Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T23:48:03.359Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  17 November 2016

Anton Bovier
Affiliation:
Rheinische Friedrich-Wilhelms-Universität Bonn
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Gaussian Processes on Trees
From Spin Glasses to Branching Brownian Motion
, pp. 191 - 198
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Adke, S.R., and Moyal, J.E. 1963. A birth, death, and diffusion process. J. Math. Anal. Appl., 7, 209–224.Google Scholar
[2] Adler, R.J. 1990. An Introduction to Continuity, Extrema, and Related Topics for General Gaussian Processes. Institute of Mathematical Statistics Lecture Notes—Monograph Series, 12. Hayward, CA: IMS.
[3] Adler, R.J., and Taylor, J.E. 2007. Random Fields and Geometry. Springer Monographs in Mathematics. New York: Springer.
[4] Aïdéekon, E. 2013. Convergence in law of the minimum of a branching random walk. Ann. Probab., 41, 1362–1426.Google Scholar
[5] Aïdéekon, E., Berestycki, J., Brunet, É., and Shi, Z. 2013. Branching Brownian motion seen from its tip. Probab. Theory Related Fields, 157, 405–451.Google Scholar
[6] Aizenman, M., Sims, R., and Starr, S.L. 2003. An extended variational principle for the SK spin-glass model. Phys. Rev. B, 68, 214403.Google Scholar
[7] Arguin, L.-P. 2016. Extrema of log-correlated random variables: Principles and Examples. ArXiv e-prints, Jan.
[8] Arguin, L.-P., Bovier, A., and Kistler, N. 2011. Genealogy of extremal particles of branching Brownian motion. Comm. Pure Appl. Math., 64, 1647–1676.Google Scholar
[9] Arguin, L.-P., Bovier, A., and Kistler, N. 2012. Poissonian statistics in the extremal process of branching Brownian motion. Ann. Appl. Probab., 22, 1693–1711.Google Scholar
[10] Arguin, L.-P., Bovier, A., and Kistler, N. 2013a. An ergodic theorem for the frontier of branching Brownian motion. Electron. J. Probab., 18(53), 1–25.Google Scholar
[11] Arguin, L.-P., Bovier, A., and Kistler, N. 2013b. The extremal process of branching Brownian motion. Probab. Theory Related Fields, 157, 535–574.Google Scholar
[12] Aronson, D.G., and Weinberger, H.F. 1975. Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation. Pages 5–49 of: Partial Differential Equations and Related Topics (Program, Tulane University., New Orleans, LA., 1974). Lecture Notes in Mathematics, vol. 446. Berlin: Springer.
[13] Athreya, K.B., and Ney, P.E. 1972. Branching processes. Die Grundlehren der mathematischen Wissenschaften, Band 196. New York: Springer.
[14] Belius, D., and Kistler, N. 2016. The subleading order of two dimensional cover times. Probab. Theory Related Fields, online first, 1–92.Google Scholar
[15] Ben Arous, G., and Kuptsov, A. 2009. REM universality for random Hamiltonians. Pages 45–84 of: Spin Glasses: Statics and Dynamics. Progr. Probab., vol. 62. Basel: Birkhäuser.
[16] Ben Arous, G., Gayrard, V., and Kuptsov, A. 2008. A new REM conjecture. Pages 59–96 of: In and Out of Equilibrium. 2. Progr. Probab., vol. 60. Basel: Birkhäuser.
[17] Berman, S.M. 1964. Limit theorems for the maximum term in stationary sequences. Ann. Math. Statist., 35, 502–516.Google Scholar
[18] Bernoulli, N. 1709. Specimina artis conjectandi, ad quaestiones juris applicatae. Basel. Acta Eruditorum Supplementa, pp. 159-170.Google Scholar
[19] Bertoin, J., and Le Gall, J.-F. 2000. The Bolthausen-Sznitman coalescent and the genealogy of continuous-state branching processes. Probab. Theory Related Fields, 117, 249–266.Google Scholar
[20] Billingsley, P. 1971. Weak Convergence of Measures: Applications in Probability. Philadelphia: Society for Industrial and Applied Mathematics.
[21] Biskup, M., and Louidor, O. 2014. Conformal symmetries in the extremal process of two-dimensional discrete Gaussian Free Field. ArXiv e-prints, Oct.
