Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-10T09:21:20.906Z Has data issue: false hasContentIssue false

11 - The Genetic Epidemiology of Orphan Diseases in North Africa

Published online by Cambridge University Press:  02 December 2019

Muntaser E. Ibrahim
Affiliation:
University of Khartoum
Charles N. Rotimi
Affiliation:
National Human Genome Research Institute/NIH
Get access

Summary

North Africa (NA) is defined as the northernmost geographical region of the African continent, linked by the Sahara from the south and separated from Europe by the Mediterranean Sea. It encompasses five countries from east to west: Egypt, Libya, Tunisia, Algeria, and Morocco; these are also known as Maghreb countries. From the political point of view, at the regional level, Mauritania is considered part of the Maghreb. The current population size is estimated to be around 75 million. A set of features affects markedly the prevalence and distribution of the genetic diseases in the region. The demographic features include high population growth rates, high birth rates, and high infant mortality rates. The family structure was as large as that of Arab families, with more than six children per woman until the middle of the twentieth century. Nowadays, North African (NAf) families show reduced rates of fertility that reach their lowest point at 1.06 children per decade in Tunisia (United Nations, Department of Economic and Social Affairs, Population Division, 2010).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abudejaja, AH, Khan, MA, Singh, R, et al. (1987). Experience of a family clinic at Benghazi, Libya, and sociomedical aspects of its catchment population. Fam Pract 4: 1926.CrossRefGoogle ScholarPubMed
Ait-Idir, D, Khilan, A, Djerdjouri, B, and El-Shanti, H (2011). Spectrum of mutations and carrier frequency of familial Mediterranean fever gene in the Algerian population. Rheumatology (Oxford) 50: 23062310.Google Scholar
Al-Alami, JR, Tayeh, MK, Najib, DA, et al. (2003). Familial Mediterranean fever mutation frequencies and carrier rates among a mixed Arabic population. Saudi Med J 24: 10551059.Google ScholarPubMed
Al-Herz, W, Alsmadi, O, Melhem, M, et al. (2013). Major histocompatibility complex class II deficiency in Kuwait: clinical manifestations, immunological findings and molecular profile. J Clin Immunol 33(3): 513519.Google Scholar
Alif, N, Hess, K, Straczek, J, et al. (1999). Mucopolysaccharidosis type I: characterization of a common mutation that causes Hurler syndrome in Moroccan subjects. Ann Hum Genet 63: 916.CrossRefGoogle ScholarPubMed
Al Kaissi, A, Ghachem, MB, Necib, MN, et al. (2002). Hypohidrotic ectodermal dysplasia with tibial aplasia. Clin Dysmorphol 11: 175178.Google Scholar
Al Kaissi, A, Nessib, N, Ghachem, MB, et al. (2005). A novel syndrome resembling Desbuquois dysplasia. Am J Med Genet 132: 6875.Google Scholar
Al Kaissi, A, Ben Chehida, F, Gharbi, H, et al. (2007a). Persistent torticollis, facial asymmetry, grooved tongue, and dolicho-odontoid process in connection with atlas malformation complex in three family subjects. Eur Spine J 16: 265270.Google Scholar
Al Kaissi, A, Grill, F, Safi, H, et al. (2007b). Craniocervical junction malformation in a child with oroman-dibular-limb hypogenesis: Meobius syndrome. Orphanet J Rare Dis 8: 2.Google Scholar
Al Kaissi, A, Chehida, FB, Ghachem, MB, Klaushofer, K, and Grill, F (2008). A hypoplastic atlas and long odontoid process in a girl manifesting pheno-typic features resembling spondyloepimetaphyseal dysplasia joint laxity syndrome. Skeletal Radiol 37: 469473.CrossRefGoogle Scholar
Al Kaissi, A, Chehida, FB, Ghachem, MB, Grill, F, and Klaushofer, K (2009). Atlanto-axial segmentation defects and os odontoideum in two male siblings with opsismodysplasia. Skeletal Radiol 38: 293296.CrossRefGoogle ScholarPubMed
Ammar-Khodja, F, Makrelouf, M, Malek, R, Ibrahim, H, and Zenati, A (2007). Frequency of the 35delG allele causing nonsyndromic recessive deafness in the Algerian patients. Genet Couns 18(4): 383391.Google ScholarPubMed
Aouraghe, H (2006). Histoire du peuplement paléolithique de l’Afrique du Nord et dynamique des interactions entre l’homme et son environnement. CR Pale 5: 237242.Google Scholar
Arambourg, C (1963). Le gisement de Ternifine II-l’Atlanthrope mauretanicus. Archives de l’IPH 32: 37190.Google Scholar
Argov, Z, Sadeh, M, Mazor, K, et al. (2000). Muscular dystrophy due to dysferlin deficiency in Libyan Jews: clinical and genetic features. Brain 123 (Pt 6): 12291237.CrossRefGoogle ScholarPubMed
Ayadi, A (1988). Les glycogènoses hépatiques. Thèse de Médecine, Faculté de Médecine de Tunis.Google Scholar
Badr, FM (1972). Genetic studies of Egyptian Nubian population: frequency and types of consanguineous marriages. Human Heredity 22: 387398.Google Scholar
Barkaoui, E, Cherif, W, Tebib, N, et al. (2007). Mutation spectrum of glycogen storage disease type Ia in Tunisia: implication for molecular diagnosis. J Inherit Metab Dis 30(6): 989.CrossRefGoogle ScholarPubMed
