Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T09:14:31.942Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  08 March 2022

James F. Leary
Affiliation:
Purdue University, Indiana
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

ADEREM, A., and UNDERHILL, D. M. 1999. Mechanisms of phagocytosis in macrophages. Annual Review of Immunology, 17, 593623.Google Scholar
ANASTAS, P. T., and WARNER, J. C. 2000. Green Chemistry: Theory and Practice. New York: Oxford University Press.Google Scholar
ARYAL, S., PARK, H., LEARY, J. F., and KEY, J. 2019. Top-down fabrication-based nano/microparticles for molecular imaging and drug delivery. International Journal of Nanomedicine, 14, 66316644.Google Scholar
BABER, N., and PRITCHARD, D. 2003. Dose estimation for children. British Journal of Clinical Pharmacology, 56, 489493.Google Scholar
BAEZ, A. 1967. The New College Physics: A Spiral Approach. New York: Freeman.Google Scholar
BAGASRA, O. 2007. Protocols for the in situ PCR-amplification and detection of mRNA and DNA sequences. Nature Protocols, 2, 27822795.CrossRefGoogle ScholarPubMed
BAGASRA, O. 2008. In situ polymerase chain reaction and hybridization to detect low-abundance nucleic acid targets. Current Protocols in Molecular Biology, 82, 14.1–14.28.Google Scholar
BAILEY, J. M., and HADDAD, W. M. 2005. Drug dosing control in clinical pharmacology. IEEE Control Systems Magazine, 25, 3551.Google Scholar
BANDURA, D. M., BARANOV, V. I., ORNATSKY, O. I., et al. 2009. Mass cytometry: Technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry. Analytical Chemistry, 81, 68136822.Google Scholar
BARRAS, D., and WIDMANN, C. 2011. Promises of apoptosis-inducing peptides in cancer therapeutics. Current Pharmaceutical Biotechnology, 12, 11531165.CrossRefGoogle ScholarPubMed
BARTENEVA, N. S., and VOROBJEV, I. A. 2016. Imaging Flow Cytometry: Methods and Protocols. In Methods in Molecular Biology, vol. 1389. New York: Springer.Google Scholar
BATES, M., HUANG, B., and ZHUANG, X. 2008. Super-resolution microscopy by nanoscale localization of photo-switchable fluorescent probes. Current Opinion in Chemical Biology, 12, 505514.Google Scholar
BAWA, R. 2011. Regulating nanomedicine: Can the FDA handle it? Current Drug Delivery, 8, 227234.CrossRefGoogle Scholar
BAWA, R. 2013. FDA and nanotech: Baby steps lead to regulatory uncertainty. In DEBASIS BAGCHI, M. B., MORIYAMA, H., and SHAHIDI, F., eds., Bio-Nanotechnology: A Revolution in Food, Biomedical and Health Sciences. New York: John Wiley, pp. 720732.Google Scholar
BENIHOUD, K., YEH, P., and PERRICAUDET, M. 1999. Adenovirus vectors for gene delivery. Current Opinion in Biotechnology, 10, 440447.CrossRefGoogle ScholarPubMed
BENYUS, J. M. 1997. Biomimicry: Innovation Inspired by Nature. New York: HarperCollins.Google Scholar
BERGTROM, C. 2020. Endocytosis and Exocytosis. Libretexts Biology. https://bio.libretexts.org/@go/page/16523.Google Scholar
BETZIG, E., PATTERSON, G. H., SOUGRAT, R., et al. 2006. Imaging intracellular fluorescent proteins at nanometer resolution. Science, 313, 16431645.CrossRefGoogle ScholarPubMed
BHATTACHARJEE, S. 2016. DLS and zeta potential: What they are and what they are not? Journal of Controlled Release, 235, 337351.Google Scholar
BISCHEL, L. L., BEEBE, D. J., and SUNG, K. E. 2015. Microfluidic model of ductal carcinoma in situ with 3D, organotypic structure. BMC Cancer, 15, 110.Google Scholar
BISSELL, M. J., RADISKY, D. C., RIZKI, A., WEAVER, V. M., and PETERSEN, O. W. 2002. The organizing principle: Microenvironmental influences in the normal and malignant breast. Differentiation, 70, 537546.Google Scholar
BISWAS, D., GANESHALINGAM, J., and WAN, J. C. M. 2020. The future of liquid biopsy. The Lancet Oncology, 21, e550.Google Scholar
BLIND, M., and BLANK, M. 2015. Aptamer selection technology and recent advances. Molecular Therapy Nucleic Acids, 4, e223.Google Scholar
BURDA, C., CHEN, X., NARAYANAN, R., and EL-SAYED, M. A. 2005. Chemistry and properties of nanocrystals of different shapes. Chemistry Review, 105, 10251102.CrossRefGoogle ScholarPubMed
CAMPBELL, N. A., and REECE, J. B. 2002. Biology. San Francisco: Benjamin Cummings.Google ScholarPubMed
CERVADORO, A., CHO, M., KEY, J., et al. 2014. Synthesis of multifunctional magnetic nanoflakes for magnetic resonance imaging, hyperthermia, and targeting. ACS Applied Materials & Interfaces, 6, 1293912946.Google Scholar
CHADWICK, A. C., and MUSUNURU, K. 2018. CRISPR-Cas9 genome editing for treatment of atherogenic dyslipidemia. Arteriosclerosis, Thrombosis, and Vascular Biology, 38, 1218.CrossRefGoogle ScholarPubMed
CHAN, S. M., OLSON, J. A., and UTZ, P. J. 2006. Single-cell analysis of siRNA-mediated gene silencing using multiparameter flow cytometry. Cytometry A, 69, 5965.Google Scholar
CHAN, W. H., SHIAO, N. H., and LU, P. Z. 2006. CdSe quantum dots induce apoptosis in human neuroblastoma cells via mitochondrial-dependent pathways and inhibition of survival signals. Toxicology Letters, 167, 191200.Google Scholar
CHITHRANI, B. D., GHAZANI, A. A., and CHAN, W. C. 2006. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Letters, 6, 662668.Google Scholar
CHO, Y.-B., LEE, I.-G., JOO, Y.-H., HONG, S.-H., and SEO, Y.-J. 2020. TCR transgenic mice: A valuable tool for studying viral immunopathogenesis mechanisms. International Journal of Molecular Sciences, 21, 112.Google Scholar
