Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T18:12:51.996Z Has data issue: false hasContentIssue false

15 - The Canyonlands model for planetary grabens: revised physical basis and implications

Published online by Cambridge University Press:  18 September 2009

Richard A. Schultz
Affiliation:
Department of Geological Sciences, University of Nevada, Reno
Jason M. Moore
Affiliation:
William Cotton & Associates, Los Gatos, California
Eric B. Grosfils
Affiliation:
Department of Geology, Pomona College, Claremont
Kenneth L. Tanaka
Affiliation:
US Geological Survey, Flagstaff
Daniel Mège
Affiliation:
Laboratoire de planétologie et géodynamique, Université de Nantes
Mary Chapman
Affiliation:
United States Geological Survey, Arizona
Get access

Summary

Introduction

For more than a quarter of a century, the spectacular grabens of Canyonlands National Park, Utah, have provided planetologists with a fundamental analog for understanding what planetary grabens should look like and – more importantly – what may be implied about the depth variation of mechanical properties and horizontal extensional strain.

The seminal work on Canyonlands grabens was done by George McGill and coworkers in support of their investigations of the origin and kinematic significance of lunar and Martian straight rilles (McGill, 1971; McGill and Stromquist, 1975, 1979; Stromquist, 1976; Wise, 1976). McGill and Stromquist (1979) hoped to invert graben widths, assessed on an aerial or orbital image, for the depth of faulting (i.e., fault intersection depth). By equating this depth with stratigraphic layer thickness and assuming a symmetric graben geometry and plausible values of fault dip angles, grabens provided ready and seemingly reliable probes of the near-surface planetary stratigraphy and strain. Interestingly, the analog modeling of brittle-layer extension over a ductile (quasiplastic) substrate, appropriate to Canyonlands stratigraphy (McGill and Stromquist, 1975, 1979), anticipated the key role of faulting in triggering and mobilizing salt or shale diapirism at depth (Jackson and Vendeville, 1994; Jackson, 1995). Other observations and inferences made in the 1970s, including flexure of rock layers at ramps near graben terminations and incremental growth of fault slip (McGill and Stromquist, 1979), anticipated these fundamentally important ideas by at least a decade (Sibson, 1989; Peacock and Sanderson, 1991; Cowie and Scholz, 1992).