Bchetnia, M, Bozgia, M, Laroussi, N, et al. (2015). The first Mal de Meleda case in Libya: identification of a SLURP1 mutation. Int J Dermatol 54: 14261428.Google Scholar
Bekada, A, Fregel, R, Cabrera, VM, et al. (2013). Introducing the Algerian mitochondrial DNA and Y-chromosome profiles into the North African landscape. PLoS One 8(2): e56775.CrossRefGoogle ScholarPubMed
Belarbi, S, Hecham, N, Lesage, S, et al. (2010). LRRK2 G2019S mutation in Parkinson’s disease: a neuropsychological and neuropsychiatric study in a large Algerian cohort. Parkinsonism Relat Disord 16(10): 676679.Google Scholar
Belguith, H, Hajji, S, Salem, N, et al. (2005). Analysis of GJB2 mutation: evidence for a Mediterranean ancestor for the 35delG mutation. Clin Genet 68: 188189.Google Scholar
Ben Arab, S, Bonaïti-Pellié, C, and Belkahia, A (1990). An epidemiological and genetic study of congenital profound deafness in Tunisia (governorate of Nabeul). J Med Genet 27(1): 2933.CrossRefGoogle ScholarPubMed
Ben Arab, S, Masmoudi, S, Beltaief, N, Hachicha, S, and Ayadi, H (2004). Consanguinity and endogamy in Northern Tunisia and its impact on non-syndromic deafness. Genet Epidemiol 27: 7479.CrossRefGoogle ScholarPubMed
Ben Chehida, A, Tebib, N, Cherif, W, et al. (2008). Glycogen storage disease type I in Tunisia: an epidemiological analysis. J Inherit Metab Dis 31(Suppl. 2): S199S204.Google Scholar
Ben Halim, N, Ben Alaya Bouafif, N, Romdhane, L, et al. (2013). Consanguinity, endogamy, and genetic disorders in Tunisia. J Community Genet 4: 273284.Google Scholar
Ben Hamida, M, Miladi, N, Turki, I, and Zaiem, H (1992). Duchenne muscular dystrophy in Tunisia: a clinical and morphological study of 77 cases. J Neurol Sci 107(1): 6064.CrossRefGoogle ScholarPubMed
Ben M’rad, L and Chalbi, N (2006). Milieu de résidence origine des conjoints et consanguinité en Tunsie. Antropo 12: 6371.Google Scholar
Ben Othmane, K, Ben Hamida, M, Pericak-Vance, MA, et al. (1992). Linkage of Tunisian autosomal recessive Duchenne-like muscular dystrophy to the pericentromeric region of chromosome 13q. Nat Genet 2: 315317.Google Scholar
Ben Rekaya, M, Messaoud, O, Talmoudi, F, et al. (2009). High frequency of the V548AfsX572 XPC mutation in Tunisia: implication for molecular diagnosis. J Hum Genet 54: 426429.Google Scholar
Ben Rekaya, M, Messaoud, O, Mebazaa, A, et al. (2011). A novel POLH gene mutation in a xeroderma pigmentosum-V Tunisian patient: phenotype–genotype correlation. J Genet 90(3): 483487.CrossRefGoogle Scholar
Ben Rhouma, F, Kallel, F, Kefi, R, et al. (2012). Adult Gaucher disease in southern Tunisia: report of three cases. Diagn Pathol 10: 4.Google Scholar
Ben Turkia, A, Chemli, J, and Chaabouni, M (2005). Les maladies lysosomales en Tunisie: étude multicentrique sur les mucopolysaccharidoses, la maladie de Gaucher et la maladie de Niemann Pick type B. Communication. 6ème école des maladies héréditaires du métabolisme.Google Scholar
Ben Turkia, H, Tebib, N, Azzouz, H, et al. (2009). Incidence of mucopolysaccharidoses in Tunisia. Tunis Med 87(11): 782785.Google ScholarPubMed
Benallègue, A and Kedji, F (1984). Consanguinité et santé publique: etude algérienne. Archives Francaises de Pediatrie 41: 435440.Google Scholar
Benamer, HT and de Silva, R (2010). LRRK2 G2019S in the North African population: a review. Eur Neurol 63: 321325.CrossRefGoogle ScholarPubMed
Ben-Mustapha, I, Ben-Farhat, K, Guirat-Dhouib, N, et al. (2013). Clinical, immunological and genetic findings of a large Tunisian series of major histocompatibility complex class II deficiency patients. J Clin Immunol 33(4): 865870.CrossRefGoogle ScholarPubMed
Ben-Omran, T (2010). Genetic disorders in Libya. In Teebi, AS, ed., Genetic Disorders Among Arab Populations. Springer.Google Scholar
Bosch, E, Calafell, F, Perez-Lezaun, A, et al. (2000). Genetic structure of north-west Africa revealed by STR analysis. Eur J Hum Gene 8: 360366.Google Scholar
Bouadjar, B, Aït-Belkacem, F, Daya-Grosjean, L, et al. (1996). [Xeroderma pigmentosum: a study in 40 Algerian patients]. Ann Dermatol Venereol, 1 23(5): 303306.Google Scholar
Bouadjar, B, Benmazouzia, S, Prud’homme, JF, Cure, S, and Fischer, J (2000). Clinical and genetic studies of 3 large, consanguineous, Algerian families with Mal de Meleda. Arch Dermatol 136: 12471252.CrossRefGoogle ScholarPubMed
Bouchlaka, C, Abdelhak, S, Amouri, A, et al. (2003). Fanconi anemia in Tunisia: high prevalence of group A and identification of new FANCA mutations. J Hum Genet 48(7): 352361.CrossRefGoogle Scholar
Bouchlaka, C, Maktouf, C, Mahjoub, B, et al. (2007). Genetic heterogeneity of megaloblastic anaemia type 1 in Tunisian patients. J Hum Genet 52(3): 262270.Google Scholar
Brett, M and Fentress, E (1997). The Berbers. Blackwell.Google Scholar
Broughton, BC, Cordonnier, A, Kleijer, WJ, et al. (2002). Molecular analysis of mutations in DNA polymerase eta in xeroderma pigmentosum variant patients. PNAS 99: 815820.CrossRefGoogle ScholarPubMed
Camps, G (1974). Les civilisations préhistoriques de l’Afrique du Nord et du Sahara. Drouin Edition.Google Scholar
