jones, S., & Fernyhough, C. (2011). The varieties of inner speech: Links between quality of inner speech and psychopathological variables in a sample of young adults. Consciousness and Cognition, 20,15861593. http://dx.doi.org/10.1016/j.concog.2011.08.005.Google Scholar
McGonigle-Chalmers, M., Slater, H., & Smith, A. (2014). Rethinking private speech in preschoolers: The effects of social presence. Developmental Psychology, 50(3), 829.Google Scholar
McGuigan, F. J., & Dollins, A. B. (1989). Patterns of covert speech behavior and phonetic coding. The Pavlovian Journal of Biological Science, 24(1), 1926.Google Scholar
Merleau-Ponty, M. (1945/2012). The phenomenology of perception (trans D.A. Landes). Routledge.Google Scholar
Morin, A. (2018 ). The self-reflective functions of inner speech: Thirteen years later. In Langland-Hassan, P. & Vicente, A., eds., Inner speech: New voices. Oxford University Press, 276298.Google Scholar
Nalborczyk, L., Perrone-Bertolotti, M., Baeyens, C., Grandchamp, R., Polosan, M., Spinelli, E., … & Lœvenbruck, H. (2017). Orofacial electromyographic correlates of induced verbal rumination. Biological Psychology, 127, 5363.Google Scholar
Nedergaard, J. S., Perrone- Wallentin, M., & Lupyan, G., (2022). Verbal interference paradigms: A systematic review investigating the role of language in cognition. Psychonomic Bulletin & Review, 1–25. doi: 10.3758/s13423-022-02144-7Google Scholar
Netsell, R., Ashley, E., & Bakker, K. (2010). The inner speech of persons who stutter. Poster presentation to the International Motor Speech Conference, Savannah, GA.Google Scholar
Ngon, C., & Peperkamp, S. (2013). A deep look into the developing lexicon: Revelations from covert picture-naming. Proceedings of the International Child Phonology Conference, 29–30.Google Scholar
Oppenheim, G. M., & Dell, G. S. (2010). Motor movement matters: The flexible abstractness of inner speech. Memory & Cognition, 38(8), 11471160.Google Scholar
Perrone-Bertolotti, M., Rapin, L., Lachaux, J.-P., Baciu, M., & Lœvenbruck, H. (2014). What is that little voice inside my head? Inner speech phenomenology, its role in cognitive performance, and its relation to self-monitoring. Behavioural Brain Research, 261, 220239. http://dx.doi.org/10.1016/j.bbr.2013.12.034.Google Scholar
Petrolini, V., Jorba, M., & Vicente, A. (2020). The role of inner speech in executive functioning tasks: Schizophrenia with auditory verbal hallucinations and autistic spectrum conditions as case studies. Frontiers in Psychology, 2452, 115.Google Scholar
Pickering, S. J. (2001). The development of visuo-spatial working memory. Memory, 9(4–6), 423432.Google Scholar
Postma, A., & Noordanus, C. (1996). Production and detection of speech errors in silent, mouthed, noise-masked, and normal auditory feedback speech. Language and Speech, 39(4), 375392.Google Scholar
Price, C. J. (2012). A review and synthesis of the first 20 years of PET and fMRI studies of heard speech, spoken language and reading. NeuroImage, 62, 816847. http://dx.doi.org/10.1016/j.neuroimage.2012.04.062Google Scholar
Prinz, J. (2004). The fractionation of introspection. Journal of Consciousness Studies, 11(8), 4057.Google Scholar
Prinz, J. (2012). The conscious brain. Oxford University Press.Google Scholar
Rao, K. V., & Baddeley, A. (2013). Raven’s matrices and working memory: A dual-task approach. Quarterly Journal of Experimental Psychology, 66(10), 18811887. http://dx.doi.org/10.1080/17470218.2013.828314Google Scholar
Roebuck, H., & Lupyan, G. (2020). The internal representations questionnaire: Measuring modes of thinking. Behavior Research Methods, 52(5), 20532070.Google Scholar
Santos, A., Chaigneau, S. E., Simmons, W. K., & Barsalou, L. W. (2011). Property generation reflects word association and situated simulation. Language and Cognition, 3(1), 83119.Google Scholar
Shea, N., Boldt, A., Bang, D., Yeung, N., Heyes, C., & Frith, C. D. (2014). Supra-personal cognitive control and metacognition. Trends in Cognitive Sciences, 18(4), 186193.Google Scholar
Shergill, S. S., Bullmore, E. T., Brammer, M. J., Williams, S. C., Murray, R. M., & McGuire, P. K. (2001). A functional study of auditory verbal imagery. Psychological Medicine, 31(2), 241–53.Google Scholar
Shiffman, S. (2000). Real-time self-report of momentary states in the natural environment: Computerized ecological momentary assessment. In Stone, A. A., Turkkan, J. S., Bachrach, C. A., Jobe, J. B., Kurtzman, H. S., & Cain, V. S., eds. The science of self-report: Implications for research and practice. Erlbaum, 277296.Google Scholar
Simmons, W. K., Hamann, S. B., Harenski, C. L., Hu, X. P., & Barsalou, L. W. (2008). FMRI evidence for word association and situated simulation in conceptual processing. Journal of Physiology, Paris, 102(1–3), 106119. https://doi.org/10.1016/j.jphysparis.2008.03.014Google Scholar
Swiney, L. (2018). Activity, agency, and inner speech pathology. In Langland-Hassan, P. & Vicente, A., eds., Inner speech: New voices. Oxford University Press, 288331.Google Scholar
Vallar, G., & Cappa, S. F. (1987). Articulation and verbal short-term memory: Evidence from anarthria. Cognitive Neuropsychology, 4(1), 5577.Google Scholar
Vygotsky, L. S. (1934/2012). Thought and language. MIT Press.Google Scholar
Vygotsky, L. S. (1986). Thought and language, rev. ed. MIT Press.Google Scholar
Watson, J. B. (1913). Psychology as the behaviorist views it. Psychological Review, 20(2), 158–77.Google Scholar
Wu, L., & Barsalou, L. W. (2009). Perceptual simulation in conceptual combination: Evidence from property generation. Acta Psychologica, 132(2), 173189. https://doi.org/10.1016/j.actpsy.2009.02.002Google Scholar
Yetkin, F. Z., Hammeke, T. A., Swanson, S. J., Morris, G. L., Mueller, W. M., McAuliffe, T. L., & Haughton, V. M. (1995). A comparison of functional MR activation patterns during silent and audible language tasks. American Journal of Neuroradiology, 16(5), 1087-1092.Google Scholar
Yeung, N. & Summerfield, C. (2012). Metacognition in human decision making: Confidence and error monitoring. Philosophical Transactions of the Royal Society B. 367, 13101321.Google Scholar

