Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-26T11:40:36.664Z Has data issue: false hasContentIssue false

13 - Manus horribilis: the chicken wing skeleton

Published online by Cambridge University Press:  05 November 2012

Robert J. Asher
Affiliation:
University of Cambridge
Johannes Müller
Affiliation:
Museum für Naturkunde; Humboldt Universität zu Berlin
Get access

Summary

Introduction

Evolution is a natural experiment that has been running for millions of years (Shubin 1991). Developmental biologists and palaeontologists can learn from this experiment (Zákány and Duboule 2007; see also chapters in this volume by Anthwal and Tucker; Buchholtz; Kuratani and Nagashima; Mitgutsch et al.; Schmid; Sears et al.; Smith and Johanson). A particular challenge is the homology of elements distal to the ulna and radius in modern birds. Developmental biologists differ on how many skeletal primordia actually develop in the embryonic wing bud, and the homologies of the permanent bones of the avian wrist are also uncertain.

Study of the avian wing is important for several reasons. First, the wing skeleton is an important issue in discussions about avian origins (Ostrom 1975; Müller 1991; Feduccia 2002; Prum 2002; Vargas and Fallon 2005b; Feduccia et al. 2007). Furthermore, the chicken is a key model species in developmental biology, and the development of its wing has been intensively studied in the context of pattern formation theory (Tickle 2004). Finally, the fact that the avian wing is studied by developmental biologists, palaeontologists, morphologists and others makes it a suitable subject of enquiry for the integrated discipline of evo devo (Galis et al. 2003).

Type
Chapter
Information
From Clone to Bone
The Synergy of Morphological and Molecular Tools in Palaeobiology
, pp. 328 - 362
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahn, S.Joyner, A. L. 2004 Dynamic changes in the response of cells to positive hedgehog signaling during mouse limb patterningCell 118 505CrossRefGoogle ScholarPubMed
Amano, T.Tamura, K. 2005 Region-specific expression of mario reveals pivotal function of the anterior nondigit region on digit formation in chick wing budDevelopment Dynamics 233 326CrossRefGoogle ScholarPubMed
Ballmann, P. 1969 Die Vögel aus der altburdigalen Spaltenfüllung von Wintershof (West) bei Eichstätt in BayernZitteliana 1 5Google Scholar
Banzhaf, W. 1929 Die vorderextremitat von opisthocomus cristatus (vieillot)Zoomorphology 16 113Google Scholar
Barfurth, D. 1911 Experimentelle Untersuchung Über die Vererbung der Hyperdactylie bei HühnernArchiv für Entwicklungsmechanik 33 255CrossRefGoogle Scholar
Baumel, J. J.Witmer, L. M. 1993 OsteologiaHandbook of Avian Anatomy: Nomina Anatomica AviumBaumel, J. J.King, A. S.Breazile, J. E.Evans, H. E.Vanden Berge, J. C.Cambridge, MANuttall Ornithological Club45Google Scholar
Baur, G. 1885 A second phalanx in the third digit of a carinate-bird’s wingScience 5Google ScholarPubMed
Braus, H. 1906 Die Entwickelung der Form der Extremit ‘ten und des Extremit’ tenskelettsHandbuch der vergleichenden und experimentellen Entwickelungslehre der WirbeltiereHertwig, O.Jena, GermanyGustav Fischer167Google Scholar
Burke, A. C.Alberch, P. 1985 The development and homology of the chelonian carpusJournal of Morphology 186 119CrossRefGoogle Scholar