Type
Chapter
Information
The Geology of Mars
Evidence from Earth-Based Analogs
, pp. 371 - 399
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albee, A. L., Palluconi, F. D., and Arvidson, R. E. (1998 ). Mars Global Surveyor mission: overview and status, Science, 279, 1671–2.CrossRefGoogle ScholarPubMed
Allemand, P. and Thomas, P. (1992). Modèle fragile des rides martiennes constraint par la géométrie de surface, C. R. Acad. Sci. Paris, 215, Série II, 1397–402.Google Scholar
Aydin, A. and Reches, Z. (1982). Number and orientation of fault sets in the field and in experiments. Geology, 10, 107–12.2.0.CO;2>CrossRefGoogle Scholar
Baker, A. A. (1933). Geology and oil possibilities of the Moab District, Grand and San Juan Counties, Utah. US Geological Survey Bulletin, 841.
Banerdt, W. B. and Golombek, M. P. (1990). The evolution of Tharsis: implications of gravity, topography, and tectonics (abstract), LPSCXXI, 42–3.Google Scholar
Banerdt, W. B., Golombek, M. P., and Tanaka, K. L. (1992). Stress and tectonics on Mars. In Mars, ed. Kieffer, H. H., Jakosky, B. M., Snyder, C. W., and Matthews, M. S.. Tucson: Univ. Arizona Press, pp. 249–97.Google Scholar
Barnett, J. A. M., Mortimer, J., Rippon, J. H., Walsh, J. J., and Watterson, J. (1987). Displacement geometry in the volume containing a single normal fault. American Association of Petroleum Geologists Bulletin, 71, 925–37.Google Scholar
Benedicto, A., Schultz, R., and Soliva, R. (2003). Layer thickness and the shape of faults, Geophysical Research Letters, 30, 2076, 10.1029/2003GL018237.CrossRefGoogle Scholar
Biggar, N. E. and Adams, J. A. (1987). Dates derived from Quaternary strata in the vicinity of Canyonlands National Park. Field Symposium, Guidebook of the Four Corners Geological Society, 10, 127–36.Google Scholar
Buck, W. R. (1988). Flexural rotation of normal faults, Tectonics, 7, 959–73.CrossRefGoogle Scholar
Bürgmann, R., Pollard, D. D., and Martel, S. J. (1994). Slip distributions on faults: effects of stress gradients, inelastic deformation, heterogeneous host-rock stiffness, and fault interaction. Journal of Structural Geology, 16, 1675–90.CrossRefGoogle Scholar
Cartwright, J. A. and Mansfield, C. S. (1998). Lateral displacement variation and lateral tip geometry of normal faults in the Canyonlands National Park, Utah. Journal of Structural Geology, 20, 3–19.CrossRefGoogle Scholar
Cartwright, J., Mansfield, C., and Trudgill, B. (1995). Fault growth by segment linkage: an explanation for scatter in maximum displacement and trace length data from the Canyonlands Grabens of SE Utah. Journal of Structural Geology, 17, 1319–26.CrossRefGoogle Scholar
Cartwright, J., Mansfield, C., and Trudgill, B. (1996). Fault growth by segment linkage. In Modern Developments in Structural Interpretation, Validation and Modelling, ed. Buchanan, P. G. and Nieuland, D. A., Spec. Publ. Geol. Soc. London, 99, pp. 163–77.Google Scholar
Cloos, E. (1968). Experimental analysis of Gulf Coast fracture patterns. American Association of Petroleum Geologists Bulletin, 52, 420–44.Google Scholar
Cohen, S. C. (1999). Numerical models of crustal deformation in seismic zones. Advances in Geophysics, 41, 133–231.CrossRefGoogle Scholar
Condon, S. M. (1997). Geology of the Pennsylvanian and Permian Cutler Group and Permian Kaibab limestone in the Paradox Basin, southeastern Utah and southwestern Colorado. US Geological Survey Bulletin 2000-P, pp. 1–46.
Cowie, P. A. and Scholz, C. H. (1992). Growth of faults by accumulation of seismic slip. Journal of Geophysical Research, 97, 11085–95.CrossRefGoogle Scholar
Crider, J. G. (2001). Oblique slip and the geometry of normal-fault linakge: mechanics and a case study from the Basin and Range in Oregon. Journal of Structural Geology, 23, 1997–2009.CrossRefGoogle Scholar
Crider, J. G. and Pollard, D. D. (1998). Fault linkage: three-dimensional mechanical interaction between echelon normal faults. Journal of Geophysical Research, 103, 24373–91.CrossRefGoogle Scholar
Davies, R. K., Crawford, M., Dula, W. F. Jr., Cole, M. J., and Dorn, G. A. (1997). Outcrop interpretation of seismic-scale normal faults in southern Oregon: description of structural styles and evaluation of subsurface interpretation methods. Leading Edge, 16, 1135–41.CrossRefGoogle Scholar
Davis, P. A. and Golombek, M. P. (1990). Discontinuities in the shallow Martian crust at Lunae, Syria, and Sinai Plana. Journal of Geophysical Research, 95, 14231–48.CrossRefGoogle Scholar
Davis, P. A., Tanaka, K. L., and Golombek, M. P. (1995). Topography of closed depressions, scarps, and grabens in the north Tharsis region of Mars: implications for shallow crustal discontinuities and graben formation, Icarus, 114, 403–22.CrossRefGoogle Scholar
Davison, I. (1994). Linked fault systems; extensional, strike-slip and contractional. In Continental Deformation, ed. Hancock, P. L.. Pergamon, pp. 121–42.Google Scholar