References

Adank, P., Hagoort, P., & Bekkering, H. (2010). Imitation improves language comprehension. Psychological Science, 21(12), 19031909. https://doi.org/10.1177/0956797610389192Google Scholar
Adank, P., Stewart, A. J., Connell, L., & Wood, J. (2013). Accent imitation positively affects language attitudes. Frontiers in Psychology, 4, 280. https://doi.org/10.3389/fpsyg.2013.00280Google Scholar
Alter, A. L., Oppenheimer, D. M., & Zemla, J. C. (2010). Missing the trees for the forest: A construal level account of the illusion of explanatory depth. Journal of Personality and Social Psychology, 99(3), 436.Google Scholar
Andrade-Lotero, E. J., Ortiz-Duque, J. M., Velasco-García, J. A., & Goldstone, R. L. (2023). The division of linguistic labour for offloading conceptual understanding. Philosophical Transactions of the Royal Society B: Biological Sciences. 378(1870), 20210360.Google Scholar
Balconi, M., & Fronda, G. (2020). The dialogue between two or more brains: The “hyperscanning” for organization. Frontiers in Psychology, 11, 15.Google Scholar
Barsalou, L. W. (2008). Grounded cognition. Annual Review of Psychology, 59, 617645.Google Scholar
Borghi, A. M. (2020). A future of words: Language and the challenge of abstract concepts. Journal of Cognition, 3(1), 118.Google Scholar
Borghi, A. M., Scorolli, C., Caligiore, D., Baldassarre, G., & Tummolini, L. (2013). The embodied mind extended: Using words as social tools. Frontiers in Psychology, 4, 214. https://doi.org/10.3389/fpsyg.2013.00214Google Scholar
Brand, R. J., & Shallcross, W. L. (2008). Infants prefer motionese to adult-directed action. Developmental Science, 11(6), 853861.Google Scholar
Buccino, G., Lui, F., Canessa, N., Patteri, I., Lagravinese, G., Benuzzi, F., … Rizzolatti, G. (2004). Neural circuits involved in the recognition of actions performed by nonconspecifics: An fMRI study. Journal of Cognitive Neuroscience, 16(1), 114126.Google Scholar
Calvert, G. A., Campbell, R., & Brammer, M. J. (2000). Evidence from functional magnetic resonance imaging of crossmodal binding in the human heteromodal cortex. Current Biology, 10(11), 649657. https://doi.org/10.1016/S0960–9822(00)00513-3Google Scholar
Castellucci, G. A., Kovach, C. K., Howard, M. A., Greenlee, J. D., & Long, M. A. (2022). A speech planning network for interactive language use. Nature, 1–6.Google Scholar
Chartrand, T. L., & Bargh, J. A. (1999). The chameleon effect: The perception–behavior link and social interaction. Journal of Personality and Social Psychology, 76(6), 893.Google Scholar
Clark, A., & Chalmers, D. (1998). The extended mind. Analysis, 58(1), 719.Google Scholar
Clark, A., & Toribio, J. (2012). Magic words: How language augments human computation. In Language and Meaning in Cognitive Science. Routledge, 3351.Google Scholar
Clark, H. H. (1996). Using language. Cambridge University Press.Google Scholar
Clark, H. H., & Schaefer, E. F. (1989). Contributing to discourse. Cognitive Science, 13(2), 259294. https://doi.org/10.1016/0364-0213(89)90008-6Google Scholar
Corriveau, K. H., Chen, E. E., & Harris, P. L. (2015). Judgments about fact and fiction by children from religious and nonreligious backgrounds. Cognitive Science, 39(2), 353382.Google Scholar
Cox, C., Bergmann, C., Fowler, E., Keren-Portnoy, T., Roepstorff, A., Bryant, G., & Fusaroli, R. (2022). A systematic review and Bayesian meta-analysis of the acoustic features of infant-directed speech. Nature Human Behaviour, 7, 114133.Google Scholar
Cui, Y. K., Clegg, J. M., Yan, E. F., Davoodi, T., Harris, P. L., & Corriveau, K. H. (2020). Religious testimony in a secular society: Belief in unobservable entities among Chinese parents and their children. Developmental Psychology, 56(1), 117.Google Scholar
D’Ausilio, A., Bartoli, E., Maffongelli, L., Berry, J. J., & Fadiga, L. (2014). Vision of tongue movements bias auditory speech perception. Neuropsychologia, 63, 8591. https://doi.org/10.1016/j.neuropsychologia.2014.08.018Google Scholar
D’Ausilio, A., Pulvermüller, F., Salmas, P., Bufalari, I., Begliomini, C., & Fadiga, L. (2009). The motor somatotopy of speech perception. Current Biology, 19(5), 381385. https://doi.org/10.1016/j.cub.2009.01.017Google Scholar
Davoodi, T., Jamshidi-Sianaki, M., Abedi, F., Payir, A., Cui, Y. K., Harris, P. L., & Corriveau, K. H. (2019). Beliefs about religious and scientific entities among parents and children in Iran. Social Psychological and Personality Science, 10(7), 847855. https://doi.org/10.1177/1948550618806057Google Scholar
Di Paolo, E. A., Cuffari, E. C., & De Jaegher, H. (2018). Linguistic bodies: The continuity between life and language. MIT Press.Google Scholar
Dikker, S., Wan, L., Davidesco, I., Kaggen, L., Oostrik, M., McClintock, J., … Poeppel, D. (2017). Brain-to-brain synchrony tracks real-world dynamic group interactions in the classroom. Current Biology, 27(9), 13751380. https://doi.org/10.1016/j.cub.2017.04.002Google Scholar
DiYanni, C. J., Corriveau, K. H., Kurkul, K., Nasrini, J., & Nini, D. (2015). The role of consensus and culture in children’s imitation of inefficient actions. Journal of Experimental Child Psychology, 137, 99110. https://doi.org/10.1016/j.jecp.2015.04.004Google Scholar
Duncan, S. (1972). Some signals and rules for taking speaking turns in conversations. Journal of Personality and Social Psychology, 23(2), 283.Google Scholar
Fisher, M., Goddu, M. K., & Keil, F. C. (2015). Searching for explanations: How the internet inflates estimates of internal knowledge. Journal of Experimental Psychology: General, 144(3), 674.Google Scholar
Fowler, C. A., Richardson, M. J., Marsh, K. L., & Shockley, K. D. (2008). Language use, coordination, and the emergence of cooperative action. In Fuchs, A. & Jirsa, V. K., eds., Coordination: Neural, Behavioral and Social Dynamics. Springer, 261279. https://doi.org/10.1007/978-3-540-74479-5_13Google Scholar
Fusaroli, R., Bahrami, B., Olsen, K., Roepstorff, A., Rees, G., Frith, C., & Tylén, K. (2012). Coming to terms: Quantifying the benefits of linguistic coordination. Psychological Science, 23(8), 931939. https://doi.org/10.1177/0956797612436816Google Scholar