CONG, L., RAN, F. A., COX, D., et al. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science, 339, 819823.Google Scholar
COOPER, C. L., and LEARY, J. F. 2014. High-speed flow cytometric analysis of nanoparticle targeting to rare leukemic stem cells in peripheral human blood: Preliminary in-vitro studies. SPIE Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues XII. Proceedings of SPIE.Google Scholar
COOPER, C. L., and LEARY, J. F. 2015. Advanced flow cytometric analysis of nanoparticle targeting to rare leukemic stem cells in peripheral human blood in a defined model system. SPIE Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues XIII. Proceedings of SPIE.Google Scholar
COOPER, C. L., REECE, L. M., KEY, J., BERGSTROM, D. E., and LEARY, J. F. 2008. Water-soluble iron oxide nanoparticles for nanomedicine. West Lafayette, IN: Purdue e-Pubs.Google Scholar
CORSETTI, J. P., COX, C., LEARY, J. F., et al. 1987. Comparison of quantitative acid-elution technique and flow cytometry for detecting fetomaternal hemorrhage. Annals of Clinical & Laboratory Science, 17, 197206.Google ScholarPubMed
COVEY, S. 1989. The Seven Habits of Highly Effective People: Restoring the Character Ethic. New York: Simon & Schuster.Google Scholar
COWLING, T., and FREY, N. 2019. Macrocyclic and Linear Gadolinium Based Contrast Agents for Adults Undergoing Magnetic Resonance Imaging: A Review of Safety. Ottawa: Canadian Agency for Drugs and Technology in Health.Google ScholarPubMed
CRIBBS, A. P., and PERERA, S. M. W. 2017. Science and bioethics of CRISPR-Cas9 gene editing: An analysis towards separating facts and fiction. Yale Journal of Biology and Medicine, 90, 625634.Google Scholar
CRISSMAN, H. A., and TOBEY, R. A. 1974. Cell-cycle analysis in 20 minutes. Science, 184, 12971298.CrossRefGoogle Scholar
CZERNIN, J., and PHELPS, M. E. 2002. Positron emission tomography scanning: Current and future applications. Annual Review of Medicine, 53, 89112.Google Scholar
DARZYNKIEWICZ, Z., GALKOWSKI, D., and ZHAO, H. 2008. Analysis of apoptosis by cytometry using TUNEL assay. Methods, 44, 250254.CrossRefGoogle ScholarPubMed
DARZYNKIEWICZ, Z., JUAN, G., LI, X., et al. 1997. Cytometry in cell necrobiology: Analysis of apoptosis and accidental cell death (necrosis). Cytometry, 27, 120.Google Scholar
DEAN, P. N., and Jett., J. H. 1974. Mathematical analysis of DNA distributions derived from flow microfluorometry. Cell Biology, 60, 523527.CrossRefGoogle ScholarPubMed
DE JONGE, N., and PECKYS, D. B. 2016. Live cell electron microscopy is probably impossible. ACS Nano, 10, 90619063.CrossRefGoogle ScholarPubMed
DE LA RICA, R., PEJOUX, C., and MATSUI, H. 2011. Assemblies of functional peptides and their applications in building blocks for biosensors. Advanced Functional Materials, 21, 10181026.Google Scholar
DE LIMA, R., SEABRA, A. B., and DURAN, N. 2012. Silver nanoparticles: A brief review of cytotoxicity and genotoxicity of chemically and biogenically synthesized nanoparticles. Journal of Applied Toxicology, 32, 867879.Google Scholar
DE SOUZA, D., NOGUEIRA, C. R., ROSTELATO, B., and ROSTELATO, M. E. C. M. 2019. Review of the methodologies used in the synthesis gold nanoparticles by chemical reduction. Journal of Alloys and Compounds, 798, 714740.Google Scholar
DI NARDO, F., CAVALERA, S., BAGGIANI, C., GIOVANNOLI, C., and ANFOSSI, L. 2019. Direct vs. mediated coupling of antibodies to gold nanoparticles: The case of salivary cortisol detection by lateral flow immunoassay. ACS Applied Materials & Interfaces, 11, 3275832768.Google Scholar
DOUDNA, J. A., and STERNBERG, S. H. 2018. A Crack in Creation: Gene Editing and the Unthinkable Power to Control Evolution. Boston: Marriner Books.Google Scholar
DREXLER, E. 1991. Molecular machinery and manufacturing with applications to computation. Unpublished PhD thesis, Massachusetts Institute of Technology.Google Scholar
DUAN, H., WANG, D., and LI, Y. 2015. Green chemistry for nanoparticle synthesis. Chemical Society Reviews, 44, 57785792.Google Scholar
DUVAL, A., AIDE, A., BELLEMAIN, A., et al. 2007. Anisotropic surface-plasmon resonance imaging biosensor. Proceedings of SPIE.Google Scholar
EATON, P., QUARESMA, P., SOARES, C., et al. 2017. A direct comparison of experimental methods to measure dimensions of synthetic nanoparticles. Ultramicroscopy, 182, 179190.Google Scholar
EFRONI, I., IP, P. L., NAWY, T., MELLO, A., and BIRNBAUM, K. D. 2015. Quantification of cell identity from single-cell gene expression profiles. Genome Biology, 16, 112.Google Scholar
EUSTAQUIO, T., COOPER, C. L., and LEARY, J. F. 2011. Single-cell imaging detection of nanobarcoded nanoparticle biodistributions in tissues for nanomedicine. SPIE Reporters, Markers, Dyes, Nanoparticles, and Molecular Probes for Biomedical Applications III. Proceedings of SPIE, 7910, 791000-1–79100O-11.Google Scholar
EUSTAQUIO, T., and LEARY, J. F. 2011. Nanobarcoding: A novel method of single nanoparticle detection in cells and tissues for nanomedical biodistribution studies. SPIE Biosensing and Nanomedicine IV. Proceedings of SPIE, 8099, 80990V-1–80990V-13.Google Scholar
EUSTAQUIO, T., and LEARY, J. F. 2012a. Nanobarcoding: Detecting nanoparticles in biological samples using in situ polymerase chain reaction. International Journal of Nanomedicine, 7, 56255639.Google Scholar