Burke, A. C.Feduccia, A. 1997 Developmental patterns and the identification of homologies in the avian handScience 278 666CrossRefGoogle Scholar
Casanova, J. C.Sanz-Ezquerro, J. J. 2007 Digit morphogenesis: is the tip different?Development, Growth and Differentiation 49 479CrossRefGoogle ScholarPubMed
Chatterjee, S.Garner, J. P.Thomas, A. L. R.Burke, A. C.Feduccia, A. 1998 Counting the fingers of birds and dinosaursScience 280CrossRefGoogle Scholar
Chiang, C.Litingtung, Y.Harris, M. P. S.Li, Y.Beachy, P. A.Fallon, J. F. 2001 Manifestation of the limb prepattern: limb development in the absence of sonic hedgehog functionDevelopmental Biology 236 421CrossRefGoogle ScholarPubMed
Cuvier, G. 1835 Leçons d’Anatomie Comparée de Georges CuvierParisCrochardGoogle Scholar
Dollé, P.Dierich, A.LeMeur, M. 1993 Disruption of the Hoxd-13 gene induces localized heterochrony leading to mice with neotenic limbsCell 75 431CrossRefGoogle ScholarPubMed
Donegan, T. M. 2008 Comment on the proposed conservation of Sundevall, 1857 (currently ; Aves, Columbidae) (Case 3380)Bulletin of Zoological Nomenclature 65Google Scholar
Drossopoulou, G.Lewis, K. E.Sanz-Ezquerro, J. J. 2000 A model for anteroposterior patterning of the vertebrate limb based on sequential long- and short-range Shh signalling and Bmp signallingDevelopment 127 1337Google ScholarPubMed
Ewart, J. C. 1894 The development of the skeleton of the limbs of the horse, with observations on polydactylyJournal of Anatomy and Physiology 28 236Google ScholarPubMed
Ewart, J. C. 1894 The Development of the Skeleton of the Limbs of the Horse, with Observations on Polydactyly: Part IIJournal of Anatomy and Physiology 28 342Google ScholarPubMed
Favier, B.Dollé, P. 1997 Developmental functions of mammalian Hox genesMolecular Human Reproduction 3 115CrossRefGoogle ScholarPubMed
Feduccia, A. 1999 1,2,3 = 2,3,4: accommodating the cladogramProceedings of the National Acadamy of Sciences of the United States of America 96 4740CrossRefGoogle ScholarPubMed
Feduccia, A. 2002 Birds are dinosaurs: simple answer to a complex problemThe Auk 119 1187CrossRefGoogle Scholar
Feduccia, A.Nowicki, J. 2002 The hand of birds revealed by early ostrich embryosNaturwissenschaften 89 391CrossRefGoogle ScholarPubMed
Feduccia, A.Martin, L. D.Tarsitanoc, S. 2007 2007: quo vadis?The Auk 124 373CrossRefGoogle Scholar
Flower, W. H. 1870 Osteology of the MammaliaLondonMacmillanGoogle Scholar
Frey, R.Albert, R.Krone, O.Lierz, M. 2001 Osteopathy of the pectoral and pelvic limbs including pentadactyly in a young kestrel ()Journal of Ornithology 142 335Google Scholar
Galis, F.Kundrát, M.Sinervo, B. 2003 An old controversy solved: bird embryos have five fingersTrends in Ecoology and Evolution 18 7CrossRefGoogle Scholar
Gegenbaur, C. 1864 Untersuchungen zur vergleichenden Anatomie der Wirbelthiere: Erstes heft. Carpus und TarsusLeipzig, GermanyEngelmannGoogle Scholar
Gegenbaur, C. 1876 Zur Morphologie der Gliedmassen de WirbletiereMorphologie Jahrbuch 2Google Scholar
Grotewold, L.Plum, M.Dildrop, R.Peters, T.Ruther, U. 2001 Bambi is coexpressed with Bmp-4 during mouse embryogenesisMechanisms of Development 100 327CrossRefGoogle ScholarPubMed
Hall, B. K. 1999 HomologyChichester, UKWileyGoogle ScholarPubMed