[22] Biskup, M., and Louidor, O. 2016. Extreme local extrema of two-dimensional discrete Gaussian free field. Commun. Math. Phys., online first, 1–34.Google Scholar
[23] Biskup, M., and Louidor, O. 2016. Full extremal process, cluster law and freezing for two-dimensional discrete Gaussian Free Field. ArXiv e-prints, June.
[24] Bolthausen, E., and Sznitman, A.-S. 1998. On Ruelle's probability cascades and an abstract cavity method. Comm. Math. Phys., 197, 247–276.Google Scholar
[25] Bovier, A. 2006. Statistical Mechanics of Disordered Systems. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge: Cambridge University Press.
[26] Bovier, A. 2015. From spin glasses to branching Brownian motion—and back? Pages 1–64 of: RandomWalks, Random Fields, and Disordered Systems. Lecture Notes in Mathematics, vol. 2144. Cham: Springer.
[27] Bovier, A., and Hartung, L. 2014. The extremal process of two-speed branching Brownian motion. Electron. J. Probab., 19(18), 1–28.Google Scholar
[28] Bovier, A., and Hartung, L. 2015. Variable speed branching Brownian motion: 1. Extremal processes in the weak correlation regime. ALEA Lat. Am. J. Probab. Math. Stat., 12, 261–291.Google Scholar
[29] Bovier, A., and Hartung, L. 2016. Extended convergence of the extremal process of branching Brownian motion. Ann. Appl. Probab., to appear.
[30] Bovier, A., and Kurkova, I. 2004a. Derrida's generalised random energy models I. Models with finitely many hierarchies. Ann. Inst. H. Poincaré Probab. Statist., 40, 439–480.Google Scholar
[31] Bovier, A., and Kurkova, I. 2004b. Derrida's generalized random energy models II. Models with continuous hierarchies. Ann. Inst. H. Poincaré Probab. Statist., 40, 481–495.Google Scholar
[32] Bovier, A., Kurkova, I., and Löwe, M. 2002. Fluctuations of the free energy in the REM and th. p-spin SK models. Ann. Probab., 30, 605–651.Google Scholar
[33] Bramson, M. 1978. Maximal displacement of branching Brownian motion. Comm. Pure Appl. Math., 31, 531–581.Google Scholar
[34] Bramson, M. 1983. Convergence of solutions of the Kolmogorov equation to travelling waves. Mem. Amer. Math. Soc., 44(285), iv+190.Google Scholar
[35] Bramson, M. 1986. Location of the travelling wave for the Kolmogorov equation. Probab. Theory Related Fields, 73, 481–515.Google Scholar
[36] Bramson, M., and Zeitouni, O. 2012. Tightness of the recentered maximum of the two-dimensional discrete Gaussian free field. Comm. Pure Appl. Math., 65, 1–20.Google Scholar
[37] Bramson, M., Ding, J., and Zeitouni, O. 2016. Convergence in law of the maximum of the two-dimensional discrete Gaussian free field. Commun. Pure Appl. Math., 69, 62–123.Google Scholar
[38] Capocaccia, D., Cassandro, M., and Picco, P. 1987. On the existence of thermodynamics for the generalized random energy model. J. Statist. Phys., 46, 493–505.Google Scholar
[39] Chauvin, B., and Rouault, A. 1988. KPP equation and supercritical branching Brownian motion in the subcritical speed area. Application to spatial trees. Probab. Theory Related Fields, 80, 299–314.Google Scholar
[40] Chauvin, B., and Rouault, A. 1990. Supercritical branching Brownian motion and K-P-P equation in the critical speed-area. Math. Nachr., 149, 41–59.Google Scholar
[41] Chauvin, B., Rouault, A., and Wakolbinger, A. 1991. Growing conditioned trees. Stochastic Process. Appl., 39, 117–130.Google Scholar
[42] Daley, D.J., and Vere-Jones, D. 2003. An Introduction to the Theory of Point Processes. Vol. 1: Elementary Theory and Methods. Springer Series in Statistics. New York: Springer.
[43] Daley, D.J., and Vere-Jones, D. 2007. An Introduction to the Theory of Point Processes. Vol. 2: General Theory and Structure. Springer Series in Statistics. New York: Springer.