Camps, G (1989). Les Berbères: Mémoire et identité. Errance Edition.Google Scholar
Chaabouni, HB, Ksantini, M, M’rad, R, et al. (2007). MEFV mutations in Tunisian patients suffering from familial Mediterranean fever. Semin Arthritis Rheum 36: 397401.Google Scholar
Chaabouni, M, Aoulou, H, Tebib, N, et al. (2004). [Gaucher’s disease in Tunisia (multicenter study)]. Rev Med Interne 25(2): 104110.Google Scholar
Chanarin, I (1990). The Megaloblastic Anaemias. 3rd edn. Blackwell Scientific.Google Scholar
Charfeddine, C, Mokni, M, Ben Mousli, R, et al. (2003). A novel missense mutation in the gene encoding SLURP-1 in patients with Mal de Meleda from northern Tunisia. Brit J Derm 149: 11081115.Google Scholar
Charoute, H, Nahili, H, Abidi, O, et al. (2013). The Moroccan Genetic Disease Database (MGDD): a database for DNA variations related to inherited disorders and disease susceptibility. Eur J Hum Genet. DOI: 10.1038/ejhg.2013.151.CrossRefGoogle Scholar
Cherif, A, Cherif, F, Siala-Guagi, F, et al. (2005a). Épidermolyse bulleuse jonctionnelle congénitale, aplasie cutanée et atrésie pylorique. Ann Dermatol Venereol 132(3): 298299.Google Scholar
Cherif, F, Mnajja, N, Feriani, S, et al. (2005b). Hereditary epidermolysis bullosa in Tunisia: an epidemio-clinical and ultrastructural study. Arch Inst Pasteur Tunis 821(4): 5358.Google Scholar
Cherif, W, Ben Rhouma, F, Messai, H, et al. (2012). High frequency of W1327X mutation in glycogen storage disease type III patients from central Tunisia. Ann Biol Clin (Paris) 70(6): 648650.Google ScholarPubMed
Chkioua, L, Khedhiri, S, Turkia, HB, et al. (2007). Mucopolysaccharidosis type I: identification of alpha-L-iduronidase mutations in Tunisian families. Arch Pediatr 14: 11831189.Google Scholar
Colombo, R (2000). Age and origin of the PRNP E200K mutation causing familial Creutzfeldt–Jacob disease in Libyan Jews. Am J Hum Genet 67: 528531.Google Scholar
Dahri, S, Desviat, LR, Pérez, B, et al. (2010). Mutation analysis of phenylketonuria patients from Morocco: high prevalence of mutation G352fsdelG and detection of a novel mutation p.K85X. Clin Biochem 43: 7681.Google Scholar
Denic, S and Nicholls, MG (2007). Genetic benefits of consanguinity through selection of genotypes protective against malaria. Hum Biol 79: 145158.Google Scholar
Denoyelle, F, Weil, D, Maw, MA, et al. (1997). Prelingual deafness: high prevalence of a 30delG mutation in the connexin 26 gene. Hum Mol Genet 6(12): 21732177.Google Scholar
Deyde, VM, Lo, BB, Khalifa, IO, et al. (2002). Epidemiological profile of hemoglobinopathies in the Mauritanian population. Ann Hematol 81: 320321.Google Scholar
Djidjik, R, Messaoudani, N, Tahiat, A, et al. (2012). Clinical, immunological and genetic features in eleven Algerian patients with major histocompatibility complex class II expression deficiency. Allergy Asthma Clin Immunol 8(1): 14.Google Scholar
Donnarumma, M, Regis, S, Tappino, B, et al. (2007). Molecular analysis and characterization of nine novel CTSK mutations in twelve patients affected by pycnodysostosis. Hum Mutat 28(5): 524.Google Scholar
Doubaj, Y, Laarabi, FZ, Elalaoui, SC, Barkat, A, and Sefiani, A (2012). Carrier frequency of the recurrent mutation c.1643_1644delTG in the XPC gene and birth prevalence of the xeroderma pigmentosum in Morocco. J Dermatol 39(4): 382384.Google Scholar
Ebermann, I, Walger, M, Scholl, HP, et al. (2007). Truncating mutation of the DFNB59 gene causes cochlear hearing impairment and central vestibular dysfunction. Hum Mutat 28(6): 571577.Google Scholar
El Fékih, N, Fredj, M, Aounallah-Skhiri, H, et al. (2009). [Neurological abnormalities in xeroderma pigmentosum]. Rev Neurol (Paris) 165(11): 967970.Google Scholar
El-Bassyouni, HT, Afifi, HH, El-Awady, MK, and Meguid, NA (1999). Mucopolysaccharidosis type I: clinical and biochemical study. East Mediterr Health J 5: 259366.Google Scholar
El-Beshlawy, A, Ragab, L, Youssry, I, et al. (2006). Enzyme replacement therapy and bony changes in Egyptian paediatric Gaucher disease patients. J Inherit Metab Dis 29: 9298.CrossRefGoogle ScholarPubMed
Eldeep, A, Benyones, R, Dougman, K, and Esahli, H (2009). A five years review of admission patterns and outcomes in a pediatric intensive care unit in Elkhadra hospital. Jamahiriya Med J 9(3): 205209.Google Scholar
El-Harouni, AA, Zaki, MS, Fateen, EM, and Meguid, NA (2002). GM2 gangliosidosis: clinical, genetic and biochemical studies among Egyptian patients. Egypt J Neurol Psych Neurosurg 39: 8797.Google Scholar
Elkerch, F, Sbiti, A, Azibi, K, et al. (2001). La gamma-sarcoglycanopathie par la mutation del521T auMaroc: À propos de 20 cas. Rev Magh Pédiat 11(4): 189192.Google Scholar
Elmahmoudi, H, Chalbi, A, Ben-Lakhal, F, et al. (2012). Regional registry of bleeding disorders in Tunisia. Haemophilia 18(6): e400e403.Google Scholar
El-Morsy, Z, Khashaba, MT, Soliman, O-S, Yahia, S, and El-Hady, DA (2011). Glucosidase acid beta gene mutations in Egyptian children with Gaucher disease and relation to disease phenotypes. World J Pediatr 7(4): 326330.Google Scholar