Harfe, B. D.Scherz, P. J.Nissim, S. 2004 Evidence for an expansion-based temporal shh gradient in specifying vertebrate digit identitiesCell 118 517CrossRefGoogle ScholarPubMed
Hecht, M. K.Hecht, B. M. 1994 Conflicting developmental and paleontological data: the case of the bird manusActa Palaeontologica Polonica 38 329Google Scholar
Heilmann, G. 1926 The Origin of BirdsLondonWitherbyGoogle Scholar
Heusinger, C. F 1820 Zootomische AnalektenDeutsches Archiv für die Physiologie 6 544Google Scholar
Hinchliffe, J. R. 1976 The development of winglessness (ws) in the chick embryoColloque International du C.N.R.S. Paris 266 175Google Scholar
Hinchliffe, J. R. 1977 The chondrogenic pattern in chick limb morphogenesis: a problem of development evolutionVertebrate Limb and Somite MorphogenesisEde, D. A.Hinchliffe, J. R.Balls, M.Cambridge, UKCambridge University Press293Google Scholar
Hinchliffe, J. R. 1989 Reconstructing the archetype: innovation and conservatism in the evolution and development of the pentadactyl limbComplex Organismal Functions: Integration and Evolution in VertebratesWake, D. B.Roth, G.Chichester, UKJohn Wiley171Google Scholar
Hinchliffe, J. R. 2002 Developmental basis of limb evolutionInternational Journal of Developmental Biology 46 835Google ScholarPubMed
Hinchliffe, J. R.Ede, D. A. 1973 Cell death and the development of limb form and skeletal pattern in normal and wingless (ws) chick embryosJournal of Embryology and Experimental Morphology 30 753Google ScholarPubMed
Hinchliffe, J. R.Hecht, M. K. 1984 Homology of the bird wing skeleton: embryological versus paleontological evidenceEvolutionary Biology 18 21CrossRefGoogle Scholar
Hogg, D. A. 1980 A re-investigation of the centres of ossification in the avian skeleton at and after hatchingJournal of Anatomy 130 725Google ScholarPubMed
Holmgren, N. 1933 On the origin of the origin of the tetrapod limbActa Zoologica 14 185CrossRefGoogle Scholar
Holmgren, N. 1952 An embryological analysis of the mammalian carpus and its bearing upon the question of the origin of the tetrapod limbActa Zoologica 33 1CrossRefGoogle Scholar
Holmgren, N. 1955 Studies on the phylogeny of birdsActa Zoologica 36 243CrossRefGoogle Scholar
James, F. C.Pourtless, J. A. 2009 Cladistics and the origin of birds: a review and two new analysesOrnithological Monographs 66 1CrossRefGoogle Scholar
Kindahl, M. 1949 The embryonic development of the hand and foot of (Broom)Acta Zoologica 30 1CrossRefGoogle Scholar
Kundrát, M. 2009 Primary chondrification foci in the wing basipodium of with comments on interpretation of autopodial elements in Crocodilia and AvesJournal of Experimental Zoology B–Molecular and Developmental Evolution 312 30CrossRefGoogle ScholarPubMed
Kundrát, M.Seichert, V.Russell, A. P.Smetana, K. 2002 Pentadactyl pattern of the avian wing autopodium and pyramid reduction hypothesisJournal of Experimental Zoology B–Molecular and Developmental Evolution 294 152Google ScholarPubMed
Lambrecht, K. 1914 Morphologie des Mittelhandknochens – Os metacarpi – der VögelAquila 21 53Google Scholar
Lande, R. 1977 Evolutionary mechanisms of limb loss in tetrapodsEvolution 32 73CrossRefGoogle Scholar
Larsson, H. C.Wagner, G. P. 2002 Pentadactyl ground state of the avian wingJournal of Experimental Zoology 294 146CrossRefGoogle ScholarPubMed
Leighton, V. L. 1894 The development of the wing of American Naturalist 28 761CrossRefGoogle Scholar