EUSTAQUIO, T., and LEARY, J. F. 2012b. Single-cell nanotoxicity assays of superparamagnetic iron oxide nanoparticles. Methods in Molecular Biology, 926, 6985.Google Scholar
FEYNMAN, R. 1960. There’s plenty of room at the bottom. Engineering Science, 23, 2236.Google Scholar
FLANNIGAN, D. J., BARWICK, B., and ZEWAIL, A. H. 2010. Biological imaging with 4D ultrafast electron microscopy. Proceedings of the National Academy of Sciences of the United States of America, 107, 99339937.Google Scholar
FOTAKIS, G., and TIMBRELL, J. A. 2006. In vitro cytotoxicity assays: Comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride. Toxicology Letters, 160, 171177.Google Scholar
FRANGOUL, H., ALTSHULER, D., CAPPELLINI, M. D., et al. 2021. CRISPR-Cas9 gene editing for sickle cell disease and β-thalassemia. New England Journal of Medicine, 384, 252260.Google Scholar
FREITAS, R. A. 1999. Nanomedicine. Volume 1: Basic Capabilities. Georgetown, TX: Landes Bioscience.Google Scholar
FREITAS, R. A. Jr. 2005. What is nanomedicine? Nanomedicine, 1, 29.Google Scholar
FRIGERIO, B., BIZZONI, C., JANSEN, G., et al. 2019. Folate receptors and transporters: Biological role and diagnostic/therapeutic targets in cancer and other diseases. Journal of Experimental & Clinical Cancer Research, 38, 112.Google Scholar
FU, Z., and XIANG, J. 2020. Aptamer-functionalized nanoparticles in targeted delivery and cancer therapy. International Journal of Molecular Sciences, 21, https://doi.org/10.3390/ijms21239123.CrossRefGoogle ScholarPubMed
FULKERSON, C. M., DHAWAN, D., RATLIFF, T. L., HAHN, N. M., and KNAPP, D. W. 2017. Naturally occurring canine invasive urinary bladder cancer: A complementary animal model to improve the success rate in human clinical trials of new cancer drugs. International Journal of Genomics, 2017, 19.Google Scholar
GAJ, T., GERSBACH, C. A., and BARBAS, C. F. 2013. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends in Biotechnology, 31, 397405.Google Scholar
GETTS, D. R., GETTS, M. T., MCCARTHY, D. P., CHASTAIN, E. M. L., and MILLER, S. D. 2014. Have we overestimated the benefit of human(ized) antibodies? mAbs, 2, 682694.Google Scholar
GIVAN, A. L. 2001. Flow Cytometry: First Principles. New York: Wiley-Liss.Google Scholar
GOETZ, C., HAMMERBECK, C., and BONNEVIER, J. 2018. Flow Cytometry Basics for the Non-Expert. New York: Springer.Google Scholar
GONG, J., TRAGANOS, F., and DARZYNKIEWICZ, Z. 1995. Growth imbalance and altered expression of cyclins B1, A, E, and D3 in MOLT-4 cells synchronized in the cell cycle by inhibitors of DNA replication. Cell Growth & Differentiation 6, 14851493.Google Scholar
GONZÁLEZ, A. L., NOGUEZ, C., BERÁNEK, J., and BARNARD, A. S. 2014. Size, shape, stability, and color of plasmonic silver nanoparticles. Journal of Physical Chemistry C, 118, 91289136.Google Scholar
GORCZYCA, W., BRUNO, S., DARZYNKIEWICZ, R. J., GONG, J., and DARZYNKIEWICZ, Z. 1992. DNA strand breaks occurring during apoptosis: Their early in situ detection by the terminal deoxynucleotidyl transferase and nick translation assays and prevention by serine protease inhibitors. International Journal of Oncology, 1, 639648.Google Scholar
GRAFTON, M. M., WANG, L., VIDI, P. A., LEARY, J., and LELIEVRE, S. A. 2011. Breast on-a-chip: Mimicry of the channeling system of the breast for development of theranostics. Integrative Biology, 3, 451459.CrossRefGoogle ScholarPubMed
GRATZNER, H. G., LEIF, R. C., INGRAHAM, D. J., and CASTRO, A. 1975. The use of antibody specific for bromodeoxyuridine for the immunofluorescent determination of DNA replication in single cells and chromosomes. Experimental Cell Research, 95, 8894.Google Scholar
GURUNATHAN, S., KIM, E., HAN, J. W., PARK, J. H., and KIM, J. H. 2015. Green chemistry approach for synthesis of effective anticancer palladium nanoparticles. Molecules, 20, 2247622498.Google Scholar
HAGLUND, E., SEALE, M.-M., and LEARY, J. F. 2009. Design of multifunctional nanomedical systems. Annals of Biomedical Engineering, 37, 20482063.Google Scholar
HAGLUND, E. M., SEALE-GOLDSMITH, M.-M., DHAWAN, D., et al. 2008. Peptide targeting of quantum dots to human breast cancer cells. Proceedings of SPIE, 6866, 68660S-1–68660S-8.Google Scholar
HAMID, R., ROTSHTEYN, Y., RABADI, L., PARIKH, R., and BULLOCK, P. 2004. Comparison of alamar blue and MTT assays for high through-put screening. Toxicology in Vitro, 18, 703710.CrossRefGoogle ScholarPubMed
HAYFLICK, L. 1965. The limited in-vitro lifetime of human diploid cell strains. Experimental Cell Research, 37, 614636.Google Scholar
HILDEBRANDT, C. C., and MARRON, J. M. 2018. Justice in CRISPR-Cas9 research and clinical applications. AMA Journal of Ethics, 20, E826E833.Google Scholar
HONARY, S., and ZAHIR, F. 2013. Effect of zeta potential on the properties of nano-drug delivery systems: A review (part 2). Tropical Journal of Pharmaceutical Research, 12, 265273.Google Scholar
HOOD, M. A., MARI, M., and MUNOZ-ESPI, R. 2014. Synthetic strategies in the preparation of polymer/inorganic hybrid nanoparticles. Materials (Basel), 7, 40574087.Google Scholar
HUH, D., MATTHEWS, B. D., MAMMOTO, A., et al. 2010. Reconstituting organ-level lung functions on a chip. Science, 328, 16621668.Google Scholar
IANNELLO, A., and AHMAD, A. 2005. Role of antibody-dependent cell-mediated cytotoxicity in the efficacy of therapeutic anti-cancer monoclonal antibodies. Cancer and Metastasis Reviews 24, 487499.Google Scholar