[44] Derrida, B. 1980. Random-energy model: limit of a family of disordered models. Phys. Rev. Lett., 45, 79–82.Google Scholar
[45] Derrida, B. 1981. Random-energy model: an exactly solvable model of disordered systems. Phys. Rev. B (3), 24, 2613–2626.Google Scholar
[46] Derrida, B. 1985. A generalisation of the random energy model that includes correlations between the energies. J. Phys. Lett., 46, 401–407.Google Scholar
[47] Derrida, B., and Spohn, H. 1988. Polymers on disordered trees, spin glasses, and traveling waves. J. Statist. Phys., 51, 817–840.Google Scholar
[48] Ding, J. 2013. Exponential and double exponential tails for maximum of twodimensional discrete Gaussian free field. Probab. Theory Related Fields, 157, 285–299.Google Scholar
[49] Duplantier, B., Rhodes, R., Sheffield, S., and Vargas, V. 2014a. Critical Gaussian multiplicative chaos: Convergence of the derivative martingale. Ann. Probab., 42, 1769–1808.Google Scholar
[50] Duplantier, B., Rhodes, R., Sheffield, S., and Vargas, V. 2014b. Renormalization of critical Gaussian multiplicative chaos and KPZ relation. Comm. Math. Phys., 330, 283–330.Google Scholar
[51] Fang, M., and Zeitouni, O. 2012a. Branching random walks in time inhomogeneous environments. Electron. J. Probab., 17(67), 1–18.Google Scholar
[52] Fang, M., and Zeitouni, O. 2012b. Slowdown for time inhomogeneous branching Brownian motion. J. Statist. Phys., 149, 1–9.Google Scholar
[53] Fernique, X. 1974. Des résultats nouveaux sur les processus gaussiens. C. R. Acad. Sci. Paris Sér. A, 278, 363–365.Google Scholar
[54] Fernique, X. 1984. Comparaison de mesures gaussiennes et de mesures produit. Ann. Inst. H. Poincaré Probab. Statist., 20, 165–175.Google Scholar
[55] Fernique, X. 1989. Régularité de fonctions aléatoires gaussiennes stationnaires à valeurs vectorielles. Pages 66–73 of: Probability Theory on Vector Spaces, IV (Láncut, 1987). Lecture Notes in Mathematics, vol. 1391. Berlin: Springer.
[56] Fisher, R.A. 1937. The wave of advance of advantageous genes. Ann. Eugen., 7, 355–369.Google Scholar
[57] Fréchet, M. 1927. Sur la loi de probabilité de l'écart maximum. Ann. Soc. Pol. Math., 6, 93–116.Google Scholar
[58] Gardner, E., and Derrida, B. 1986a. Magnetic properties and function q(x) of the generalised random energy model. J. Phys. C, 19, 5783–5798.Google Scholar
[59] Gardner, E., and Derrida, B. 1986b. Solution of the generalised random energy model. J. Phys. C, 19, 2253–2274.Google Scholar
[60] Gnedenko, B. 1943. Sur la distribution limite du terme maximum d'une série aléatoire. Ann. Math, 44, 423–453.Google Scholar
[61] Gordon, Y. 1985. Some inequalities for Gaussian processes and applications. Israel J. Math., 50, 265–289.Google Scholar
[62] Gouéré, J.-B. 2014. Le mouvement Brownien branchant vu depuis sa particule la plus à gauche (d'après Arguin–Bovier–Kistler et Aïdékon–Berestycki–Brunet– Shi). Astérisque, 361, Exp. No. 1067, ix, 271–298.Google Scholar
[63] Guerra, F. 2003. Broken replica symmetry bounds in the mean field spin glass model. Comm. Math. Phys., 233, 1–12.Google Scholar
[64] Gumbel, E. 1958. Statistics of Extremes. New York: Columbia University Press.
[65] Hardy, R., and Harris, S.C. 2006. A conceptual approach to a path result for branching Brownian motion. Stochastic Process. Appl., 116, 1992–2013.Google Scholar
[66] Harris, S.C. 1999. Travelling-waves for the FKPP equation via probabilistic arguments. Proc. Roy. Soc. Edinburgh Sect. A, 129, 503–517.Google Scholar
[67] Harris, S.C., and Roberts, M.I. 2015. The many-to-few lemma and multiple spines. Ann. Inst. H. Poincaré Probab. Statist., online first, 1–18.Google Scholar
[68] Harris, Th. E. 1963. The Theory of Branching Processes. Die Grundlehren der Mathematischen Wissenschaften, Bd. 119. Berlin: Springer.