El Sherif, RM, Fahmy, NA, Nonaka, I, and Etribi, MA (2007). Patterns of dystrophin gene deletion in Egyptian Duchenne/Becker muscular dystrophy patients. Acta Myol 26: 145150.Google Scholar
Endo, Y, Fateen, E, Aoyama, Y, et al. (2005). Molecular characterization of Egyptian patients with glycogen storage disease type IIIa. J Hum Genet 50(10): 538542.Google Scholar
Endo, Y, Fateen, E, El Shabrawy, M, et al. (2009). Egyptian glycogen storage disease type III: identification of six novel AGL mutations, including a large 1.5 kb deletion and a missense mutation p.L620P with subtype IIId. Clin Chem Lab Med 47(10): 12331238.Google Scholar
Ennafaa, H, Fregel, R, Khodjet-El-Khil, H, et al. (2011). Mitochondrial DNA and Y-chromosome microstructure in Tunisia. J Hum Genet 56: 734741.CrossRefGoogle ScholarPubMed
Esteban, E, Gonzalez-Perez, E, Harich, N, et al. (2004). Genetic relationships among Berbers and South Spaniards based on CD4 microsatellite/Alu haplotypes. Ann Hum Biol 31: 202212.CrossRefGoogle ScholarPubMed
Farrer, MJ, Gibson, R, and Hentati, F (2009). The ancestry of LRRK2Gly2019Ser parkinsonism. Lancet Neurol 7: 770.Google Scholar
Fathallah, DM, Bejaoui, M, Lepaslier, D, et al. (1997). Carbonic anhydrase II (CA II) deficiency in Maghrebian patients: evidence for founder effect and genomic recombination at the CA II locus. Hum Genet 99: 634647.Google Scholar
Ferembach, D (1986). Les hommes du Paléolithique supérieur autour du bassin méditerranéen. L’Anthropologie Paris 90: 579587.Google Scholar
Fine, JD, Johnson, LB, Suchindran, C, Moshell, A, and Gedde-Dahl, T Jr. (1999). The epidemiology of inherited epidermolysis bulllosa: findings in the US, Canadian and European study populations. In Fine, JD, Bauer, EA, McGuire, J, and Moshell, A, eds., Clinical, Epidemiological and Laboratory Advances, and the Findings of the National Epidermolysis Bullosa Registry. John’s Hopkins University Press, pp. 101113.Google Scholar
Fischer, J, Bouadjar, B, Heilig, R, et al. (1998). Genetic linkage of Meleda disease to chromosome 8qter. Eur J Hum Genet 6: 542547.Google Scholar
Flores, C, Maca-Meyer, N, Gonzalez, AM, and Cabrera, VM (2000). Northwest African distribution of the CD4/Alu microsatellite haplotypes. Ann Hum Genet 64: 321327.CrossRefGoogle ScholarPubMed
Fried, K and Davies, AM (1974). Some effects on the offspring of uncle–niece marriage in the Moroccan Jewish community in Jerusalem. Am J Hum Genet 26: 6572.Google ScholarPubMed
Gahukamble, DB, Adnan, AR, and Al Gadi, M (2003). Distal foregut atresias in consecutive siblings and twins in the same family. Pediatr Surg Int 19(4): 288292.Google Scholar
Gelb, BD, Shi, GP, Chapman, HA, and Desnick, RJ (1996). Pycnodysostosis, a lysosomal disease caused by cathepsin K deficiency. Science 273: 12361238.Google Scholar
Gershoni-Baruch, R, Shinawi, M, Leah, K et al. (2001). Familial Mediterranean fever: prevalence, penetrance and genetic drift. Eur J Hum Genet 9: 634637.Google Scholar
Gonzalez, AM, Cabrera, VM, Larruga, JM, et al. (2006). Mitochondrial DNA variation in Mauritania and Mali and their genetic relationship to other Western Africa populations. Ann Hum Genet 70: 631657.CrossRefGoogle ScholarPubMed
Gouider-Khouja, N (1991). [Parkinson disease in Tunisia: Epidemiological, clinical, follow-up and therapeutic aspects.] La maladie de Parkinson. Aspects épidémiologiques, cliniques, évolutifs et thérapeutiques. Faculty of Medicine of Tunis.Google Scholar
Gouider-Khouja, N and Rebai, I (2012). Genetic neurological diseases in Tunisia. In Kumar, D, ed., Genomics and Health in the Developing World. Oxford University Press.Google Scholar
Grasbeck, R (2006). Imerslund–Gräsbeck syndrome (selective vitamin B12 malabsorption with proteinuria). Orphanet J Rare Dis 1: 17. DOI: 10.1186/1750-1172-1-17.Google Scholar
Guilford, P, Ben Arab, S, Blanchard, S, et al. (1994). A non-syndrome form of neurosensory, recessive deafness maps to the pericentromeric region of chromosome 13q. Nat Genet 6(1): 2428.Google Scholar
Guyon, JLG (1855). Histoire chronologique des épidémies du nord de l’Afrique. Alger.Google Scholar
Habib, Z and Böök, JA (1983). Consanguinity and the incidence of thalassaemia in Egypt. Hereditas 99: 215217.Google Scholar
Hadiji Mseddi, S, Kammoun, L, Bellaaj, H, et al. (2012). Creation and report of the Tunisian Fanconi Anemia Registry (TFAR). Arch Pediatr 19: 467475.Google Scholar
Hadj-Taieb, S, Nasrallah, F, Hammami, MB, et al. (2012). Aminoacidopathies and organic acidurias in Tunisia: a retrospective survey over 23 years. Tunis Med 90(3): 258261.Google Scholar
Hafez, M, El-Tahan, H, Awadalla, M, et al. (1983). Consanguineous matings in the Egyptian population. J Med Genet 20: 5860.Google Scholar
Haj Khelil, A, Laradi, S, Miled, A, et al. (2004). Clinical and molecular aspects of hemoglobinopathies in Tunisia. Clin Chim Acta 340: 127137.Google Scholar
Haj Khelil, A, Denden, S, Leban, N, et al. (2010). Hemoglobinopathies in North Africa: a review. Hemoglobin 34: 123.Google Scholar