INTERNATIONAL COUNCIL OF CHEMICAL ASSOCIATIONS. An Executive Guide: How to Know If and When It’s Time to Commission a Life Cycle Assessment. Amsterdam, Netherlands: ICCA.Google Scholar
JALILI, N., and LAXMINARAYANA, K. 2004. A review of atomic force microscopy imaging systems: Application to molecular metrology and biological sciences. Mechatronics, 14, 907945.Google Scholar
JETT, J. H., STEVENSON, A. P., WARNER, N. L., and LEARY, J. F. 1980. Quantitation of cell surface antigen density by flow cytometry. In LAERUM, O. D., LINDMO, T., and THORUD, L., eds., Flow Cytometry and Sorting. New York: Columbia University Press.Google Scholar
JINEK, M., CHYLINSKI, K., FONFARA, I. E., et al. 2012. A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science, 337, 816821.Google Scholar
JOHNSON, W. R., WILSON, D. W., and BEARMAN, G. 2006. Spatial-spectral modulating snapshot hyperspectral imager. Applied Optics, 45, 18981908.Google Scholar
JULIANO, R. L. 2012. The future of nanomedicine: Promises and limitations. Science and Public Policy, 39, 99104.Google Scholar
JUNGER, S. 1997. The Perfect Storm. New York: Norton.Google Scholar
KANG, H., MINTRI, S., MENON, A. V., et al. 2015. Pharmacokinetics, pharmacodynamics and toxicology of theranostic nanoparticles. Nanoscale, 7, 1884818862.Google Scholar
KEEFE, A. D., PAI, S., and ELLINGTON, A. 2010. Aptamers as therapeutics. Nature Reviews Drug Discovery, 9, 537550.Google Scholar
KEY, J., COOPER, C., KIM, A. Y., et al. 2012. In vivo NIRF and MR dual-modality imaging using glycol chitosan nanoparticles. Journal of Controlled Release, 163, 249255.Google Scholar
KEY, J., DHAWAN, D., COOPER, C. L., et al. 2016. Multicomponent, peptide-targeted glycol chitosan nanoparticles containing ferrimagnetic iron oxide nanocubes for bladder cancer multimodal imaging. International Journal of Nanomedicine, 11, 41414155.CrossRefGoogle ScholarPubMed
KEY, J., DHAWAN, D., KNAPP, D. W., et al. 2012. Design of peptide-conjugated glycol chitosan nanoparticles for near infrared fluorescent (NIRF) in vivo imaging of bladder tumors. Proceedings of SPIE, 8233, 8233R18233R10.Google Scholar
KEY, J., KIM, K.., DHAWAN, D., et al. 2011. Dual-modality in vivo imaging for MRI detection of tumors and NIRF-guided surgery using multi-component nanoparticles. SPIE Nanoscale Imaging, Sensing, and Actuation for Biomedical Applications VIII. Proceedings of SPIE, 7908, 790805-1–790805-8.Google Scholar
KEY, J., and LEARY, J. F. 2014. Nanoparticles for multimodal in vivo imaging in nanomedicine. International Journal of Nanomedicine, 9, 711726.Google Scholar
KIM, J. S., KUK, E., YU, K. N., et al. 2007. Antimicrobial effects of silver nanoparticles. Nanomedicine, 3, 95101.Google Scholar
KLAUDE, M., ERIKSSON, S., NYGREN, J., and AHNSTRIJM, G. 1996. The comet assay: Mechanisms and technical considerations. Mutation Research, 363, 8996.Google Scholar
KNAPP, D. W., RAMOS-VARA, J. A., MOORE, G. E., et al. 2014. Urinary bladder cancer in dogs, a naturally occurring model for cancer biology and drug development. ILAR Journal, 55, 100118.CrossRefGoogle ScholarPubMed
KOHLER, G., and MILSTEIN, C. 1975. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature, 256, 495497.CrossRefGoogle ScholarPubMed
KRPETIC, Z., NATIVO, P., PRIOR, I. A., and BRUST, M. 2011. Acrylate-facilitated cellular uptake of gold nanoparticles. Small, 7, 19821986.Google Scholar
KRUTH, H. S. 2011. Receptor-independent fluid-phase pinocytosis mechanisms for induction of foam cell formation with native low-density lipoprotein particles. Current Opinion in Lipidology, 22, 386393.Google Scholar
KRUTZIK, P. O., IRISH, J. M., NOLAN, G. P., and PEREZ, O. D. 2004. Analysis of protein phosphorylation and cellular signaling events by flow cytometry: Techniques and clinical applications. Clinical Immunology, 110, 206221.Google Scholar
KRUTZIK, P. O., and NOLAN, G. P. 2003. Intracellular phospho-protein staining techniques for flow cytometry: Monitoring single cell signaling events. Cytometry A, 55, 6170.Google Scholar
KUMAR, C. S. S. R., ed. 2005. Nanotechnologies for the Life Sciences. 1st ed. Weinheim: Wiley-VCH.Google Scholar
LAI, C.-Y., TREWYN, B. G., JEFTINIJA, D. M., et al. 2003. A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules. Journal of the American Chemical Society, 125, 44514459.Google Scholar
LEARY, J. F. 1994. Strategies for rare cell detection and isolation. Methods in Cell Biology, 42, 331358.CrossRefGoogle ScholarPubMed
LEARY, J. F. 2005. Ultra high-speed sorting. Cytometry A, 67, 7685.Google Scholar
LEARY, J. F. 2007. Invited Talk at FDA: “Single-Cell Nanotoxicity Measures of Nanomedical Systems.” March 7.Google Scholar
LEARY, J. F. 2009. Molecular characterization of rare single tumor cells. In ANSELMETTI, D., ed., Single Cell Analysis: Technologies and Applications. Weinheim: WILEY-VCH, pp. 197221.Google Scholar
LEARY, J. F. 2010. Nanotechnology: What is it and why is small so big? Canadian Journal of Ophthalmology, 45, 449456.Google Scholar
LEARY, J. F. 2013. Nanomedicine: Reality will trump hype! Journal of Nanomedicine and Biotherapeutic Discovery, 4, e125.Google Scholar
LEARY, J. F. 2014. Quantitative Single-Cell Approaches to Assessing Nanotoxicity in Nanomedical Systems. Boca Raton, FL: CRC Press.Google Scholar