Lewis, J. 1977 Growth and determination in the developing limbVertebrate Limb and Somite MorphogenesisEde, D. A.Hinchliffe, J. R.Balls, M.Cambridge, UKCambridge University Press215Google Scholar
Linnaeus, C. 1758 Systema NaturæStockholmLaurentii SalviiGoogle Scholar
Livezey, B. C.Zusy, R. L. 2006 Phylogeny of NeornithesBulletin of Carnegie Museum of Natural History1CrossRefGoogle Scholar
Livezey, B. C.Zusi, R. L. 2007 Higher-order phylogeny of modern birds (Theropoda, Aves: Neornithes) based on comparative anatomy. II. Analysis and discussionZoological Journal of the Linnean Society 149 1CrossRefGoogle ScholarPubMed
Martin, P. 1990 Tissue patterning in the developing mouse limbInternational Journal of Developmental Biology 34 323Google ScholarPubMed
Maxwell, E. E. 2008 Ossification sequence of the avian order anseriformes, with comparison to other precocial birdsJournal of Morphology 269 1095CrossRefGoogle ScholarPubMed
Mayr, G. 2003 A new specimen of the tiny Middle Eocene bird (new family: Gracilitarsidae)Condor 103 78CrossRefGoogle Scholar
Meckel, J. F. 1825 System der vergleichenden Anatomie: Skelet der VögelHalle, GermanyRengerGoogle Scholar
Mehnert, E. 1897 Kainogenesis als Ausdruk differenter phylogenetischer EnergienJena, GermanyVerlag von Gustav FischerGoogle Scholar
Mendel, F. C. 1981 The hand of two-toed sloths (): its anatomy and potential uses relative to size of supportJournal of Morphology 169 1CrossRefGoogle Scholar
Milaire, J. 1992 A new interpretation of the necrotic changes occurring in the developing limb bud paddle of mouse embryos based upon recent observations in four different phenotypesInternational Journal of Developmental Biology 36 169Google ScholarPubMed
Mitgutsch, C.Richardson, M. K.Jiménez, R. 2012 Circumventing the pentadactyly ‘constraint’: autopodial recruitment of pre-axial structures in true molesBiology Letters 8 74CrossRefGoogle Scholar
Montagna, W. 1945 A re-investigation of the development of the wing of the fowlJournal of Morphology 76 87CrossRefGoogle Scholar
Morgan, B. A.Izpisua-Belmonte, J. C.Duboule, D.Tabin, C. J. 1992 Targeted misexpression of in the avian limb bud causes apparent homeotic transformationsNature 358 236CrossRefGoogle ScholarPubMed
Morse, E. S. 1874 On the tarsus and carpus of birdsAnnals of the Lyceum of Natural History of New York 10 141CrossRefGoogle Scholar
Müller, G. B. 1991 Evolutionary transformation of limb pattern: heterochrony and secondary fusionDevelopmental Patterning of the Vertebrate LimbHinchliffe, J. R.Hurle, J. M.Summerbell, D.New YorkPlenum Press395CrossRefGoogle Scholar
Müller, G. B.Alberch, P. 1990 Ontogeny of the limb skeleton in : developmental invariance and change in the evolution of archosaur limbsJournal of Morphology 203 151CrossRefGoogle ScholarPubMed
Nassonov, N. 1896 Sur le développement du squelette des extrémités de l’autrucheBibliographie Anatomique 4 160Google Scholar
Nitzsch, C. L. 1811 Osteografische Beiträge zur Naturgeschichte der VögelLeipzig, GermanyReclam1Google Scholar
Norsa, E. 1895 Recherches sur la morphologie des membres antérieures des oiseauxArchives Italiennes de Biologie 22 232Google Scholar
Ostrom, J. H. 1975 The origin of birdsAnnual Review of Earth and Planetary Sciences 3 55CrossRefGoogle Scholar