[69] Ikeda, N., Nagasawa, M., and Watanabe, S. 1968a. Markov branching processes I. J. Math. Kyoto Univ., 8, 233–278.Google Scholar
[70] Ikeda, N., Nagasawa, M., and Watanabe, S. 1968b. Markov branching processes II. J. Math. Kyoto Univ., 8, 365–410.Google Scholar
[71] Ikeda, N., Nagasawa, M., and Watanabe, S. 1969. Markov branching processes I. J. Math. Kyoto Univ., 9, 95–160.Google Scholar
[72] Kac, M. 1949. On distributions of certain Wiener functionals. Trans. Amer. Math. Soc., 65, 1–13.Google Scholar
[73] Kahane, J.-P. 1985. Sur le chaos multiplicatif. Ann. Sci. Math. Québec, 9, 105–150.Google Scholar
[74] Kahane, J.-P. 1986. Une inégalité du type de Slepian et Gordon sur les processus gaussiens. Israel J. Math., 55, 109–110.Google Scholar
[75] Kallenberg, O. 1983. Random Measures. Berlin: Akademie Verlag.
[76] Karatzas, I., and Shreve, S.E. 1988. Brownian Motion and Stochastic Calculus. Graduate Texts in Mathematics. New York: Springer.
[77] Kingman, J.F.C. 1993. Poisson Processes. Oxford Studies in Probability, vol. 3. New York: The Clarendon Press, Oxford University Press.
[78] Kistler, N. 2015. Derrida's random energy models. From spin glasses to the extremes of correlated random fields. Pages 71–120 of: Correlated Random Systems: Five Different Methods. Lecture Notes in Mathematics, vol. 2143. Cham: Springer.
[79] Kistler, N., and Schmidt, M.A. 2015. From Derrida's random energy model to branching random walks: from 1 to 3. Electron. Commun. Probab., 20(47), 1–12.Google Scholar
[80] Kolmogorov, A., Petrovsky, I., and Piscounov, N. 1937. Etude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique. Moscow Univ. Math. Bull., 1, 1–25.Google Scholar
[81] Kyprianou, A.E. 2004. Travelling wave solutions to the K-P-P equation: alternatives to Simon Harris' probabilistic analysis. Ann. Inst. H. Poincaré Probab. Statist., 40, 53–72.Google Scholar
[82] Lalley, S. 2010. Branching Processes. Lecture Notes, University of Chicago.
[83] Lalley, S.P., and Sellke, T. 1987. A conditional limit theorem for the frontier of a branching Brownian motion. Ann. Probab., 15, 1052–1061.Google Scholar
[84] Leadbetter, M.R., Lindgren, G., and Rootzén, H. 1983. Extremes and related properties of random sequences and processes. Springer Series in Statistics. New York: Springer.
[85] Ledoux, M., and Talagrand, M. 1991. Probability in Banach Spaces: isoperimetry and processes. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 23. Berlin: Springer.
[86] Liggett, Th. M. 1978. Random invariant measures for Markov chains, and independent particle systems. Z. Wahrsch. Verw. Gebiete, 45, 297–313.Google Scholar
[87] Madaule, T. 2015. Convergence in law for the branching random walk seen from its tip. J. Theor. Probab., online first, 1–37.Google Scholar
[88] Maillard, P., and Zeitouni, O. 2016. Slowdown in branching Brownian motion with inhomogeneous variance. Ann. Inst. H. Poincaré Probab. Statist., online first, 1–20.Google Scholar
[89] Mallein, B. 2015. Maximal displacement of a branching random walk in timeinhomogeneous environment. Stochastic Process. Appl., 125, 3958–4019.Google Scholar
[90] McKean, H.P. 1975. Application of Brownian motion to the equation of Kolmogorov–Petrovskii–Piskunov. Comm. Pure Appl. Math., 28, 323–331.Google Scholar
[91] Mézard, M., Parisi, G., and Virasoro, M.A. 1987. Spin Glass Theory and Beyond. World Scientific Lecture Notes in Physics, vol. 9. Teaneck, NJ: World Scientific Publishing.
[92] Moyal, J.E. 1962. Multiplicative population chains. Proc. Roy. Soc. Ser. A, 266, 518–526.Google Scholar
[93] Neveu, J. 1986. Arbres et processus de Galton-Watson. Ann. Inst. H. Poincaré Probab. Statist., 22, 199–207.Google Scholar
[94] Neveu, J. 1992. A continuous state branching process in relation with the GREM model of spin glass theory. rapport interne 267. Ecole Polytechnique Paris.
[95] Newman, C., and Stein, D. 2013. Spin Glasses and Complexity. Princeton, NJ: Princeton University Press.