Hamamy, HA and Al-Allawi, NA (2013). Epidemiological profile of common haemoglobinopathies in Arab countries. J Community Genet 4(2): 147167.Google Scholar
Hammami, A, Elgazzeh, M, Chalbi, N, and Mansour, BA (2005). [Endogamy and consanguinity in Mauritania]. Tunis Med 83(1): 3842.Google Scholar
Hanein, S, Perrault, I, Gerber, S, et al. (2008). Population history and infrequent mutations: how old is a rare mutation? GUCY2D as a worked example. Eur J Hum Genet 16: 115123.Google Scholar
Hashem, N (1978). Preventive aspects of genetic morbidity. Volumes I, II, III. In Proceedings of First International Conference, Cairo, Egypt, March 30 to April 4.Google Scholar
Healy, DG, Wood, NW, and Schapira, AH (2008). Test for LRRK2 mutations in patients with Parkinson’s disease. Pract Neurol 8: 381385.Google Scholar
Hentati, F (2008). Muscular dystrophies in Arab countries. The First Educational Workshop in Developing Countries on Genetic Counseling, 20–28 November, Beirut, Lebanon.Google Scholar
Hovorka, O and Ehlers, E (1897). Mal de Meleda. Arch Syph 40: 251256.Google Scholar
Hussien, FH (1971). Endogamy in Egyptian Nubia. J Biosocial Sci 3: 251257.CrossRefGoogle ScholarPubMed
Ishihara, L, Gibson, RA, Warren, L, et al. (2007). Screening for LRRK2 G2019S and clinical comparison of Tunisian and North American Caucasian Parkinson’s disease families. Mov Disord 22: 5561.Google Scholar
Ismail, SR, Hashine, MM, Mourad, MI, and Abdel Kader, M (1996). Inheritance of non-syndromal genetic deafness. J Egypt Public Health Assoc 71(5–6): 403438.Google Scholar
Itto, AB, Hamzi, K, Bellayou, H, et al. (2013). Evolution of molecular diagnosis of Duchenne muscular dystrophy. J Mol Neurosci 50(2): 314316.Google Scholar
Jacoub, B (1938). Tay–Sachs disease in Egypt. J Egypt Med Assoc 21: 377.Google Scholar
Jamil, MA-N (1975). A History of the Maghrib, 2nd edn. Cambridge University Press.Google Scholar
Johnson, RE, Kondratick, CM, Prakash, S, and Prakash, L (1999). hRAD30 mutations in the variant form of xeroderma pigmento-sum. Science 285: 263265.CrossRefGoogle Scholar
Kefi, M, Amouri, R, Driss, A, et al. (2003). Phenotype and sarcoglycan expression in Tunisian LGMD 2C patients sharing the same del521-T mutation. Neuromuscul Disord 13: 779787.Google Scholar
Kefi, R, Stevanovitch, A, Bouzaid, E, and Béraud-Colomb, E (2005). Diversité mitochondriale de la population de Taforalt (12.000 ans, Maroc): une approche génétique à l’étude du peuplement de l’Afrique du Nord. Anthropologie 1: 5564.Google Scholar
Kefi, R, Hsouna, S, Romdhane, L, et al. (2015). Phylogeny and genetic structure of Tunisians and their position within Mediterranean populationsMitochondrial DNA 26: 593604.Google Scholar
Kerem, E, Kalman, YM, Yahav, Y, et al. (1995). Highly variable incidence of cystic fibrosis and different mutation distribution among different Jewish ethnic groups in Israel. Hum Genet 96(2): 193197.Google Scholar
Kerkeni, E, Monastiri, K, Saket, B, et al. (2006). Association among education level, occupation status, and consanguinity in Tunisia and Croatia. Croat Med J 47: 656661.Google ScholarPubMed
Kerkeni, E, Monastiri, K, Saket, B, Guediche, MN, and Ben Cheikh, H (2007). Interplay of socio-economic factors, consanguinity, fertility, and offspring mortality in Monastir, Tunisia. Croat Med J 48: 701707.Google Scholar
Khedhiri, S, Chkioua, L, Bouzidi, H, et al. (2012). Mucopolysaccharidosis IVA within Tunisian patients: confirmation of the two novel GALNS gene mutations. Pathol Biol (Paris) 60(3): 190192.Google Scholar
Khemir, S, Tebib, N, Nasrallah, F, et al. (2009). Phenylketonuria in Tunisian institutions for the mentally handicapped. Arch Dis Child 94: 647648.Google Scholar
Khemir, S, El Asmi, M, Sanhaji, H, et al. (2011). Phenylketonuria is still a major cause of mental retardation in Tunisia despite the possibility of treatment. Clin Neurol Neurosurg 113: 727730.Google Scholar
Khemir, S, Siala, H, Taieb, SH, et al. (2012). Screening of three Mediterranean phenylketonuria mutations in Tunisian families. J Genet 91(1): 9194.Google Scholar
Klein, C, Lisowska-Grospierre, B, LeDeist, F, Fischer, A, and Griscelli, C (1993). Major histocompatibility complex class II deficiency: clinical manifestations, immunologic features, and outcome. J Pediatr 123(6): 921928.Google Scholar
Kogan, A, Shinar, Y, Lidar, M, et al. (2001). Common MEFV mutations among Jewish ethnic groups in Israel: high frequency of carrier and phenotype III states and absence of a perceptible biological advantage for the carrier state. Am J Med Genet 102: 272276.Google Scholar
Kotb, MA, Abdallah, HK, and Kotb, A (2004). Liver glycogenoses: are they a possible cause of polyneuropathy? A cross-sectional study. J Trop Pediatr 50: 196202.Google Scholar
Kozlowski, K, Bacha, L, Massen, R, et al. (1988). A new type of spondylo-metaphyseal dysplasia – Algerian type: report of five cases. Pediatr Radiol 18: 221226.Google Scholar