Owen, R. 1866 On the Anatomy of Vertebrates, Birds and MammalsLondonLongmansGreenGoogle Scholar
Parker, T. J. 1891 Observations on the anatomy and development of Philosophical Transactions of the Royal Society of London B 182 25CrossRefGoogle Scholar
Parker, T. J. 1892 Additional observations on the development of Philosophical Transactions of the Royal Society of London B 183 73CrossRefGoogle Scholar
Parker, W. K. 1862 On the osteology of (Gould)Transactions of the Zoological Society of London 4 269CrossRefGoogle Scholar
Parker, W. K. 1887 On the morphology of birdsProceedings of the Royal Society of London 42 52CrossRefGoogle Scholar
Parker, W. K. 1888 On the structure and development of the wing in the common fowlPhilosophical Transactions of the Royal Society of London B 179 385CrossRefGoogle Scholar
Parker, W. K. 1895 On the morphology of a reptilian bird, Transactions of the Zoological Society of London 13 43CrossRefGoogle Scholar
Peters, H.Neubuser, A.Kratochwil, K.Balling, R. 1998 Pax9-deficient mice lack pharyngeal pouch derivatives and teeth and exhibit craniofacial and limb abnormalitiesGenes and Development 12 2735CrossRefGoogle ScholarPubMed
Prein, F. 1914 Die Entwicklung des Vorderen Extremitätenskelettes Beim HaushuhnAnatomische Hefte 51 643CrossRefGoogle Scholar
Presch, W. 1975 The evolution of limb reduction in the teiid lizard genus Bulletin of Southern California Academy of Science 74 113Google Scholar
Prum, R. O. 2002 Why ornithologists should care about the theropod origin of birdsThe Auk 119 1CrossRefGoogle Scholar
Rabl, C. 1910 Bausteine zu einer Theorie der Extremitäten der WirbeltiereLeipzig, GermanyEngelmannGoogle Scholar
Reichenow, A. 1913 Die Vögel: Handbuch der systematischen OrnithologieStuttgart, GermanyFerdinand EnkeCrossRefGoogle Scholar
Richardson, M. K. 2009 Molecular tools, classic questions – an interview with Clifford TabinInternational Journal of Developmental Biology 53 725CrossRefGoogle Scholar
Richardson, M. K.Keuck, G. 2002 Haeckel’s ABC of evolution and developmentBiological Reviews of the Cambridge Philosophical Society 77 495CrossRefGoogle ScholarPubMed
Richardson, M. K.Oelschlager, H. H. 2002 Time, pattern, and heterochrony: a study of hyperphalangy in the dolphin embryo flipperEvolution and Development 4 435CrossRefGoogle ScholarPubMed
Richardson, M. K.Minelli, A.Coates, M. I. 1999 Some problems with typological thinking in evolution and developmentEvolution and Development 1 5CrossRefGoogle ScholarPubMed
Richardson, M. K.Gobes, S. M.van Leeuwen, A. C. 2009 Heterochrony in limb evolution: developmental mechanisms and natural selectionJournal of Experimental Zoology B–Molecular and Developmental Evolution 312 639CrossRefGoogle ScholarPubMed
Romer, A. S. 1956 Osteology of the ReptilesChicago, ILUniversity of Chicago PressGoogle Scholar
Rosenberg, A. 1873 Über die Entwickelung des Extremitätenskelets bei einigen durch Reduktion ihrer Gliedmassen charakterisierten WirbeltierenZeitschrift für wissenschaft Zoologie 23 116Google Scholar
Rosenberg, F. T. 1911 Beiträge zur Entwicklungsgeschichte und Biologie der ColymbidaeZeitschrift für wissenschaft Zoologie 97 199Google Scholar
Sánchez-Villagra, M. R.Muller, H.Sheil, C. A. 2009 Skeletal development in the Chinese soft-shelled turtle (Testudines: Trionychidae)Journal of Morphology 270 1381CrossRefGoogle Scholar