Fusaroli, R., Rączaszek-Leonardi, J., & Tylén, K. (2014). Dialog as interpersonal synergy. New Ideas in Psychology, 32, 147157. https://doi.org/10.1016/j.newideapsych.2013.03.005Google Scholar
Fusaroli, R., & Tylén, K. (2016). Investigating conversational dynamics: Interactive alignment, interpersonal synergy, and collective task performance. Cognitive Science, 40(1), 145171. https://doi.org/10.1111/cogs.12251Google Scholar
Galantucci, B., & Sebanz, N. (2009). Joint action: Current perspectives. Topics in Cognitive Science, 1(2), 255259.Google Scholar
Gallese, V., Fadiga, L., Fogassi, L., & Rizzolatti, G. (1996). Action recognition in the premotor cortex. Brain, 119(2), 593609.Google Scholar
Garrod, S., & Pickering, M. J. (2009). Joint action, interactive alignment, and dialog. Topics in Cognitive Science, 1(2), 292304. https://doi.org/10.1111/j.1756-8765.2009.01020.xGoogle Scholar
Garrod, S., & Pickering, M. J. (2015). The use of content and timing to predict turn transitions. Frontiers in Psychology, 6, 751.Google Scholar
Gopnik, A., Meltzoff, A. N., & Kuhl, P. K. (1999). The scientist in the crib: Minds, brains, and how children learn. William Morrow.Google Scholar
Gow, D. W. Jr., & Olson, B. B. (2016). Sentential influences on acoustic-phonetic processing: A Granger causality analysis of multimodal imaging data. Language, Cognition and Neuroscience, 31(7), 841855.Google Scholar
Grice, H. P. (1975). Logic and conversation. In Cole, P. & Morgan, J. L., eds., Syntax and semantics, vol. 3: Speech acts. Brill, pp. 4158.Google Scholar
Hadley, L. V., Naylor, G., & Hamilton, A. F. de C. (2022). A review of theories and methods in the science of face-to-face social interaction. Nature Reviews Psychology, 1(1), 4254. https://doi.org/10.1038/s44159–021-00008-wGoogle Scholar
Hale, J., Ward, J. A., Buccheri, F., Oliver, D., & Hamilton, A. F. de C. (2020). are you on my wavelength? Interpersonal coordination in dyadic conversations. Journal of Nonverbal Behavior, 44(1), 6383. https://doi.org/10.1007/s10919–019-00320-3Google Scholar
Harris, P. L., & Koenig, M. A. (2006). Trust in testimony: How children learn about science and religion. Child Development, 77(3), 505524. https://doi.org/10.1111/j.1467-8624.2006.00886.xGoogle Scholar
Harris, P. L., Koenig, M. A., Corriveau, K. H., & Jaswal, V. K. (2018). Cognitive foundations of learning from testimony. Annual Review of Psychology, 69, 251273. https://doi.org/10.1146/annurev-psych-122216-011710Google Scholar
Hasson, U., & Frith, C. D. (2016). Mirroring and beyond: Coupled dynamics as a generalized framework for modelling social interactions. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1693), 20150366. https://doi.org/10.1098/rstb.2015.0366Google Scholar
Heyes, C. (2011). Automatic imitation. Psychological Bulletin, 137(3), 463.Google Scholar
Hilton, C. B., & Goldwater, M. B. (2021). Linguistic syncopation: Meter-syntax alignment affects sentence comprehension and sensorimotor synchronization. Cognition, 217, 104880. https://doi.org/10.1016/j.cognition.2021.104880Google Scholar
Himberg, T., Hirvenkari, L., Mandel, A., & Hari, R. (2015). Word-by-word entrainment of speech rhythm during joint story building. Frontiers in Psychology, 6, 797.Google Scholar
Holler, J., & Kendrick, K. H. (2015). Unaddressed participants’ gaze in multi-person interaction: Optimizing recipiency. Frontiers in Psychology, 6(98), 114.Google Scholar
Holler, J., Kendrick, K. H., Casillas, M., & Levinson, S. C., eds. (2016). Turn-taking in human communicative interaction. Frontiers Media SA.Google Scholar
Honey, C. J., Thompson, C. R., Lerner, Y., & Hasson, U. (2012). Not lost in translation: Neural responses shared across languages. Journal of Neuroscience, 32(44), 1527715283.Google Scholar
Huettig, F., & Altmann, G. T. (2004). The online processing of ambiguous and unambiguous words in context: Evidence from head-mounted eye-tracking. the on-line study of sentence comprehension: Eyetracking, ERP and beyond, 187–207.Google Scholar
Huettig, F., & Altmann, G. T. (2005). Word meaning and the control of eye fixation: Semantic competitor effects and the visual world paradigm. Cognition, 96(1), B23B32.Google Scholar
Iacoboni, M., Woods, R. P., Brass, M., Bekkering, H., Mazziotta, J. C., & Rizzolatti, G. (1999). Cortical mechanisms of human imitation. Science, 286(5449), 25262528.Google Scholar
Jääskeläinen, I. P., Sams, M., Glerean, E., & Ahveninen, J. (2021). Movies and narratives as naturalistic stimuli in neuroimaging. NeuroImage, 224, 117445. https://doi.org/10.1016/j.neuroimage.2020.117445Google Scholar
Keitel, A., Prinz, W., Friederici, A. D., Von Hofsten, C., & Daum, M. M. (2013). Perception of conversations: The importance of semantics and intonation in children’s development. Journal of Experimental Child Psychology, 116(2), 264277.Google Scholar
Kelsen, B. A., Sumich, A., Kasabov, N., Liang, S. H. Y., & Wang, G. Y. (2020). What has social neuroscience learned from hyperscanning studies of spoken communication? A systematic review. Neuroscience & Biobehavioral Reviews. https://doi.org/10.1016/j.neubiorev.2020.09.008Google Scholar
Kinreich, S., Djalovski, A., Kraus, L., Louzoun, Y., & Feldman, R. (2017). Brain-to-brain synchrony during naturalistic social interactions. Scientific Reports, 7(1), 17060. https://doi.org/10.1038/s41598–017-17339-5Google Scholar
Kita, S., & Ide, S. (2007). Nodding, aizuchi, and final particles in Japanese conversation: How conversation reflects the ideology of communication and social relationships. Journal of Pragmatics, 39(7), 12421254. https://doi.org/10.1016/j.pragma.2007.02.009Google Scholar
Kominsky, J. F., & Keil, F. C. (2014). Overestimation of knowledge about word meanings: The “misplaced meaning” effect. Cognitive Science, 38(8), 16041633.Google Scholar
Kominsky, J. F., Langthorne, P., & Keil, F. C. (2016). The better part of not knowing: Virtuous ignorance. Developmental Psychology, 52(1), 31.Google Scholar
Kominsky, J. F., Zamm, A. P., & Keil, F. C. (2018). Knowing when help is needed: A developing sense of causal complexity. Cognitive Science, 42(2), 491523.Google Scholar