LEARY, J. F. 2019. Design of sophisticated shaped, multilayered, and multifunctional nanoparticles for combined in-vivo imaging and advanced drug delivery. Nanoscale Imaging, Sensing, and Actuation for Biomedical Applications XVI. Proceedings of SPIE, 10891, 108910R-1–108910R-9.Google Scholar
LEARY, J. F., TODD, P. W., WOOD, J. C. S., and JETT, J. H. 1979. Laser flow cytometric light scatter and fluorescence pulse-width and pulse rise-time sizing of mammalian cells. Journal of Histochemistry and Cytochemistry, 27, 315320.Google Scholar
LEE, J. F., HESSELBERTH, J. R., MEYERS, L. A., and ELLINGTON, A. D. 2004. Aptamer database. Nucleic Acids Research, 32, D95D100.Google Scholar
LELIEVRE, S. A., VIDI, P.-A., LEARY, J. F., and MALEKI, T. 2018. Disease on a Chip. US Patent 9,969,964.Google Scholar
LEONG, S. S., NG, W. M., LIM, J., and YEAP, S. P. 2018. Dynamic light scattering: effective sizing technique for characterization of magnetic nanoparticles. In SHARMA, S. K., ed., Handbook of Materials Characterization. New York: Springer, pp. 77111.Google Scholar
LI, S.-D., and HUANG, L. 2008. Pharmacokinetics and biodistribution of nanoparticles. Molecular Pharmaceutics, 5, 496504.Google Scholar
LIANG, X. W., XU, J. Z. P., GRICE, J., et al. 2013. Penetration of nanoparticles into human skin. Current Pharmaceutical Design, 19, 63536366.Google Scholar
LIAO, D. L., WU, G. S., and LIAO, B. Q. 2009. Zeta potential of shape-controlled TiO2 nanoparticles with surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 348, 270275.Google Scholar
LOAIZA, O. A., JUBETE, E., OCHOTECO, E., et al. 2011. Gold coated ferric oxide nanoparticles based disposable magnetic genosensors for the detection of DNA hybridization processes. Biosensors and Bioelectronics, 26, 21942200.Google Scholar
LOO, C., LIN, A., HIRSCH, L., et al. 2004. Nanoshell-enabled photonics-based imaging and therapy of cancer. Technology in Cancer Research & Treatment, 3, 3340.Google Scholar
LOW, P. S., SINGHAL, S., and SRINIVASARAO, M. 2018. Fluorescence-guided surgery of cancer: Applications, tools and perspectives. Current Opinion in Chemical Biology, 45, 6472.Google Scholar
LU, G., and FEI, B. 2014. Medical hyperspectral imaging: A review. Journal of Biomedical Optics, 19, 10901.Google Scholar
LU, Y., and LOW, P. S. 2002. Folate-mediated delivery of macromolecular anticancer therapeutic agents. Advanced Drug Delivery Reviews, 54, 675693.Google Scholar
LUISONI, S., and GREBER, U. F. 2016. Biology of adenovirus cell entry: Receptors, pathways, mechanisms. In CURIEL, D. T., ed., Adenoviral Vectors for Gene Therapy. 2nd ed. New York: Academic Press, 2758.Google Scholar
LVOV, Y., ARIGA, K., ICHINOSE, I., and KUNITAKE, T. 1995. Assembly of multicomponent protein films by means of electrostatic layer-by-layer adsorption. Journal of the American Chemical Society, 117, 61176123.Google Scholar
LVOV, Y., DECHER, G., and MOEHWALD, H. 1993. Assembly, structural characterization, and thermal behavior of layer-by-layer deposited ultrathin films of poly(vinyl sulfate) and poly(allylamine). Langmuir, 9, 481486.CrossRefGoogle Scholar
MALIK, P., SHANKAR, R., MALIK, V., SHARMA, N., and MUKHERJEE, T. K. 2014. Green chemistry based benign routes for nanoparticle synthesis. Journal of Nanoparticles, 2014, 114.Google Scholar
MALIKOVA, H., and HOLESTA, M. 2017. Gadolinium contrast agents: Are they really safe? Journal of Vascular Access, 18, 17.Google Scholar
MCCOY, C. P., BRADY, C., , COWLEY, J. F., et al. 2010. Triggered drug delivery from biomaterials. Expert Opinion on Drug Delivery, 7, 605616.Google Scholar
MCCOY, C. P., ROONEY, C., EDWARDS, C. R., JONES, D. S., and GORMAN, S. P. 2007. Light-triggered molecule-scale drug dosing devices. JACS Communications, 129, 95729573.Google Scholar
MCKELVEY-MARTIN, V. J., GREEN, M. H. L., SCHMEZER, P., et al. 1993. The single cell gel electrophoresis assay (comet assay): A European review. Mutation Research, 288, 4763.Google Scholar
MENG, F., WANG, J., PING, Q., and YEO, Y. 2018. Quantitative assessment of nanoparticle biodistribution by fluorescence imaging, revisited. ACS Nano, 12, 64586468.Google Scholar
MONTANTE, S., and BRINKMAN, R. R. 2019. Flow cytometry data analysis: Recent tools and algorithms. International Journal of Laboratory Hematology, 41 Suppl 1, 5662.Google Scholar
MONTEIRO-RIVIERE, N. A., and TRAN, C. L. 2014. Nanotoxicology: Progress toward Nanomedicine. Boca Raton, FL: CRC Press.Google Scholar
MORALES, C. S., VALENCIA, P. M., THAKKAR, A. B., SWANSON, E., and LANGER, R. 2012. Recent developments in multifunctional hybrid nanoparticles: Opportunities and challenges in cancer therapy. Frontiers in Bioscience, E4, 529545.Google Scholar
MOURDIKOUDIS, S., PALLARES, R. M., and THANH, N. T. K. 2018. Characterization techniques for nanoparticles: Comparison and complementarity upon studying nanoparticle properties. Nanoscale, 10, 1287112934.Google Scholar
MOUSAVI, S. M., ZAREI, M., HASHEMI, S. A., et al. 2020. Gold nanostars-diagnosis, bioimaging and biomedical applications. Drug Metabolism Reviews, 52, 299318.Google Scholar
MURCIA, M. J., and NAUMANN, C. A. 2005. Biofunctionalization of fluorescent nanoparticles. In KUMAR, C. S. S. R., ed., Biofunctionalization of Nanomaterials. Weinheim: Wiley-VCH, pp. 140.Google Scholar
MURPHY, R. F. 2005. Location proteomics: A systems approach to subcellular location. Biochemical Society Transactions, 33, 535538.Google Scholar