Krotoski, D, Namaste, S, Raouf, RK, et al. (2009). Conference report: second conference of the Middle East and North Africa newborn screening initiative – partnerships for sustainable newborn screening infrastructure and research opportunities. Genet Med 11(9): 663668.Google Scholar
Lamdouar Bouazzaoui, N (1994). Consanguinité et santé publique au Maroc. Bulletin de l’Academie Nationale de Médicine 178: 10131027.Google Scholar
Lamzouri, A, Ratbi, I, Laarabi, FZ, Barkat, A, and Sefiani, A (2012). Low prevalence of p.G352fsdelG mutation in phenylketonuria patients from Morocco. Genet Test Mol Biomarkers 16(8): 996998.Google Scholar
Lee, HS, Sambuughin, N, Cervenakova, L, et al. (1999). Ancestral origins and worldwide distribution of the PRNP 200K mutation causing familial Creutzfeldt–Jakob disease. Am J Hum Genet 64: 10631070.Google Scholar
Lesage, S, Leutenegger, AL, Ibanez, P, et al. (2005). LRRK2 haplotype analyses in European and North African families with Parkinson disease: a common founder for the G2019S mutation dating from the 13th century. Am J Hum Genet 77: 330332.Google Scholar
Li, Y, Pohl, E, Boulouiz, R, et al. (2010). Mutations in TPRN cause a progressive form of autosomal-recessive nonsyndromic hearing loss. Am J Hum Genet 86: 479484.Google Scholar
Loumi, O, Ferec, C, Mercier, B, et al. (2008). CFTR mutations in the Algerian population. J Cyst Fibros 7: 5459.Google Scholar
Lucotte, G (2007). High prevalences of carriers of the 35delG mutation of connexin 26 in the Mediterranean area. Int J Pediatr Otorhinolaryngol 71(5): 741746.CrossRefGoogle ScholarPubMed
Maalej, M, Hentati, D, Slimene, M, et al. (2007). Skin cancer in Tunisia: a retrospective study – 1379 cases and risk factors. Tunis Med 85: 728733.Google Scholar
Maktouf, C, Bchir, A, Louzir, H, et al. (2006). Megaloblastic anemia in North Africa. Haematologica 91(7): 990991.Google Scholar
Marrakchi, S, Audebert, S, Bouadjar, B, et al. (2003). Novel mutations in the gene encoding secreted lymphocyte antigen-6/urokinase-type plasminogen activator receptor-related protein-1 (SLURP-1) and description of five ancestral haplotypes in patients with Mal de Meleda. J Invest Dermatol 120: 351355.Google Scholar
Marrakchi, Z, Marrachi, S, Meziou, TJ, Turki, H, and Zahaf, A (2006). Mal de Meleda. 16 cases. Tunis Med 84: 423426.Google Scholar
Masmoudi, S, Elgaied-Boulila, A, Kassab, I, et al. (2000). Determination of the frequency of connexin26 mutations in inherited sensorineural deafness and carrier rates in the Tunisian population using DGGE. J Med Genet 37(11): E39.Google Scholar
Masmoudi, S, Tlili, A, Majava, M, et al. (2003). Mapping of a new autosomal recessive nonsyndromic hearing loss locus (DFNB32) to chromosome 1p13.3–22.1. Eur J Hum Genet 11: 185188.Google Scholar
Messaoud, O, Ben Rekaya, M, Cherif, W, et al. (2010a). Genetic homogeneity of mutational spectrum of group-A xeroderma pigmentosum in Tunisian patients. Int J Dermatol 49: 544548.Google Scholar
Messaoud, O, Ben Rekaya, M, Kefi, R, et al. (2010b). Identification of a primarily neurological phenotypic expression of xeroderma pigmentosum complementation group A in a Tunisian family. Br J Dermatol 162(4): 883886.Google Scholar
Messaoud, T, Bel Haj Fredj, S, Bibi, A, et al. (2005). Molecular epidemiology of cystic fibrosis in Tunisia. Ann Biol Clin 63: 627630.Google Scholar
Mhiri, C, Triki, C, Fakhfakh, F, et al. (1996). [Duchenne muscular dystrophy: clinico-pathologic study of 10 families from South Tunisia]. Tunis Med 74(2): 8592.Google Scholar
Mili, A, Ben Charfeddine, I, Mamaï, O, et al. (2012a). Molecular and biochemical characterization of Tunisian patients with glycogen storage disease type III. J Hum Genet 57(3): 170175.Google Scholar
Mili, A, Ben Charfeddine, I, Amara, A, et al. (2012b). A c.3216_3217delGA mutation in AGL gene in Tunisian patients with a glycogen storage disease type III: evidence of a founder effect. Clin Genet 82(6): 534539.Google Scholar
Moulard, B, Genton, P, Grid, D, et al. (2002). Haplotype study of West European and North African Unverricht–Lundborg chromosomes: evidence for a few founder mutations. Hum Genet 111: 255262.Google Scholar
Mujawar, Q, Naganoor, R, Patil, H, et al. (2009). Pycnodysostosis with unusual findings: a case report. Cases Journal 2(7): 6544.Google Scholar
Naamane, H, El Maataoui, O, Ailal, F, et al. (2010). The 752delG26 mutation in the RFXANK gene associated with major histocompatibility complex class II deficiency: evidence for a founder effect in the Moroccan population. Eur J Pediatr 169(9): 10691074.Google Scholar
Nabli, F, Farhat, E, Kefi, M, Amouri, R, and Hentati, F (2010). Les dystrophies musculaires en Tunisie: une expérience de 10 ans. Journées de Neurologie de Langue Françaises. Available at: http://archives.jnlf.fr/data/ModuleProgramme/PageSite/2010-1/Resume/7131.asp.Google Scholar
Navon, R, Nutman, J, Kopel, R, et al. (1981). Hereditary heat labile hexosaminidase B: its complications for recognizing Tay–Sachs genotypes. Am J Hum Genet 33: 907915.Google Scholar
Nègre, V, Denoyelle, F, Chevallier, B, et al. (1990). [Hereditary epidermolysis bullosa and laryngeal involvement]. Arch Fr Pediatr 47(2): 121124.Google Scholar