Konvalinka, I., & Roepstorff, A. (2012). The two-brain approach: How can mutually interacting brains teach us something about social interaction? Frontiers in Human Neuroscience, 6. https://www.frontiersin.org/article/10.3389/fnhum.2012.00215Google Scholar
Kuhl, P. K., Andruski, J. E., Chistovich, I. A., Chistovich, L. A., Kozhevnikova, E. V., Ryskina, V. L., … Lacerda, F. (1997). Cross-language analysis of phonetic units in language addressed to infants. Science, 277(5326), 684686.Google Scholar
Kuhn, D., & Dean, David Jr.. (2004). Metacognition: A bridge between cognitive psychology and educational practice. Theory into Practice, 43(4), 268273. https://doi.org/10.1207/s15430421tip4304_4Google Scholar
Levinson, S. C. (2016). Turn-taking in human communication–origins and implications for language processing. Trends in Cognitive Sciences, 20(1), 614.Google Scholar
Liu, J., Zhang, R., Geng, B., Zhang, T., Yuan, D., Otani, S., & Li, X. (2019). Interplay between prior knowledge and communication mode on teaching effectiveness: Interpersonal neural synchronization as a neural marker. NeuroImage, 193, 93102.Google Scholar
Lugli, L., Obertis, A. C., & Borghi, A. M. (2017). Hitting is male, giving is female: Automatic imitation and complementarity during action observation. Psychological Research, 81(6), 11801191. https://doi.org/10.1007/s00426–016-0808-8Google Scholar
Manzoni, A. (2010). I promessi sposi , vol. 29. Newton Compton Editori.Google Scholar
Marsh, K. L., Richardson, M. J., & Schmidt, R. C. (2009). Social connection through joint action and interpersonal coordination. Topics in Cognitive Science, 1(2), 320339. https://doi.org/10.1111/j.1756-8765.2009.01022.xGoogle Scholar
Mayo, O., & Gordon, I. (2020). In and out of synchrony – Behavioral and physiological dynamics of dyadic interpersonal coordination. Psychophysiology, 57(6), e13574. https://doi.org/10.1111/psyp.13574Google Scholar
Mazzuca, C., Falcinelli, I., Michalland, A.-H., Tummolini, L., & Borghi, A. M. (2021). Bodily, emotional, and public sphere at the time of COVID-19. An investigation on concrete and abstract concepts, Psychological Research, 86, 22662277.Google Scholar
McClelland, J. L., Mirman, D., & Holt, L. L. (2006). Are there interactive processes in speech perception? Trends in Cognitive Sciences, 10(8), 363369.Google Scholar
McGurk, H., & MacDonald, J. (1976). Hearing lips and seeing voices. Nature, 264(5588), 746748.Google Scholar
McMurray, B., Tanenhaus, M. K., Aslin, R. N., & Spivey, M. J. (2003). Probabilistic constraint satisfaction at the lexical/phonetic interface: Evidence for gradient effects of within-category VOT on lexical access. Journal of Psycholinguistic Research, 32(1), 7797.Google Scholar
Metzing, C., & Brennan, S. E. (2003). When conceptual pacts are broken: Partner-specific effects on the comprehension of referring expressions. Journal of Memory and Language, 49(2), 201213.Google Scholar
Molnar-Szakacs, I., Wu, A. D., Robles, F. J., & Iacoboni, M. (2007). Do you see what I mean? Corticospinal excitability during observation of culture-specific gestures. PLoS ONE, 2(7), e626.Google Scholar
Montague, P. R., Berns, G. S., Cohen, J. D., McClure, S. M., Pagnoni, G., Dhamala, M., … Apple, N. (2002). Hyperscanning: Simultaneous fMRI during linked social interactions. Neuroimage, 16(4), 11591164.Google Scholar
Newman-Norlund, R. D., van Schie, H. T., van Zuijlen, A. M., & Bekkering, H. (2007). The mirror neuron system is more active during complementary compared with imitative action. Nature Neuroscience, 10(7), 817818.Google Scholar
Olsen, K., & Tylén, K., (2023). On the social nature of abstraction: Cognitive implications of interaction and diversity. Philosophical Transactions of the Royal Society B: Biological Sciences, 378(1870), 20210361.CrossRefGoogle ScholarPubMed
Patel, R., & Schell, K. W. (2008). The influence of linguistic content on the Lombard effect. Journal of Speech, Language, and Hearing Research, 51(1), 209220.Google Scholar
Paxton, A., & Dale, R. (2013). Argument disrupts interpersonal synchrony. Sage.Google Scholar
Peirce, C. S. (1974). Collected papers of Charles Sanders Peirce, vol. 5. Harvard University Press.Google Scholar
Pérez, A., Carreiras, M., & Duñabeitia, J. A. (2017). Brain-to-brain entrainment: EEG interbrain synchronization while speaking and listening. Scientific Reports, 7(1), 112.Google Scholar
Pérez, A., Dumas, G., Karadag, M., & Duñabeitia, J. A. (2019). Differential brain-to-brain entrainment while speaking and listening in native and foreign languages. Cortex, 111, 303315.Google Scholar
Pezzulo, G., Donnarumma, F., Dindo, H., D’Ausilio, A., Konvalinka, I., & Castelfranchi, C. (2019). The body talks: Sensorimotor communication and its brain and kinematic signatures. Physics of Life Reviews, 28, 121. https://doi.org/10.1016/j.plrev.2018.06.014Google Scholar
Pickering, M. J., & Garrod, S. (2004). Toward a mechanistic psychology of dialogue. Behavioral and Brain Sciences, 27(2), 169190. https://doi.org/10.1017/S0140525X04000056Google Scholar
Pickering, M. J., & Garrod, S. (2013). An integrated theory of language production and comprehension. Behavioral and Brain Sciences, 36(4), 329347. https://doi.org/10.1017/S0140525X12001495Google Scholar
Pickering, M. J., & Garrod, S. (2021). Understanding dialogue: Language use and social interaction. Cambridge University Press.Google Scholar
Piotrowski, J. T., Litman, J. A., & Valkenburg, P. (2014). measuring epistemic curiosity in young children. Infant and Child Development, 23(5), 542553. https://doi.org/10.1002/icd.1847Google Scholar
Pulvermüller, F., Huss, M., Kherif, F., del Prado Martin, F. M., Hauk, O., & Shtyrov, Y. (2006). Motor cortex maps articulatory features of speech sounds. Proceedings of the National Academy of Sciences, 103(20), 78657870.Google Scholar
Putnam, H. (1975). The meaning of “meaning.” Philosophical Papers, 2.Google Scholar
Raafat, R. M., Chater, N., & Frith, C. (2009). Herding in humans. Trends in Cognitive Sciences, 13(10), 420428. https://doi.org/10.1016/j.tics.2009.08.002Google Scholar