NARAYAN, R., NAYAK, U. Y., RAICHUR, A. M., and GARG, S. 2018. Mesoporous silica nanoparticles: A comprehensive review on synthesis and recent advances. Pharmaceutics, 10, 149.Google Scholar
NATIONAL RESEARCH COUNCIL. 1983. Risk Assessment in the Federal Government: Managing the Process. Washington, DC: National Academies Press. https://doi.org/10.17226/366.Google Scholar
NIE, S., and EMORY, S. R. 1997. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science, 275, 11021106.Google Scholar
NOLAN, J. P., and SEBBA, D. S. 2011. Surface-enhanced Raman scattering (SERS) cytometry. Methods in Cell Biology, 102, 515532.Google Scholar
OBERDORSTER, G., OBERDORSTER, E., and OBERDORSTER, J. 2005. Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environmental Health Perspectives, 113, 823839.Google Scholar
OKSEL, C., SUBRAMANIAN, V., SEMENZIN, E., et al. 2016. Evaluation of existing control measures in reducing health and safety risks of engineered nanomaterials. Environmental Science: Nano, 3, 869882.Google Scholar
OSTLING, D., and JOHANSON, K. J. 1984. Micro-electrophoretic study of radiation-induced DNA damages in individual mammalian cells. Biochemical and Biophysical Research Communications, 123, 291298.Google Scholar
PARDI, N., HOGAN, M. J., PORTER, F. W., and WEISSMAN, D. 2018. mRNA vaccines: A new era in vaccinology. Nature Reviews Drug Discovery, 17, 261279.Google Scholar
PARK, S.-J., SEUNGSOO, K. S., LEE, S., et al. 2000. Synthesis and magnetic studies of uniform iron nanorods and nanospheres. Journal of the American Chemical Society, 122, 85818582.Google Scholar
PEDNEKAR, P. P., GODIYAL, S. C., JADHAV, K. R., and KADAM, V. J. 2017. Mesoporous silica nanoparticles: A promising multifunctional drug delivery system. In FICAI, A. and GRUMEZESCU, A. M., eds., Nanostructures for Cancer Therapy. New York: Elsevier, pp. 593621Google Scholar
PENNISI, E. 2013. The CRISPR craze. Science, 341, 833836.Google Scholar
PEREZJUSTE, J., PASTORIZASANTOS, I., LIZMARZAN, L., and MULVANEY, P. 2005. Gold nanorods: Synthesis, characterization and applications. Coordination Chemistry Reviews, 249, 18701901.Google Scholar
PERFETTO, S. P., CHATTOPADHYAY, P. K., and ROEDERER, M. 2004. Seventeen-colour flow cytometry: Unravelling the immune system. Nature Reviews Immunology, 4, 648655.Google Scholar
PIERPONT, T. M., LIMPER, C. B., and RICHARDS, K. L. 2018. Past, present, and future of rituximab: The world’s first oncology monoclonal antibody therapy. Frontiers in Oncology, 8, 123.Google Scholar
PONS, T., PIC, E., LEQUEUX, N., et al. 2010. Cadmium-free CuInS2/ZnS quantum dots for sentinel lymph node imaging with reduced toxicity. ACS Nano, 4, 25312538.Google Scholar
PREVO, B. G., ESAKOFF, S. A., MIKHAILOVSKY, A., and ZASADZINSKI, J. A. 2008. Scalable routes to gold nanoshells with tunable sizes and response to near-infrared pulsed-laser irradiation. Small, 4, 11831195.Google Scholar
PROW, T., GREBE, R., MERGES, C., et al. 2006. Nanoparticle tethered antioxidant response element as a biosensor for oxygen induced toxicity in retinal endothelial cells. Molecular Vision, 12, 616625.Google Scholar
PROW, T., SMITH, J. N., GREBE, R., et al. 2006. Construction, gene delivery, and expression of DNA tethered nanoparticles. Molecular Vision, 12, 606615.Google Scholar
PROW, T. W. 2004. Nanomedicine: Targeted nanoparticles for the delivery of biosensors and therapeutic genes. PhD dissertation, University of Texas Medical Branch.Google Scholar
PROW, T. W., ROSE, W. A., WANG, N., et al. 2005. Biosensor-controlled gene therapy/drug delivery with nanoparticles for nanomedicine. SPIE Advanced Biomedical and Clinical Diagnostic Systems III. Proceedings of SPIE, 5692, 199208.Google Scholar
PROW, T. W., SALAZAR, J. H., ROSE, W. A., et al. 2004. Nanomedicine: Nanoparticles, molecular biosensors, and targeted gene/drug delivery for combined single-cell diagnostics and therapeutics. SPIE Advanced Biomedical and Clinical Diagnostic Systems II. Proceedings of SPIE.Google Scholar
PUTNAM, W. P., and YANIK, M. F. 2009. Noninvasive electron microscopy with interaction-free quantum measurements. Physical Review A, 80, 14.Google Scholar
RASTINEHAD, A. R., ANASTOS, H., WAJSWOL, E., et al. 2019. Gold nanoshell-localized photothermal ablation of prostate tumors in a clinical pilot device study. Proceedings of the National Academy of Sciences of the Unites States of America, 116, 1859018596.Google Scholar
ROSENBLATT, J. I., HOKANSON, J. A., MCLAUGHLIN, S. R., and LEARY, J. F. 1997. Theoretical basis for sampling statistics useful for detecting and isolating rare cells using flow cytometry and cell sorting. Cytometry, 27, 233238.Google Scholar
ROSENBLUM, D., GUTKIN, A., KEDMI, R., et al. 2020. CRISPR-Cas9 genome editing using targeted lipid nanoparticles for cancer therapy. Science Advances, 6, 112.Google Scholar
ROSI, N. L., and MIRKIN, C. A. 2005. Nanostructures in biodiagnostics. Chemical Reviews, 105, 15471562.Google Scholar
RUDOLPH, N. S., OHLSSON-WILHELM, B. M., LEARY, J. F., and ROWLEY, P. T. 1985. Single-cell analysis of the relationship among transferrin receptors, proliferation, and cell cycle phase in K562 cells. Cytometry, 6, 151158.CrossRefGoogle ScholarPubMed