Sanz-Ezquerro, J. J.Tickle, C. 2003 Fgf signaling controls the number of phalanges and tip formation in developing digitsCurrent Biology 13 1830CrossRefGoogle ScholarPubMed
Scherz, P. J.McGlinn, E.Nissim, S.Tabin, C. J. 2007 Extended exposure to sonic hedgehog is required for patterning the posterior digits of the vertebrate limbDevelopmental Biology 308 343CrossRefGoogle ScholarPubMed
Schestakowa, G. S. 1927 Die Entwicklung des VlogelfügelsBulletin de la Société des Naturalistes de Moscou (Biologie) 36 163Google Scholar
Shapiro, M. D. 2002 Developmental morphology of limb reduction in (Squamata: Scincidae): chondrogenesis, osteogenesis, and heterochronyJournal of Morphology 254 211CrossRefGoogle ScholarPubMed
Shapiro, M. D.Hanken, J.Rosenthal, N. 2003 Developmental basis of evolutionary digit loss in the Australian lizard Journal of Experimental Zoology B–Molecular and Developmental Evolution 297 48CrossRefGoogle ScholarPubMed
Shubin, N. 1991 The implications of ‘the Bauplan’ for develoment and evolution of the tetrapod limbDevelopmental Patterning of the Vertebrate LimbHinchliffe, J. R.New YorkPlenum Press411CrossRefGoogle Scholar
Shubin, N.Tabin, C.Carroll, S. 1997 Fossils, genes and the evolution of animal limbsNature 388 639CrossRefGoogle ScholarPubMed
Shubin, N. H. 2002 Origin of evolutionary novelty: examples from limbsJournal of Morphology 252 15CrossRefGoogle ScholarPubMed
Shufeldt, R. W. 1881 Osteology of the North American TetraonidaeBulletin of the United States Geological Survey 6 309Google Scholar
Shufeldt, R. W. 1909 Osteology of BirdsAlbany, NYUniversity of the State of New YorkCrossRefGoogle Scholar
Sieglbauer, F. 1911 Zur Entwicklung der VogelextremitätZeitschrift für wissenschaft Zoologie 97 262Google Scholar
Steiner, H. 1922 Die ontogenetische und phylogenetiche Entwicklung des VogelflügelskelettesActa Zoologica 3CrossRefGoogle Scholar
Steiner, H. 1934 Ueber die embryonale Hand- und Fuss-Skelett-Anlage bei den Crocodiliern, sowie über ihre Beziehungen zur Flügelanlage und zur ursprunglichen Tetrapoden-ExtremitätRevue Suisse De Zoologie 41 383CrossRefGoogle Scholar
Stephan, B. 1992 Vorkommen und Ausbildung der Fingerkrallen bei rezenten VögelnJournal of Ornithology 133 251CrossRefGoogle Scholar
Suzuki, T.Hasso, S. M.Fallon, J. F. 2008 Unique SMAD1/5/8 activity at the phalanx-forming region determines digit identityProceedings of the National Academy of Sciences of the United States of America 105 4185CrossRefGoogle ScholarPubMed
Szeto, D. P.Rodriguez-Esteban, C.Ryan, A. K. 1999 Role of the bicoid-related homeodomain factor Pitx1 in specifying hindlimb morphogenesis and pituitary developmentGenes and Development 13 484CrossRefGoogle ScholarPubMed
Tabin, C. J. 1992 Why we have (only) five fingers per hand: hox genes and the evolution of paired limbsDevelopment 116 289Google ScholarPubMed
Taylor, B. K. 1978 Anatomy of forelimb in anteater () and its functional implicationsJournal of Morphology 157 347CrossRefGoogle Scholar
Thewissen, J. G. M.Cohn, M. JStevens, L. S. 2006 Developmental basis for hind-limb loss in dolphins and origin of the cetacean bodyplanProceedings of the National Academy of Sciences of the United States of America 103 8414CrossRefGoogle ScholarPubMed
Tickle, C. 2004 The contribution of chicken embryology to the understanding of vertebrate limb developmentMechanisms of Development 121 1019CrossRefGoogle ScholarPubMed