Rabb, N., Fernbach, P. M., & Sloman, S. A. (2019). Individual representation in a community of knowledge. Trends in Cognitive Sciences, 23(10), 891902.Google Scholar
Rączaszek-Leonardi, J., & Kelso, J. S. (2008). Reconciling symbolic and dynamic aspects of language: Toward a dynamic psycholinguistics. New Ideas in Psychology, 26(2), 193207.Google Scholar
Redcay, E., & Schilbach, L. (2019). Using second-person neuroscience to elucidate the mechanisms of social interaction. Nature Reviews Neuroscience, 20(8), 495505. https://doi.org/10.1038/s41583–019-0179-4Google Scholar
Richardson, D. C., Dale, R., & Kirkham, N. Z. (2007). The art of conversation is coordination. Psychological Science, 18(5), 407413.Google Scholar
Riest, C., Jorschick, A. B., & de Ruiter, J. P. (2015). Anticipation in turn-taking: Mechanisms and information sources. Frontiers in Psychology, 6, 89.Google Scholar
Risko, E. F., & Gilbert, S. J. (2016). Cognitive offloading. Trends in Cognitive Sciences, 20(9), 676688.Google Scholar
Rizzolatti, G., & Craighero, L. (2004). The mirror-neuron system. Annual Review of Neuroscience., 27, 169192.Google Scholar
Robinson, E. J., Einav, S., & Fox, A. (2013). Reading to learn: Prereaders’ and early readers’ trust in text as a source of knowledge. Developmental Psychology, 49(3), 505.Google Scholar
Rozenblit, L., & Keil, F. (2002). The misunderstood limits of folk science: An illusion of explanatory depth. Cognitive Science, 26(5), 521562.Google Scholar
Sabbagh, M. A., & Baldwin, D. A. (2001). Learning words from knowledgeable versus ignorant speakers: Links between preschoolers’ theory of mind and semantic development. Child Development, 72(4), 10541070.Google Scholar
Sacks, H. (2004). An initial characterization of the organization of speaker turn-taking in conversation. Pragmatics and beyond New Series, 125, 3542.Google Scholar
Sartori, L., Bucchioni, G., & Castiello, U. (2013). When emulation becomes reciprocity. Social Cognitive and Affective Neuroscience, 8(6), 662669. https://doi.org/10.1093/scan/nss044Google Scholar
Schilbach, L., Timmermans, B., Reddy, V., Costall, A., Bente, G., Schlicht, T., & Vogeley, K. (2013). Toward a second-person neuroscience. Behavioral and Brain Sciences, 36(4), 393414. https://doi.org/10.1017/S0140525X12000660Google Scholar
Schraw, G., & Moshman, D. (1995). Metacognitive theories. Educational Psychology Review, 7(4), 351371.Google Scholar
Scorolli, C., Miatton, M., Wheaton, L. A., & Borghi, A. M. (2014). I give you a cup, I get a cup: A kinematic study on social intention. Neuropsychologia, 57, 196204. https://doi.org/10.1016/j.neuropsychologia.2014.03.006Google Scholar
Shintel, H., & Keysar, B. (2009). Less is more: A minimalist account of joint action in communication. Topics in Cognitive Science, 1(2), 260273.Google Scholar
Shockley, K., Baker, A. A., Richardson, M. J., & Fowler, C. A. (2007). Articulatory constraints on interpersonal postural coordination. Journal of Experimental Psychology: Human Perception and Performance, 33(1), 201.Google Scholar
Shockley, K., Santana, M.-V., & Fowler, C. A. (2003). Mutual interpersonal postural constraints are involved in cooperative conversation. Journal of Experimental Psychology: Human Perception and Performance, 29(2), 326.Google Scholar
Silbert, L. J., Honey, C. J., Simony, E., Poeppel, D., & Hasson, U. (2014). Coupled neural systems underlie the production and comprehension of naturalistic narrative speech. Proceedings of the National Academy of Sciences, 111(43), E4687E4696.Google Scholar
Smirnov, D., Saarimäki, H., Glerean, E., Hari, R., Sams, M., & Nummenmaa, L. (2019). Emotions amplify speaker–listener neural alignment. Human Brain Mapping, 40(16), 47774788. https://doi.org/10.1002/hbm.24736Google Scholar
Sparrow, B., Liu, J., & Wegner, D. M. (2011). Google effects on memory: Cognitive consequences of having information at our fingertips. Science, 333(6043), 776778.Google Scholar
Spivey, M. J., Tanenhaus, M. K., Eberhard, K. M., & Sedivy, J. C. (2002). Eye movements and spoken language comprehension: Effects of visual context on syntactic ambiguity resolution. Cognitive Psychology, 45(4), 447481.Google Scholar
Stivers, T., Enfield, N. J., Brown, P., Englert, C., Hayashi, M., Heinemann, T., … Yoon, K.-E. (2009). Universals and cultural variation in turn-taking in conversation. Proceedings of the National Academy of Sciences, 106(26), 1058710592.Google Scholar
Tabossi, P. (1988). Accessing lexical ambiguity in different types of sentential contexts. Journal of Memory and Language, 27(3), 324340.Google Scholar
Tanenhaus, M. K., Spivey-Knowlton, M. J., Eberhard, K. M., & Sedivy, J. C. (1995). Integration of visual and linguistic information in spoken language comprehension. Science, 268(5217), 16321634.Google Scholar
Topolinski, S., Lindner, S., & Freudenberg, A. (2014). Popcorn in the cinema: Oral interference sabotages advertising effects. Journal of Consumer Psychology, 24(2), 169176.Google Scholar
Topolinski, S., Maschmann, I. T., Pecher, D., & Winkielman, P. (2014). Oral approach-avoidance: Affective consequences of muscular articulation dynamics. Journal of Personality and Social Psychology, 106(6), 885896. https://doi.org/10.1037/a0036477Google Scholar
Vitriol, J. A., & Marsh, J. K. (2018). The illusion of explanatory depth and endorsement of conspiracy beliefs. European Journal of Social Psychology, 48(7), 955969.Google Scholar
von Zimmermann, J., & Richardson, D. C. (2016). Verbal synchrony and action dynamics in large groups. Frontiers in Psychology, 7. https://www.frontiersin.org/article/10.3389/fpsyg.2016.02034Google Scholar
Wilson, S. M., Saygin, A. P., Sereno, M. I., & Iacoboni, M. (2004). Listening to speech activates motor areas involved in speech production. Nature Neuroscience, 7(7), 701702.Google Scholar
Wittgenstein, L. (1953/2010). Philosophical investigations. John Wiley & Sons.Google Scholar
Wohltjen, S., & Wheatley, T. (2021). Eye contact marks the rise and fall of shared attention in conversation. Proceedings of the National Academy of Sciences, 118(37). https://doi.org/10.1073/pnas.2106645118Google Scholar