SACHS, K., SARVER, A. L., NOBLE-ORCUTT, K. E., et al. 2020. Single-cell gene expression analyses reveal distinct self-renewing and proliferating subsets in the leukemia stem cell compartment in acute myeloid leukemia. Cancer Research, 80, 458470.Google Scholar
SARGENT, J. F. 2010. The National Nanotechnology Initiative: Overview, reauthorization, and appropriations issues. CRS Report for Congress. Washington, DC: Congressional Research Service.Google Scholar
SCHLAKE, T., THESS, A., FOTIN-MLECZEK, M., and KALLEN, K. J. 2012. Developing mRNA-vaccine technologies. RNA Biology, 9, 13191330.Google Scholar
SCHWARTZBERG, A. M., OLSON, T. Y., TALLEY, C. E., and ZHANG, J. Z. 2006. Synthesis, characterization, and tunable optical properties of hollow gold nanospheres. Journal of Physical Chemistry B, 110, 1993519944.Google Scholar
SEALE-GOLDSMITH, M.-M., and LEARY, J. F. 2009. Nanobiosystems. WIREs Nanomedicine and Nanobiotechnology, 1, 553567.Google Scholar
SEALE, M.-M., HAGLUND, E., COOPER, C. L., REECE, L. M., and LEARY, J. F. 2007. Design of programmable multilayered nanoparticles with in situ manufacture of therapeutic genes for nanomedicine. SPIE: Advanced Biomedical and Clinical Diagnostic Systems V. Proceedings of SPIE, 6430, 643003-1–643003-7.Google Scholar
SEALE, M.-M., and LEARY, J. F. 2009. Nanobiosystems. In BAKER, J. R., ed., Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology. New York: Wiley, pp. 553567.Google Scholar
SEALE, M.-M., ZEMLYANOV, D., COOPER, C. L., et al. 2007. Multifunctional nanoparticles for drug/gene delivery in nanomedicine. SPIE: Nanoscale Imaging, Spectroscopy, Sensing, and Actuation for Biomedical Applications IV. Proceedings of SPIE, 6447, 64470E-1–64470E-9.Google Scholar
SHADIDI, M., and SIOUD, M. 2003. Identification of novel carrier peptides for the specific delivery of therapeutics into cancer cells. FASEB Journal, 17, 256258.Google Scholar
SHAPIRO, H. M. 2001. Practical Flow Cytometry. Hoboken, NJ: John Wiley & Sons.Google Scholar
SIKULU, M., DOWELL, K. M., HUGO, L. E., et al. 2011. Evaluating RNAlater® as a preservative for using near-infrared spectroscopy to predict Anopheles gambiae age and species. Malaria Journal, 10, 17.Google Scholar
SLOWING, I. I., TREWYN, B. G., GIRI, S., and LIN, V. S. Y. 2007. Mesoporous silica nanoparticles for drug delivery and biosensing applications. Advanced Functional Materials, 17, 12251236.Google Scholar
SRIDHAR, V., GAUD, R., BAJAJ, A., and WAIRKAR, S. 2018. Pharmacokinetics and pharmacodynamics of intranasally administered selegiline nanoparticles with improved brain delivery in Parkinson’s disease. Nanomedicine, 14, 26092618.Google Scholar
STETEFELD, J., MCKENNA, S. A., and PATEL, T. R. 2016. Dynamic light scattering: A practical guide and applications in biomedical sciences. Biophysical Reviews, 8, 409427.Google Scholar
SUN, X., ROSSIN, R., TURNER, J. L., et al. 2005. An assessment of the effects of shell cross-linked nanoparticle size, core composition, and surface PEGylation on in vivo biodistribution. Biomacromolecules, 6, 25412554.Google Scholar
SUSI, T., PICHLER, T., and AYALA, P. 2015. X-ray photoelectron spectroscopy of graphitic carbon nanomaterials doped with heteroatoms. Beilstein Journal of Nanotechnology, 6, 177192.Google Scholar
SZANISZLO, P. 2007. Gene Expression Microarray Analysis of Small, Purified Cell Subsets. PhD dissertation, University of Texas Medical Branch.Google Scholar
SZANISZLO, P., WANG, N., SINHA, M., et al. 2004. Getting the right cells to the array: Gene expression microarray analysis of cell mixtures and sorted cells. Cytometry A, 59, 191202.Google Scholar
SZOLLOSI, J., DAMJANOVICH, S., and LASZLO, M. 1998. Application of fluorescence resonance energy transfer in the clinical laboratory: Routine and research. Cytometry (Communications in Clinical Cytometry), 34, 159179.Google Scholar
TEKADE, R. K. 2019. Basic Fundamentals of Drug Delivery. New York: Academic Press.Google Scholar
THOMAS, C. R., FERRIS, D. P., LEE, J.-H., et al. 2010. Noninvasive remote-controlled release of drug molecules in vitro using magnetic actuation of mechanized nanoparticles. Journal of the American Chemical Society, 132, 1062310625.Google Scholar
TOY, R., and KARATHANASIS, E. 2016. Paramagnetic nanoparticles. In LU, Z.-R. and SAKUMA, S., eds., Nanomaterials in Pharmacology. New York: Springer, pp. 113136.Google Scholar
TRON, L., SZOLLOSI, J., and DAMJANOVICH, S. 1984. Flow cytometric measurement of fluorescence resonance energy transfer. Biophysical Journal, 45, 939946.Google Scholar
TSIEN, R. Y. 1998. The green fluorescent protein. Annual Review of Biochemistry, 67, 509544.Google Scholar
TUCHIN, V. V., TARNOK, A., and ZHAROV, V. P. 2009. Towards in vivo flow cytometry. Journal of Biophotonics, 2, 457460.Google Scholar
VALENCIA, L. C., GARCÍA, A., RAMÍREZ-PINILLA, M. P., and FUENTES, J. L. 2011. Estimates of DNA damage by the comet assay in the direct-developing frog Eleutherodactylus johnstonei (Anura, Eleutherodactylidae). Genetics and Molecular Biology, 34, 681688.Google Scholar
VAN DAM, G. M., THEMELIS, G., CRANE, L. M., et al. 2011. Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-alpha targeting: First in-human results. Nature Medicine, 17, 13151319.Google Scholar
VAN DER MEER, A. D., and VAN DEN BERG, A. 2012. Organs-on-chips: Breaking the in vitro impasse. Integrative Biology, 4, 461470.Google Scholar