Nishioka, K, Kefi, M, Jasinska-Myga, B, et al. (2010). A comparative study of LRRK2, PINK1 and genetically undefined familial Parkinson’s disease. J Neurol Neurosurg Psychiatry 81(4): 391395.Google Scholar
Ornetti, P, Prati, C, Fery-Blanco, C, et al. (2008). Pedicle stress fracture: an unusual complication of pycnodysostosis. Clin Rheumatol 27(3): 385387.Google Scholar
Osimani, S, Husson, I, Passemard, S, et al. (2010). Craniosynostosis: a rare complication of pycnodysostosis. Eur J Med Genet 53(2): 8992.Google Scholar
Ouachani, A (2001). Les glycogénoses type III: analyse clinique, explorations dynamiques et prise en charge diététique. Etude longitudinale de 17 observations. Thèse de Médecine, Faculté de Médecine de Tunis.Google Scholar
Ouederni, M, Vincent, QB, Frange, P, et al. (2011). Major histocompatibility complex class II expression deficiency caused by a RFXANK founder mutation: a survey of 35 patients. Blood 118(19): 51085118.CrossRefGoogle ScholarPubMed
Ouragini, H, Cherif, F, Daoud, W, et al. (2008). Haplotypic classification of dystrophic epidermolysis bullosa in Tunisian consanguineous families: implication for diagnosis. Arch Dermatol Res 300(7): 365370.Google Scholar
Ozkara, HA and Topçu, M (2004). Sphingolipidoses in Turkey. Brain Dev 26(6): 363366.Google Scholar
Parvari, R, Moses, S, Shen, J, et al. (1997). A single-base deletion in the 3′-coding region of glycogen-debranching enzyme is prevalent in glycogen storage disease type IIIA in a population of North African Jewish patients. Eur J Hum Genet 5: 266270.Google Scholar
Piccolo, F, Roberds, SL, Jeanpierre, M, et al. (1995). Primary adhalinopathy: a common cause of autosomal recessive muscular dystrophy of variable severity. Nat Genet 10(2): 243245.Google Scholar
Plaza, S, Calafell, F, Helal, A, et al. (2003). Joining the pillars of Hercules: mtDNA sequences show multidirectional gene flow in the western Mediterranean. Ann Hum Gene 67: 312328.Google Scholar
Ratbi, I, Hajji, S, Ouldim, K, et al. (2007). [The mutation 35delG of the gene of the connexin 26 is a frequent cause of autosomal-recessive non-syndromic hearing loss in Morocco]. Arch Pediatr 14(5): 450453.Google Scholar
Ratbi, I, Génin, E, Legendre, M, et al. (2008). Cystic fibrosis carrier frequency and estimated prevalence of the disease in Morocco. J Cyst Fibros 7: 440443.Google Scholar
Reda, SM, Afifi, HM, and Amine, MM (2009). Primary immunodeficiency diseases in Egyptian children: a single-center study. J Clin Immunol 29(3): 343351.Google Scholar
Reith, W and Mach, B (2001). The bare lymphocyte syndrome and the regulation of MHC expression. Annu Rev Immunol 19: 331373.Google Scholar
Rezaei, N, Aghamohammadi, A, Moin, M, et al. (2006). Frequency and clinical manifestations of patients with primary immunodeficiency disorders in Iran: update from the Iranian Primary Immunodeficiency Registry. J Clin Immunol 26(6): 519532.Google Scholar
Riahi, Z, Hammami, H, Ouragini, H, et al. (2013). Update of the spectrum of GJB2 gene mutations in Tunisian families with autosomal recessive nonsyndromic hearing loss. Gene 525(1): 14.Google Scholar
Richard, P, Gaudon, K, Haddad, H, et al. (2008). The CHRNE 1293insG founder mutation is a frequent cause of congenital myasthenia in North Africa. Neurology 71: 19671972.Google Scholar
Riou, SE, Younsi, C, and Chaabouni, H (1989). Consanguinité dans la population du Nord de la Tunisie. Tunis Med 67: 167172.Google Scholar
Romdhane, L and Abdelhak, S (2011). Genetic diseases in the Tunisian population. Am J Med Genet A 155: 238267.Google Scholar
Romdhane, L and Abdelhak, S (2012). Genetic diseases in the North African populations. In Kumar, D, ed., Genomics and Health in the Developing World. Oxford University Press.Google Scholar
Romdhane, L, Kefi, R, Azaiez, H, et al. (2012). Founder mutations in Tunisia: implications for diagnosis in North Africa and Middle East. Orphanet J Rare Dis 7: 52.Google Scholar
Romdhane, L, Ben Halim, N, Rejeb, I, et al. (2014). Specific aspects of consanguinity: some examples from the Tunisian population. Hum Hered 77(1–4): 167174.Google Scholar
Romdhane, L, Messaoud, O, Bouyacoub, Y, et al. (2016). Comorbidity in the Tunisian population. Clin Genet 89(3): 312319.Google Scholar
Ruzzi, L, Gagnoux-Palacios, L, Pinola, M, et al. (1997). Homozygous mutation in the integrin alpha6 gene in junctional epidermolysis bullosa with pyloric atresia. J Clin Invest 99(12): 28262831.Google Scholar
Scriver, CR and Kaufman, S (2001). Hyperphenylalaninaemia. In Scriver, CR, Beaudet, AL, Sly, WS, and Valle, D. eds., The Metabolic and Molecular Bases of Inherited Disease, 8th edition. McGraw Hill.Google Scholar
Senhaji, MA, Abidi, O, Nadifi, S, et al. (2013). c.1643_1644delTG XPC mutation is more frequent in Moroccan patients with xeroderma pigmentosum. Arch Dermatol Res 305(1): 5357.Google Scholar
Shatla, H, El-Shakankiry, HM, Fateen, E, Ahmed, NS, and Mustafa, HA (1999). Prevalence of GM2 gangliosidosis among cases with early onset seizures and psychomotor retardation. Bull Egypt Soc Physiol Sci 19: 249273.Google Scholar