Zollinger, S. A., & Brumm, H. (2011). The Lombard effect. Current Biology, 21(16), R614R615.Google Scholar
Zubek, J., Denkiewicz, M., Dębska, A., Radkowska, A., Komorowska-Mach, J., Litwin, P., … Rączaszek-Leonardi, J. (2016). Performance of language-coordinated collective systems: A study of wine recognition and description. Frontiers in Psychology, 7. https://www.frontiersin.org/articles/10.3389/fpsyg.2016.01321Google Scholar

References

Acerbi, A., Lampos, V., Garnett, P., & Bentley, R. A. (2013). The expression of emotions in 20th century books. PLoS ONE, 8(3), e59030.Google Scholar
Aiden, E. L., Pickett, J. P., & Michel, J.-B. (2011). Culturomics – Response. Science, 332(6025), 3637.Google Scholar
Anderson, M. L. (2014). After phrenology: Neural reuse and the interactive brain. MIT Press.Google Scholar
Arbib, M. A. (2008). From grasp to language: Embodied concepts and the challenge of abstraction. Journal of Physiology, Paris, 102(1–3), 420. https://doi.org/10.1016/j.jphysparis.2008.03.001Google Scholar
Atran, S., & Medin, D. L. (2008). The native mind and the cultural construction of nature. MIT Press.Google Scholar
Baronchelli, A., Gong, T., Puglisi, A., & Loreto, V. (2010). Modeling the emergence of universality in color naming patterns. Proceedings of the National Academy of Sciences, 107(6), 24032407. https://doi.org/10.1073/pnas.0908533107Google Scholar
Baronchelli, A., Loreto, V., & Steels, L. (2008). In-depth analysis of the Naming Game dynamics: The homogeneous mixing case. International Journal of Modern Physics C, 19(05), 785812.Google Scholar
Bellagamba, F., Borghi, A. M., Mazzuca, C., Pecora, G., Ferrara, F., & Fogel, A. (2021). Abstractness emerges progressively over the second year of life. Scientific Reports, 12, 20940. https://doi.org/10.1038/s41598-022-25426-5Google Scholar
Bernardis, P., & Gentilucci, M. (2006). Speech and gesture share the same communication system. Neuropsychologia, 44(2), 178190.Google Scholar
Bobek, E., & Tversky, B. (2016). Creating visual explanations improves learning. Cognitive research: Principles and implications, 1(1), 114.Google Scholar
Bonini, L., Rotunno, C., Arcuri, E., & Gallese, V. (2022). Mirror neurons 30 years later: Implications and applications. Trends in Cognitive Sciences, 26(9).Google Scholar
Borghi, A. M. (2022). Concepts for which we need others more: The case of abstract concepts. Current Directions in Psychological Science, 31(3), 238246.Google Scholar
Borghi, A. M., & Cangelosi, A. (2014). Action and language integration: From humans to cognitive robots. Topics in Cognitive Science, 6(3), 344358. https://doi.org/10.1111/tops.12103Google Scholar
Brysbaert, M., Warriner, A. B., & Kuperman, V. (2014). Concreteness ratings for 40 thousand generally known English word lemmas. Behavior Research Methods, 46(3), 904911. https://doi.org/10.3758/s13428-013-0403-5Google Scholar
Cangelosi, A., & Parisi, D. (2012). Simulating the evolution of language. Springer Science & Business Media.Google Scholar
Connell, L., & Lynott, D. (2013). Flexible and fast: Linguistic shortcut affects both shallow and deep conceptual processing. Psychonomic Bulletin & Review, 20(3), 542550. https://doi.org/10.3758/s13423–012-0368-xGoogle Scholar
Corballis, M. C. (2010). Mirror neurons and the evolution of language. Brain and Language, 112(1), 2535.Google Scholar
Ćwiek, A., Fuchs, S., Draxler, C., Asu, E. L., Dediu, D., Hiovain, K., … Perlman, M. (2021). Novel vocalizations are understood across cultures. Scientific Reports, 11(1), 10108. https://doi.org/10.1038/s41598–021-89445-4Google Scholar
Deroy, O. (2022). Olfactory abstraction : A communicative and metacognitive account. Philosophical Transactions of the Royal Society B: Biological Sciences, 378.Google Scholar
De Saussure, F. (2011). Course in general linguistics. Columbia University Press.Google Scholar
Dingemanse, M., Blasi, D. E., Lupyan, G., Christiansen, M. H., & Monaghan, P. (2015). Arbitrariness, iconicity, and systematicity in language. Trends in Cognitive Sciences, 19(10), 603615. https://doi.org/10.1016/j.tics.2015.07.013Google Scholar
Dingemanse, M., Perlman, M., & Perniss, P. (2020). Construals of iconicity: Experimental approaches to form–meaning resemblances in language. Language and Cognition, 12(1), 114.Google Scholar
Dunbar, R. I. (1996). Groups, gossip, and the evolution of language. In Schmitt, A., Atzwanger, K., Grammer, K., & Schäfer, K., eds., New aspects of human ethology. Springer, pp. 7789.Google Scholar
Fay, N., Walker, B., Swoboda, N., Umata, I., Fukaya, T., Katagiri, Y., & Garrod, S. (2018). Universal principles of human communication: Preliminary evidence from a cross-cultural communication game. Cognitive Science, 42(7), 23972413. https://doi.org/10.1111/cogs.12664Google Scholar
Ferrari, P. F., Gallese, V., Rizzolatti, G., & Fogassi, L. (2003). Mirror neurons responding to the observation of ingestive and communicative mouth actions in the monkey ventral premotor cortex. European Journal of Neuroscience, 17(8), 17031714.Google Scholar
Flaherty, M., Goldin-Meadow, S., Senghas, A., Coppola, M., & Gleitman, L. (2014). Language from gesture? Emergent transitivity marking in Nicaraguan Sign Language. The Evolution of Language: Proceedings of the 10th International Conference, Vienna, April 14–17, eds., Cartmill, E. A., Roberts, S., Lyn, H., & Cornish, H.. World Scientific, pp. 439440. https://doi.org/10.1142/9789814603638_0083Google Scholar
Flumini, A., Ranzini, M., & Borghi, A. M. (2014). Nomina sunt consequentia rerum – Sound–shape correspondences with every-day objects figures. Journal of Memory and Language 76, 4760.Google Scholar
Fogassi, L., & Ferrari, P. F. (2007). Mirror neurons and the evolution of embodied language. Current Directions in Psychological Science, 16(3), 136141. https://doi.org/10.1111/j.1467-8721.2007.00491.xGoogle Scholar
Gallese, V. (2008). Mirror neurons and the social nature of language: The neural exploitation hypothesis. Social Neuroscience, 3(3–4), 317333. https://doi.org/10.1080/17470910701563608Google Scholar