VAN ENGELAND, M., NIELAND, L. J. W., RAMAEKERS, F. C. S., SCHUTTE, B., and REUTELINGSPERGER, C. P. M. 1998. Annexin V-affinity assay: A review on an apoptosis detection system based on phosphatidylserine exposure. Cytometry, 31, 19.Google Scholar
VIDI, P. A., MALEKI, T., OCHOA, M., et al. 2014. Disease-on-a-chip: Mimicry of tumor growth in mammary ducts. Lab on a Chip, 14, 172177.Google Scholar
WAJIMA, T., YANO, Y., FUKUMURA, K., and OGUMA, T. 2004. Prediction of human pharmacokinetic profile in animal scale up based on normalizing time course profiles. Journal of Pharmaceutical Sciences, 93, 18901900.Google Scholar
WANG, L., WANG, K., SANTRA, S., et al. 2006. Watching silica nanoparticles glow in the biological world. Analytical Chemistry, 646–654. https://pubs.acs.org/doi/pdf/10.1021/ac0693619.Google Scholar
WANI, M. Y., HASHIM, M. A., NABI, F., and MALIK, M. A. 2011. Nanotoxicity: Dimensional and morphological concerns. Advances in Physical Chemistry, 2011, 115.Google Scholar
WEI, Q., SONG, H. M., LEONOV, A. P., et al. 2009. Gyromagnetic imaging: Dynamic optical contrast using gold nanostars with magnetic cores. Journal of the American Chemical Society, 131, 97289734.Google Scholar
WHEELESS, L., REEDER, J. E., and O’CONNELL, M. J. 1990. Slit-scan flow analysis of cytologic specimens from the female genital tract. Methods in Cell Biology, 33, 501507.Google Scholar
WHITE-SCHENK, D., SHI, R., and LEARY, J. F. 2015. Nanomedicine strategies for treatment of secondary spinal cord injury. International Journal of Nanomedicine, 10, 923938.Google Scholar
WORLD HEALTH ORGANIZATION. 2019. International nonproprietary names (INN) for biological and biotechnological substances: A review. In WHO, ed., WHO/EMP/RHT/TSN/2019.1. Geneva, Switzerland: WHO.Google Scholar
XIAO, Y., FORRY, S. P., GAO, X., et al. 2010. Dynamics and mechanisms of quantum dot nanoparticle cellular uptake. Journal of Nanobiotechnology, 8, 19.Google Scholar
YADAV, K. S., RAJPUROHIT, R., and SHARMA, S. 2019. Glaucoma: Current treatment and impact of advanced drug delivery systems. Life Sciences, 221, 362376.Google Scholar
YANG, X., BASSETT, S. E., LI, X., et al. 2002. Construction and selection of bead-bound combinatorial oligonucleoside phosphorothioate and phosphorodithioate aptamer libraries designed for rapid PCR-based sequencing. Nucleic Acids Research, 30, 18.Google Scholar
YANG, X., LI, N., and GORENSTEIN, D. G. 2011. Strategies for the discovery of therapeutic aptamers. Expert Opinion on Drug Discovery, 6, 7587.Google Scholar
YANG, X., LI, X., PROW, T. W., et al. 2003. Immunofluorescence assay and flow-cytometry selection of bead-bound aptamers. Nucleic Acids Research, 31, e54.Google Scholar
YU, Q., YAO, Y., ZHU, X., et al. 2020. In vivo flow cytometric evaluation of circulating metastatic pancreatic tumor cells after high-intensity focused ultrasound therapy. Cytometry A, 97, 900908.Google Scholar
YU, W. W., CHANG, E., DREZEK, R., and COLVIN, V. L. 2006. Water-soluble quantum dots for biomedical applications. Biochemical and Biophysical Research Communications, 348, 781786.Google Scholar
ZARBIN, M., MONTEMAGNO, C., LEARY, J., and RITCH, R. 2011. Artificial vision. Panminerva Medica, 53, 167177.Google Scholar
ZARBIN, M. A., MONTEMAGNO, C., LEARY, J. F., and RITCH, R. 2010a. Nanotechnology in ophthalmology. Canadian Journal of Ophthalmology, 45, 457476.Google Scholar
ZARBIN, M. A., MONTEMAGNO, C., LEARY, J. F., and RITCH, R. 2010b. Nanomedicine in ophthalmology: The new frontier. American Journal of Ophthalmology, 150, 144162.Google Scholar
ZARBIN, M. A., MONTEMAGNO, C., LEARY, J. F., and RITCH, R. 2012. Regenerative nanomedicine and the treatment of degenerative retinal diseases. WIREs Nanomedicine and Nanobiotechnology, 4, 113137.Google Scholar
ZEISS. 2019. Zeiss Super Resolution Microscopy. Essential Knowledge Briefings. 3rd ed. Jena, Germany: Zeiss.Google Scholar
ZHANG, L. W., and MONTEIRO-RIVIERE, N. A. 2009. Mechanisms of quantum dot nanoparticle cellular uptake. Toxicological Sciences, 110, 138155.Google Scholar
ZHAO, Z., ZHOU, Z., BAO, J., et al. 2013. Octapod iron oxide nanoparticles as high-performance T(2) contrast agents for magnetic resonance imaging. Nature Communications, 4, 2266.Google Scholar
Zhou, J., and Rossi, J.J. 2014. Cell-type-specific, aptamer-functionalized agents for targeted disease therapy. Molecular Therapy–Nucleic Acids, 3, e169.Google Scholar
ZHOU, Y., PENG, Z., SEVEN, E. S., and LEBLANC, R. M. 2018. Crossing the blood-brain barrier with nanoparticles. Journal of Controlled Release, 270, 290303.Google Scholar
ZWEIFEL, D. A., and WEI, A. 2005. Sulfide-arrested growth of gold nanorods. Chemistry of Materials, 17, 42564261.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • James F. Leary, Purdue University, Indiana
  • Book: Fundamentals of Nanomedicine
  • Online publication: 08 March 2022
  • Chapter DOI: https://doi.org/10.1017/9781139012898.016
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • James F. Leary, Purdue University, Indiana
  • Book: Fundamentals of Nanomedicine
  • Online publication: 08 March 2022
  • Chapter DOI: https://doi.org/10.1017/9781139012898.016
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • James F. Leary, Purdue University, Indiana
  • Book: Fundamentals of Nanomedicine
  • Online publication: 08 March 2022
  • Chapter DOI: https://doi.org/10.1017/9781139012898.016
Available formats
×