Dawers, N. H., Anders, M. H., and Scholz, C. H. (1993). Growth of normal faults: displacement-length scaling. Geology, 21, 1107–10.2.3.CO;2>CrossRefGoogle Scholar
Dawers, N. H. and Anders, M. H. (1995). Displacement-length scaling and fault linkage. Journal of Structural Geology, 17, 607–14.CrossRefGoogle Scholar
Ernst, R. E., Head, J. W., Parfitt, E., Grosfils, E., and Wilson, L. (1995). Giant radiating dike swarms on Earth and Venus. Earth Science Reviews, 39, 1–58.CrossRefGoogle Scholar
Fanale, F. P. (1976). Martian volatiles: their degassing history and geochemical fate. Icarus, 28, 179–202.CrossRefGoogle Scholar
Ferrill, D. A. and Morris, A. P. (2003). Dilational normal faults. Journal of Structural Geology, 25, 183–96.CrossRefGoogle Scholar
Fialko, Y. A. and Rubin, A. M. (1999). Thermal and mechanical aspects of magma emplacement in giant dike swarms. Journal of Geophysical Research, 104, 23033–49.CrossRefGoogle Scholar
Fossen, H. (1995). Lisensekskursjon–Gullfaks–Høsten 1995 Ekskursjonsguide (in Norwegian), Statoil, Bergen, Norway, 76 pp.Google Scholar
Gawthorpe, R. L. and Leeder, M. R. (2000). Tectono-sedimentary evolution of active extensional basins, Basin Research, 12, 195–218.CrossRefGoogle Scholar
Ghent, R. and Hansen, V. (1999). Structural and kinematic analysis of eastern Ovda Regio, Venus: implications for crustal plateau formation. Icarus, 139, 116–36.CrossRefGoogle Scholar
Ghent, R. R. and Tibuleac, I. M. (2002). Ribbon spacing in Venusian tesserae: implications for layer thickness and thermal state. Geophysical Research Letters, 29, 2000, doi: 10.1029/2002GL015994.CrossRefGoogle Scholar
Gibbs, A. D. (1984). Structural evolution of extensional basin margins. Journal of the Geological Society of London, 141, 609–20.CrossRefGoogle Scholar
Gibbs, A. D. (1990). Linked fault families in basin formation. Journal of Structural Geology, 12, 795–803.CrossRefGoogle Scholar
Golombek, M. P. (1979). Structural analysis of lunar grabens and the shallow crustal structure of the Moon. Journal of Geophysical Research, 84, 4567–666.CrossRefGoogle Scholar
Golombek, M. P. (1985). Fault type predictions from stress distributions on planetary surfaces: importance of fault initiation depth. Journal of Geophysical Research, 90, 3065–74.CrossRefGoogle Scholar
Golombek, M. P. and Banerdt, W. B. (1986). Early thermal profiles and lithospheric strength of Ganymede from extensional tectonic features. Icarus, 68, 252–65.CrossRefGoogle Scholar
Golombek, M. P. and McGill, G. E. (1983). Grabens, basin tectonics, and the maximum total expansion of the Moon. Journal of Geophysical Research, 88, 3563–78.CrossRefGoogle Scholar
Golombek, M. P., Tanaka, K. L., and Franklin, B. J. (1996). Extension across Tempe Terra, Mars, from measurements of fault scarp widths and deformed craters. Journal of Geophysical Research, 101, 26119–30.CrossRefGoogle Scholar
Grant, J. A. and Schultz, P. H. (1993). Erosion of ejecta at Meteor Crater, Arizona. Journal of Geophysical Research, 98, 15033–47.CrossRefGoogle Scholar
Grosfils, E. and Head, J. W. (1994). The global distribution of giant radiating dike swarms on Venus: implications for the global stress state, Geophysical Research Letters, 21, 701–4.CrossRefGoogle Scholar
Grosfils, E. B., Schultz, R. A., and Kroeger, G. (2003). Geophysical exploration within northern Devils Lane graben, Canyonlands National Park, Utah: implications for sediment thickness and tectonic evolution. Journal of Structural Geology, 25, 455–67.CrossRefGoogle Scholar
Groshong, R. H. Jr. (1989). Half-graben structures: balanced models of extensional fault-bend folds. Geological Society of America Bulletin, 101, 96–105.2.3.CO;2>CrossRefGoogle Scholar
Gross, M. R., Gutiérrez-Alonso, G., Bai, T., Wacker, M. A., Collinsworth, K. B., and Behl, R. J. (1997). Influence of mechanical stratigraphy and kinematics on fault scaling relations. Journal of Structural Geology, 19, 171–83.CrossRefGoogle Scholar
Gudmundsson, A. (1992). Formation and growth of normal faults at the divergent plate boundary in Iceland. Terra Nova, 4, 464–71.CrossRefGoogle Scholar
Gudmundsson, A. and Bäckström, (1991). Structure and development of the Sveinagja graben, Northeast Iceland. Tectonophysics, 200, 111–25.CrossRefGoogle Scholar
Gupta, S. and Cowie, P. (2000). Invited editorial: processes and controls in the stratigraphic development of extensional basins. Basin Research, 12, 185–94.CrossRefGoogle Scholar
Gupta, S., Cowie, P. A., Dawers, N. H., and Underhill, J. R. (1998). A mechanism to explain rift-basin subsidence and stratigraphic patterns through fault-array evolution. Geology, 26, 595–8.2.3.CO;2>CrossRefGoogle Scholar
Hansen, V. L. and Willis, J. J. (1998). Ribbon terrain formation, southwestern Fortuna Tessera, Venus: implications for lithosphere evolution. Icarus, 132, 321–43.CrossRefGoogle Scholar