Gallese, V., Fadiga, L., Fogassi, L., & Rizzolatti, G. (1996). Action recognition in the premotor cortex. Brain, 119(2), 593609.Google Scholar
Garrod, S., Fay, N., Lee, J., Oberlander, J., & MacLeod, T. (2007). Foundations of representation: Where might graphical symbol systems come from? Cognitive Science, 31(6), 961987. https://doi.org/10.1080/03640210701703659Google Scholar
Gentilucci, M. (2003). Grasp observation influences speech production. European Journal of Neuroscience, 17(1), 179184.Google Scholar
Gentilucci, M., Benuzzi, F., Gangitano, M., & Grimaldi, S. (2001). Grasp with hand and mouth: A kinematic study on healthy subjects. Journal of Neurophysiology, 86(4), 16851699.Google Scholar
Gentilucci, M. & Campione, G C. (2012). From action to speech. In Coello, Y. & Bartol, A., eds., Language and action in cognitive neuroscience Psychology Press, pp. 7798.Google Scholar
Gentilucci, M., & Corballis, M. C. (2006). From manual gesture to speech: A gradual transition. Neuroscience & Biobehavioral Reviews, 30(7), 949960. https://doi.org/10.1016/j.neubiorev.2006.02.004Google Scholar
Gentilucci, M., Stefanini, S., Roy, A. C., & Santunione, P. (2004). Action observation and speech production: Study on children and adults. Neuropsychologia, 42(11), 15541567.Google Scholar
Gentilucci, M., & Dalla Volta, R. (2008). spoken language and arm gestures are controlled by the same motor control system. Quarterly Journal of Experimental Psychology, 61(6), 944957. https://doi.org/10.1080/17470210701625683Google Scholar
Gibson, E., Futrell, R., Piantadosi, S. P., Dautriche, I., Mahowald, K., Bergen, L., & Levy, R. (2019). How efficiency shapes human language. Trends in Cognitive Sciences, 23(5), 389407. https://doi.org/10.1016/j.tics.2019.02.003Google Scholar
Gilead, M., Trope, Y., & Liberman, N. (2020). Above and beyond the concrete: The diverse representational substrates of the predictive brain. Behavioral and Brain Sciences, 43.Google Scholar
Goodman, N. D., & Frank, M. C. (2016). Pragmatic language interpretation as probabilistic inference. Trends in Cognitive Sciences, 20(11), 818829. https://doi.org/10.1016/j.tics.2016.08.005Google Scholar
Grice, H. P. (1975). Logic and conversation. In Cole, P. & Morgan, J. L., eds., Syntax and semantics, vol. 3: Speech acts. Brill, pp. 4158.Google Scholar
Guilbeault, D., Baronchelli, A., & Centola, D. (2021). Experimental evidence for scale-induced category convergence across populations. Nature Communications, 12(1), 327. https://doi.org/10.1038/s41467–020-20037-yGoogle Scholar
Hamilton, W. L., Leskovec, J., & Jurafsky, D. (2016). Diachronic word embeddings reveal statistical laws of semantic change. arXiv, abs/1605.09096.Google Scholar
Haspelmath, M. (2020). Human linguisticality and the building blocks of languages. Frontiers in Psychology, 3056.Google Scholar
Hawkins, J. A. (1991). Language universals in relation to acquisition and change: A tribute to Roman Jakobson. New Vistas in Grammar: Invariance and Variation, 49, 473493.Google Scholar
Hay, J., & Bauer, L. (2007). Phoneme inventory size and population size. Language, 83(2), 388400. https://doi.org/10.1353/lan.2007.0071Google Scholar
Hills, T. T., & Adelman, J. S. (2015). Recent evolution of learnability in American English from 1800 to 2000. Cognition, 143, 8792.Google Scholar
Kay, P., Berlin, B., Maffi, L., Merrifield, W. R., & Cook, R. (2009). The World Color Survey. CSLI Publications.Google Scholar
Lewis, M., Colunga, E., & Lupyan, G. (2021). Superordinate word knowledge predicts longitudinal vocabulary growth. Proceedings of the Annual Meeting of the Cognitive Science Society, 43(43), 321–326.Google Scholar
Lievers, F. S., Bolognesi, M., & Winter, B. (2021). The linguistic dimensions of concrete and abstract concepts: Lexical category, morphological structure, countability, and etymology. Cognitive Linguistics, 32, 641–640.Google Scholar
Loreto, V., & Steels, L. (2007). Emergence of language. Nature Physics, 3(11), 758760. https://doi.org/10.1038/nphys770Google Scholar
Lupyan, G., & Dale, R. (2010). Language structure is partly determined by social structure. PLoS ONE, 5(1), e8559. https://doi.org/10.1371/journal.pone.0008559Google Scholar
Lupyan, G., & Dale, R. (2016). Why are there different languages? The role of adaptation in linguistic diversity. Trends in Cognitive Sciences, 20(9), 649660.Google Scholar
Lupyan, G., & Winter, B. (2018). Language is more abstract than you think, or, why aren’t languages more iconic? Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 373(1752). https://doi.org/10.1098/rstb.2017.0137Google Scholar
MacNeilage, P. F. (1998). The frame/content theory of evolution of speech production. Behavioral and Brain Sciences, 21(4), 499511.Google Scholar
Malt, B. C. (1995). Category coherence in cross-cultural perspective. Cognitive Psychology, 29(2), 85148.Google Scholar
Maurer, D., Pathman, T., & Mondloch, C. J. (2006). The shape of boubas: Sound–shape correspondences in toddlers and adults. Developmental Science, 9(3), 316322.Google Scholar
Meir, I., & Tkachman, O. (2018). Iconicity. Oxford Research Encyclopedia of Linguistics, online. Oxford University Press. https://doi.org/10.1093/acrefore/9780199384655.013.343Google Scholar
Michel, J.-B., Shen, Y. K., Aiden, A. P., Veres, A., Gray, M. K., Team, G. B., … Norvig, P. (2011). Quantitative analysis of culture using millions of digitized books. Science, 331(6014), 176182.Google Scholar
Monaghan, P., Chater, N., & Christiansen, M. H. (2005). The differential role of phonological and distributional cues in grammatical categorisation. Cognition, 96(2), 143182. https://doi.org/10.1016/j.cognition.2004.09.001Google Scholar
Morford, J. P. (1996). Insights to language from the study of gesture: A review of research on the gestural communication of non-signing deaf people. Language & Communication, 16(2), 165178.Google Scholar
Morin, O., & Acerbi, A. (2017). Birth of the cool: A two-centuries decline in emotional expression in Anglophone fiction. Cognition and Emotion, 31(8), 16631675. https://doi.org/10.1080/02699931.2016.1260528Google Scholar
