Book contents
- Frontmatter
- Contents
- Introduction
- 1 Complete Metric Spaces
- 2 Banach’s Principle
- 3 Picard’s Theorem
- 4 Banach Spaces
- 5 Renewal Equation in the McKendrick–von Foerster Model
- 6 Riemann Integral for Vector-Valued Functions
- 7 The Stone–Weierstrass Theorem
- 8 Norms Do Differ
- 9 Hilbert Spaces
- 10 Complete Orthonormal Sequences
- 11 Heat Equation
- 12 Completeness of the Space of Operators
- 13 Working in ℒ(𝕏)
- 14 The Banach–Steinhaus Theorem and Strong Convergence
- 15 We Go Deeper, DeeperWe Go (into the Structure of Complete Spaces)
- 16 Semigroups of Operators
- Appendix Two Consequences of the Hahn–Banach Theorem
- References
- Index
7 - The Stone–Weierstrass Theorem
Published online by Cambridge University Press: 31 October 2024
- Frontmatter
- Contents
- Introduction
- 1 Complete Metric Spaces
- 2 Banach’s Principle
- 3 Picard’s Theorem
- 4 Banach Spaces
- 5 Renewal Equation in the McKendrick–von Foerster Model
- 6 Riemann Integral for Vector-Valued Functions
- 7 The Stone–Weierstrass Theorem
- 8 Norms Do Differ
- 9 Hilbert Spaces
- 10 Complete Orthonormal Sequences
- 11 Heat Equation
- 12 Completeness of the Space of Operators
- 13 Working in ℒ(𝕏)
- 14 The Banach–Steinhaus Theorem and Strong Convergence
- 15 We Go Deeper, DeeperWe Go (into the Structure of Complete Spaces)
- 16 Semigroups of Operators
- Appendix Two Consequences of the Hahn–Banach Theorem
- References
- Index
Summary
The Weiestrass theorem says that any continuous function on a finite closed interval can be uniformly approximated, with any required accuracy, by polynomials. The Stone–Weierstrass theorem extends this result to an abstract setting, where the interval is replaced by a compact topological space, and the role of polynomials is played by a class of functions that enjoy certain properties mimicking those of polynomials. There are scores of proofs of the latter result; the one presented in this little book could not fail to stress the importance of completeness of the space of continuous functions.
Keywords
- Type
- Chapter
- Information
- Functional Analysis RevisitedAn Essay on Completeness, pp. 70 - 77Publisher: Cambridge University PressPrint publication year: 2024