[96] Nolen, J., Roquejoffre, J.-M., and Ryzhik, L. 2015. Power-like delay in time inhomogeneous Fisher-KPP equations. Commun. Partial Differential Equations, 40, 475–5–5.Google Scholar
[97] Panchenko, D. 2013. The Sherrington–Kirkpatrick model. Springer Monographs in Mathematics. New York: Springer.
[98] Piterbarg, V.I. 1996. Asymptotic Methods in the Theory of Gaussian Processes and Fields. Translations of Mathematical Monographs, vol. 148. Providence, RI: American Mathematical Society.
[99] Resnick, S.I. 1987. Extreme Values, Regular Variation, and Point Processes. Applied Probability, vol. 4. New York: Springer.
[100] Rhodes, R., and Vargas, V. 2014. Gaussian multiplicative chaos and applications: A review. Probab. Surv., 11, 315–392.Google Scholar
[101] Roberts, M.I. 2013. A simple path to asymptotics for the frontier of a branching Brownian motion. Ann. Probab., 41, 3518–3541.Google Scholar
[102] Ruelle, D. 1987. A mathematical reformulation of Derrida's REM and GREM. Comm. Math. Phys., 108, 225–239.Google Scholar
[103] Sherrington, D., and Kirkpatrick, S. 1972. Solvable model of a spin glas. Phys. Rev. Letts., 35, 1792–1796.Google Scholar
[104] Shi, Z. 2016. Branching Random Walks. Lecture Notes in Mathematics, vol. 2151. Cham: Springer.
[105] Skorohod, A.V. 1964. Branching diffusion processes. Teor. Verojatnost. i Primenen., 9, 492–497.Google Scholar
[106] Slepian, D. 1962. The one-sided barrier problem for Gaussian noise. Bell System Tech. J., 41, 463–501.Google Scholar
[107] Stroock, D.W., and Varadhan, S. R. S. 1979. Multidimensional Diffusion Processes. Grundlehren der Mathematischen Wissenschaften, vol. 233. Berlin-New York: Springer.
[108] Talagrand, M. 2003. Spin Glasses: a Challenge for Mathematicians. Ergebnisse der Mathematik und ihrer Grenzgebiete. (3), vol. 46. Berlin: Springer.
[109] Talagrand, M. 2006. The Parisi formula. Ann. of Math. (2), 163, 221–263.Google Scholar
[110] Talagrand, M. 2011a. Mean Field Models for Spin Glasses. Volume I. Basic Examples. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., vol. 54. Berlin: Springer.
[111] Talagrand, M. 2011b. Mean Field Models for Spin Glasses. Volume II. Advanced Replica-Symmetry and Low Temperature. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., vol. 55. Heidelberg: Springer.
[112] Uchiyama, K. 1978. The behavior of solutions of some nonlinear diffusion equations for large time. J. Math. Kyoto Univ., 18, 453–508.Google Scholar
[113] Ulam, S.M. 1968. Computations on certain binary branching processes. Pages 168–171 of: Computers in Mathematical Research. Amsterdam: North-Holland.
[114] von Mises, R. 1936. La distribution de la plus grande de n valeurs. Rev. Math. Union Interbalcanique, 1, 141–160.Google Scholar
[115] Watanabe, T. 2004. Exact packing measure on the boundary of a Galton-Watson tree. J. London Math. Soc. (2), 69, 801–816.Google Scholar
[116] Watson, H.W., and Galton, F. 1875. On the probability of the extinction of families. J. Anthropol. Inst. Great Brit. Ireland, 4, 138–144.Google Scholar
[117] Zeitouni, O. 2016. Branching random walks and Gaussian fields. Proceedings of Symposia in Pure Mathematics, 91, 437–471.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Anton Bovier, Rheinische Friedrich-Wilhelms-Universität Bonn
  • Book: Gaussian Processes on Trees
  • Online publication: 17 November 2016
  • Chapter DOI: https://doi.org/10.1017/9781316675779.011
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Anton Bovier, Rheinische Friedrich-Wilhelms-Universität Bonn
  • Book: Gaussian Processes on Trees
  • Online publication: 17 November 2016
  • Chapter DOI: https://doi.org/10.1017/9781316675779.011
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Anton Bovier, Rheinische Friedrich-Wilhelms-Universität Bonn
  • Book: Gaussian Processes on Trees
  • Online publication: 17 November 2016
  • Chapter DOI: https://doi.org/10.1017/9781316675779.011
Available formats
×