Motamedi, Y., Murgiano, M., Perniss, P., Wonnacott, E., Marshall, C., Goldin-Meadow, S., & Vigliocco, G. (2021). Linking language to sensory experience: Onomatopoeia in early language development. Developmental Science, 24(3), e13066.Google Scholar
Motamedi, Y., Schouwstra, M., Smith, K., Culbertson, J., & Kirby, S. (2019). Evolving artificial sign languages in the lab: From improvised gesture to systematic sign. Cognition, 192, 103964.Google Scholar
Mukherjee, A., Loreto, V., & Tria, F. (2012). Why are basic color names” basic”? Advances in Complex Systems, 15(03n04), 1150016.Google Scholar
Murgiano, M., Motamedi, Y., & Vigliocco, G. (2021). Situating language in the real-world: The role of multimodal iconicity and indexicality. Journal of Cognition, 4(1), 1–18.Google Scholar
Nolfi, S., & Mirolli, M. (2009). Evolution of communication and language in embodied agents. Springer Science & Business Media.Google Scholar
Nölle, J., & Galantucci, B. (2021). Experimental Semiotics: past, present, and future. In The Routledge Handbook of Semiosis and the Brain (pp. 66–81). Routledge.Google Scholar
Nölle, J., Hartmann, S., & Tinits, P. (2020). Language evolution research in the year 2020: A survey of new directions. Language Dynamics and Change, 10(1), 326. https://doi.org/10.1163/22105832-bja10005Google Scholar
Nölle, J., Staib, M., Fusaroli, R., & Tylén, K. (2018). The emergence of systematicity: How environmental and communicative factors shape a novel communication system. Cognition, 181, 93104. https://doi.org/10.1016/j.cognition.2018.08.014Google Scholar
Noveck, I. A., & Sperber, D. (2004). Experimental pragmatics. Springer.Google Scholar
Paivio, A., Rogers, T. B., & Smythe, P. C. (1968). Why are pictures easier to recall than words? Psychonomic Science, 11(4), 137138.Google Scholar
Parisi, D., & Mirolli, M. (2007). The emergence of language: How to simulate it. In Emergence of communication and language. Lyon, C., Nehaniv, C. L., & Cangelosi, A., eds., Springer, pp. 269285.Google Scholar
Peirce, C. S. (1894). What is a sign?Google Scholar
Perlman, M., & Lupyan, G. (2018). People can create iconic vocalizations to communicate various meanings to naïve listeners. Scientific Reports, 8(1), 2634. https://doi.org/10.1038/s41598–018-20961-6Google Scholar
Perniss, P., & Vigliocco, G. (2014). The bridge of iconicity: From a world of experience to the experience of language. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 369(1651), 20130300. https://doi.org/10.1098/rstb.2013.0300Google Scholar
Perry, L. K., Perlman, M., Winter, B., Massaro, D. W., & Lupyan, G. (2018). Iconicity in the speech of children and adults. Developmental Science, 21(3), e12572.Google Scholar
Piantadosi, S. T., Tily, H., & Gibson, E. (2011). Word lengths are optimized for efficient communication. Proceedings of the National Academy of Sciences, 108(9), 35263529.Google Scholar
Pickering, M. J., & Garrod, S. (2021). Understanding dialogue: Language use and social interaction. Cambridge University Press.Google Scholar
Poggi, I. (2008). Iconicity in different types of gestures. Gesture, 8(1), 4561. https://doi.org/10.1075/gest.8.1.05pogGoogle Scholar
Rizzolatti, G., & Arbib, M. A. (1998). Language within our grasp. Trends in Neurosciences, 21(5), 188194.Google Scholar
Sandler, W. (2012). Dedicated gestures and the emergence of sign language. Gesture, 12(3), 265307. https://doi.org/10.1075/gest.12.3.01sanGoogle Scholar
Scheffer, M., van de Leemput, I., Weinans, E., & Bollen, J. (2021). The rise and fall of rationality in language. Proceedings of the National Academy of Sciences, 118(51), 1–8.Google Scholar
Sera, M. D., Elieff, C., Forbes, J., Burch, M. C., Rodríguez, W., & Dubois, D. P. (2002). When language affects cognition and when it does not: An analysis of grammatical gender and classification. Journal of Experimental Psychology: General, 131(3), 377.Google Scholar
Slonimska, A., Özyürek, A., & Capirci, O. (2020). The role of iconicity and simultaneity for efficient communication: The case of Italian Sign Language (LIS). Cognition, 200, 104246. https://doi.org/10.1016/j.cognition.2020.104246Google Scholar
Snefjella, B., Généreux, M., & Kuperman, V. (2019). Historical evolution of concrete and abstract language revisited. Behavior research methods, 51(4), 16931705.Google Scholar
Steels, L. (2006). Experiments on the emergence of human communication. Trends in Cognitive Sciences, 10(8), 347349. https://doi.org/10.1016/j.tics.2006.06.002Google Scholar
Steels, L. (2011). Modeling the cultural evolution of language. Physics of Life Reviews, 8(4), 339356. https://doi.org/10.1016/j.plrev.2011.10.014Google Scholar
Steels, L., & Loetzsch, M. (2012). The grounded naming game. Experiments in cultural language evolution, 3, 4159.Google Scholar
Thibault, S., Py, R., Gervasi, A. M., Salemme, R., Koun, E., Lövden, M., … Brozzoli, C. (2021). Tool use and language share syntactic processes and neural patterns in the basal ganglia. Science, 374(6569), eabe0874.Google Scholar
Torreira, F. J., Bögels, S. & Levinson, S. C. (2016). Breathing for answering. The time course of response planning in conversation. In Holler, J., Kendrick, K. H., Casillas, M., & Levinson, S. C.. Turn-taking in human communicative interaction. Frontiers, 135144.Google Scholar
Tylén, K., Fusaroli, R., Rojo, S., Heimann, K., Fay, N., Johannsen, N. N., … Lombard, M. (2020). The evolution of early symbolic behavior in homo sapiens. Proceedings of the National Academy of Sciences, 117(9), 45784584.Google Scholar
Vainio, L. (2019). Connection between movements of mouth and hand: Perspectives on development and evolution of speech. Neuroscience & Biobehavioral Reviews, 100, 211223.Google Scholar
Winter, B., Perlman, M., & Majid, A. (2018). Vision dominates in perceptual language: English sensory vocabulary is optimized for usage. Cognition, 179, 213220. https://doi.org/10.1016/j.cognition.2018.05.008Google Scholar
Winter, B., Perlman, M., Perry, L. K., & Lupyan, G. (2017). Which words are most iconic?: Iconicity in English sensory words. Interaction Studies, 18(3), 443464.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×