Shawky, RM, Riad, MS, Osman, HM, and Bahaa, NM (2001). Screening for some inborn errors of amino acid metabolism which impair mental function. Egypt J Med Hum Genet 2: 7191.Google Scholar
Shawky, RM, El-Sedfy, HH, Mahmoud, AO, Rashad, M, and Bahaa Eldin, EM (2007). Study of amino acid disorders among a high risk group of Egyptian infants and children. Egypt J Med Hum Genet 8: 173189.Google Scholar
Snoeckx, RL, Hassan, DM, Kamal, NM, Van Den Bogaert, K, and Van Camp, G (2005). Mutation analysis of the GJB2 (connexin 26) gene in Egypt. Hum Mutat 26: 6061.Google Scholar
Soufir, N, Ged, C, Bourillon, A, et al. (2010). A prevalent mutation with founder effect in xeroderma pigmentosum group C from North Africa. J Invest Dermatol 130: 15371542.Google Scholar
Stevenson, AC, Johnston, HA, Stewart, MIP, and Golding, DR (1966). Congenital malformations: a report of a study of series of consecutive births in 24 centres. Bull WHO 34(Suppl.): 1125.Google Scholar
Stoffman, N, Magal, N, Shohat, T, et al. (2000). Higher than expected carrier rates for familial Mediterranean fever in various Jewish ethnic groups. Eur J Hum Genet 8: 307310.Google Scholar
Tabutin, D, Vilquin, E, and Biraben, JN (2002). L’histoire de la population de l’Afrique du Nord pendant le deuxième millénaire. Louvain-la-Neuve.Google Scholar
Tadmouri, GO, Al Ali, MT, Al-Haj Ali, S, and Al Khaja, N (2006). CTGA: the database for genetic disorders in Arab populations. Nucleic Acids Res 34(database issue): D602D606.Google Scholar
Talbi, J, Khadmaoui, A, Soulaymani, A, and Chafik, A (2007). Etude de la consanguinité dans la population marocaine: Impact sur le profil de la santé. Antropo 15: 111.Google Scholar
Tamary, H, Bar-Yam, R, Shalmon, L, et al. (2000). Fanconi anaemia group A (FANCA) mutations in Israeli non-Ashkenazi Jewish patients. Br J Haematol 111(1): 338343.Google Scholar
Teebi, A and Farag, T (1997). Genetic Disorders among Arab Populations. Oxford University Press.Google Scholar
Temtamy, SA, Adbel-Salam, M, Hussein, FA, Meguid, NA, and El-Gindy, E (1991). Clinical biochemical and cytogenetic studies of mental retardation in Egyptian children. J Egypt Public Health Assoc 65(Suppl.): 189199.Google Scholar
Temtamy, SA, Ismail, SR, El-Beshlawy, AM, et al. (2007). Fanconi anemia: cytogenetic and clinical studies on a group of Fanconi anemia patients in Egypt. Haema 10: 6167.Google Scholar
Tlili, A, Rebeh, IB, Aifa-Hmani, M, et al. (2008). TMC1 but not TMC2 is responsible for autosomal recessive nonsyndromic hearing impairment in Tunisian families. Audiol Neurootol 13: 213218.Google Scholar
Touitou, I (2001). The spectrum of familial Mediterranean fever (FMF) mutations. Eur J Hum Genet 9: 473483.Google Scholar
Touzri, RA, Mohamed, Z, Khalil, E, et al. (2008). [Ocular malignancies of xeroderma pigmentosum: clinical and therapeutic features]. Ann Dermatol Venereol 135(2): 99104.Google Scholar
Tullio-Pelet, A, Salomon, R, Hadj-Rabia, S, et al. (2000). Mutant WD-repeat protein in triple-A syndrome. Nat Genet 263: 332335.Google Scholar
United Nations, Department of Economic and Social Affairs, Population Division (2010). World Population Prospects: The 2010 Revision, CD-ROM Edition.Google Scholar
Veten, FM, Abdelhamid, IO, Meiloud, GM, et al. (2012). Hb S [β6(A3)Glu→Val, GAG>GTG] and β-globin gene cluster haplotype distribution in Mauritania. Hemoglobin 36(4): 311315.Google Scholar
Wiszniewski, W, Fondaneche, MC, Lambert, N, et al. (2000). Founder effect for a 26-bp deletion in the RFXANK gene in North African major histocompatibility complex class II-deficient patients belonging to complementation group B. Immunogenetics 51(4–5): 261267.Google Scholar
Yilmaz, E, Ozen, S, Balci, B, et al. (2001). Mutation frequency of familial Mediterranean fever and evidence for a high carrier rate in the Turkish population. Eur J Hum Genet 9: 553555.CrossRefGoogle ScholarPubMed
Zaoui, S and Biémont, C (2002). [Frequency of consanguineous unions in the Tlemcen area (West Algeria)]. Sante 12(3): 289295.Google Scholar
Zeegers, MPA, van Poppel, F, Vlietinck, R, Spruijt, L, and Ostrer, H (2004). Founder mutations among the Dutch. Eur J Hum Genet 12: 591600.Google Scholar
Zghal, M, El-Fekih, N, Fazaa, B, et al. (2005). [Xeroderma pigmentosum: cutaneous, ocular, and neurologic abnormalities in 49 Tunisian cases]. Tunis Med 83(12): 760763.Google Scholar
Zghal, M, Fazaa, B, and Kamoun, M (2006). Xeroderma pigmentosum. EMC (Elsevier SAS, Paris). Dermatologie 10(A): 98660.Google Scholar
Zilber, N, Kahana, E, and Abraham, M (1991). The Libyan Creutzfeldt–Jakob disease focus in Israel: an epidemiologic evaluation. Neurology 41(9): 13851389.Google Scholar
Zlotogora, J (2007). Multiple mutations responsible for frequent genetic diseases in isolated populations. Eur J Hum Genet 15(3): 272278.Google Scholar
Zschocke, J (2003). Phenylketonuria mutations in Europe. Hum Mutat 21(4): 345356.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×