Tickle, C.Alberts, B.Wolpert, L.Lee, J. 1982 Local application of retinoic acid to the limb bond mimics the action of the polarizing regionNature 296 564CrossRefGoogle ScholarPubMed
Tschan, A. 1889 Recherches sur l’extremité antérieure des oiseaux et des reptilesGeneva, SwitzerlandCh. PfefferGoogle Scholar
Vargas, A. O.Fallon, J. F. 2005 Birds have dinosaur wings: the molecular evidenceJournal of Experimental Zoology B–Molecular and Developmental Evolution 304 86CrossRefGoogle ScholarPubMed
Vargas, A. O.Fallon, J. F. 2005 The digits of the wing of birds are 1, 2, and 3. A reviewJournal of Experimental Zoology B–Molecular and Developmental Evolution 304 206CrossRefGoogle ScholarPubMed
Vargas, A. O.Wagner, G. P. 2009 Frame-shifts of digit identity in bird evolution and cyclopamine-treated wingsEvolution and Development 11 163CrossRefGoogle ScholarPubMed
Vargas, A. O.Kohlsdorf, T.Fallon, J. F.Vandenbrooks, J.Wagner, G. P. 2008 The evolution of HoxD-11 expression in the bird wing: insights from PLoS One 3CrossRefGoogle Scholar
Wagner, G. P.Gauthier, J. A. 1999 1,2,3 = 2,3,4: a solution to the problem of the homology of the digits in the avian handProceedings of the National Academy of Sciences of the United States of America 96 5111CrossRefGoogle ScholarPubMed
Wagner, G. P.Khan, P. A.Blanco, M. J.Misof, B. E. R. N.Liversage, R. A. 1999 Evolution of Hoxa-11 expression in amphibians: is the urodele autopodium an innovation?American Zoologist 39 686CrossRefGoogle Scholar
Wang, X.Zhang, Z.Gao, C. 2010 A new enantiornithine bird from the Early Cretaceous of Western Liaoning, ChinaCondor 112 432CrossRefGoogle Scholar
Watson, M. 1883 Report on the anatomy of the Spheniscidæ collected during the voyage of H.M.S. ChallengerReport of the Scientific Results of the Voyage of H.M.S. Challenger during the years 1873–1876, ZoologyMurray, J.Edinburgh, UKNeill1Google Scholar
Welten, M. C.Verbeek, F. J.Meijer, A. H.Richardson, M. K. 2005 Gene expression and digit homology in the chicken embryo wingEvolution and Development 7 18CrossRefGoogle ScholarPubMed
Woltering, J. M.Duboule, D. 2010 The origin of digits: expression patterns versus regulatory mechanismsDevelopmental Cell 18 526CrossRefGoogle ScholarPubMed
Wray, R. S. 1887 Note on a vestigial structure in the adult ostrich representing the distal phalanges of digit IIIProceedings of the Scientific Meetings of the Zoological Society of London 1887 283Google Scholar
Young, R. L.Caputo, V.Giovannotti, M. 2009 Evolution of digit identity in the three-toed Italian skink : a new case of digit identity frame shiftEvolution and Development 11 647CrossRefGoogle ScholarPubMed
Zákány, J.Duboule, D. 2007 The role of Hox genes during vertebrate limb developmentCurrent Opinion in Genetics and Development 17CrossRefGoogle ScholarPubMed
Zákány, J.Fromental-Ramain, C.Warot, X.Duboule, D. 1997 Regulation of number and size of digits by posterior Hox genes: a dose-dependent mechanism with potential evolutionary implicationsProceedings of the National Academy of Sciences of the United States of America 94 13 695CrossRefGoogle ScholarPubMed
Zhang, F.Zhou, Z. 2000 A primitive enantiornithine bird and the origin of feathersScience 290 1955CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×