Hansen, V. L., Phillips, R. J., Willis, J. J., and Ghent, R. R. (2000). Structures in tessera terrain: issues and answers. Journal of Geophysical Research, 105, 4135–52.CrossRefGoogle Scholar
Hartmann, W. K. (1973). Ancient lunar megaregolith and subsurface structure. Icarus, 18, 634–6.CrossRefGoogle Scholar
Hauber, E. and Kronberg, P. (2001). Tempe Fosse, Mars: a planetary analog to a terrestrial continental rift?Journal of Geophysical Research, 106, 20587–602.CrossRefGoogle Scholar
Head, J. W. and Wilson, L. (1994). Lunar graben formation due to near-surface deformation accompanying dike emplacement. Planetary & Space Science, 41, 719–27.CrossRefGoogle Scholar
Higgs, W. G., Williams, G. D., and Powell, C. M. (1991). Evidence for flexural shear folding associated with extensional faults. Geological Society of America Bulletin, 103, 710–17.2.3.CO;2>CrossRefGoogle Scholar
Hoek, E. and Brown, E. T. (1980). Empirical strength criterion for rock masses. J. Geotech. Div. ASCE, 106, 1013–35.Google Scholar
Huntoon, P. W. (1982). The Meander anticline, Canyonlands, Utah: an unloading structure resulting from horizontal gliding on salt. Geological Society of America Bulletin, 93, 941–50.2.0.CO;2>CrossRefGoogle Scholar
Jackson, J. A. and White, N. J. (1989). Normal faulting in the upper continental crust: observations from regions of active extension. Journal of Structural Geology, 11, 15–36.CrossRefGoogle Scholar
Jackson, M. P. A. (1995). Retrospective salt tectonics. In Salt Tectonics: A Global Perspective, ed. Jackson, M. P. A., Roberts, D. G., and Snelson, S.. American Association of Petroleum Geologists Mem. 65, pp. 1–28.Google Scholar
Jackson, M. P. A. and Vendeville, B. C. (1994). Regional extension as a geologic trigger for diapirism. Geological Society of America Bulletin, 106, 57–73.2.3.CO;2>CrossRefGoogle Scholar
Kattenhorn, S. A., Aydin, A., and Pollard, D. D. (2000). Joints at high angles to normal fault strike: an explanation using 3-D numerical models of fault-perturbed stress fields. Journal of Structural Geology, 22, 1–23.CrossRefGoogle Scholar
Kortz, K. M., Grosfils, E. B., and Sakimoto, S. E. H. (2003). Emplacement of long lava flows within a graben network in Radunitsa Labyrinthus, Carson quadrangle, Venus. Geophysical Research Letters, 30, doi:10.029/2003GL017471.CrossRefGoogle Scholar
Krantz, R. W. (1988). Multiple fault sets and three-dimensional strain: theory and application. Journal of Structural Geology, 10, 225–37.CrossRefGoogle Scholar
Krantz, R. W. (1989). Orthorhombic fault patterns: the odd axis model and slip vector orientations. Tectonics, 8, 483–95.CrossRefGoogle Scholar
Lewis, R. Q Sr.. and Campbell, R. H. (1965). Geology and uranium deposits of Elk Ridge and vicinity, San Juan County, Utah. US Geological Survey Professional Paper, 474–B.
Loope, D. B. (1984). Eolian origin of upper Paleozoic sandstones, southeastern Utah. Journal of Sedimentary Petrology, 54, 563–80.Google Scholar
Lucchitta, B. K., McEwen, A. S., Clow, G. D. et al. (1992). The canyon system of Mars. In Mars, ed. Kieffer, H. H., Jakosky, B. M., Snyder, C. W., and Matthews, M. S.. Tucson: Univ. Arizona Press, pp. 453–92.Google Scholar
Ma, X. Q. and Kusznir, N. J. (1992). 3-D subsurface displacement and strain fields for faults and fault arrays in a layered elastic half-space. Geophysical Journal International, 111, 542–58.CrossRefGoogle Scholar
Ma, X. Q. and Kusznir, N. J. (1993). Modelling of near-field subsurface displacements for generalized faults and fault arrays. Journal of Structural Geology, 15, 1471–84.CrossRefGoogle Scholar
MacKinnon, D. J. and Tanaka, K. L. (1989). The impacted Martian crust: structure, hydrology, and some geologic implications. Journal of Geophysical Research, 94, 17359–70.CrossRefGoogle Scholar
Mair, K., Frye, K. M., and Marone, C. (2002). Influence of grain characteristics on the friction of granular shear zones. Journal of Geophysical Research, 107, 2219, doi:10.1029/2001JB000516.CrossRefGoogle Scholar
Malin, M. C. and Edgett, K. S. (2000). Sedimentary rocks of Mars. Science, 290, 1927–37.CrossRefGoogle ScholarPubMed
Mangold, N., Allemand, P., and Thomas, P. G. (1998). Wrinkle ridges of Mars: structural analysis and evidence for shallow deformation controlled by ice-rich décollements. Planetary & Space Science, 46, 345–56.CrossRefGoogle Scholar
Manighetti, I., King, G. C. P., Gaudemer, Y., Scholz, C. H., and Doubre, C. (2001). Slip accumulation and lateral propagation of active normal faults in Afar. Journal of Geophysical Research, 106, 13667–96.CrossRefGoogle Scholar
Mastin, L. G. and Pollard, D. D. (1988). Surface deformation and shallow dike intrusion at Inyo Craters, Long Valley, California. Journal of Geophysical Research, 93, 13221–36.CrossRefGoogle Scholar
Masursky, H., Colton, G. W., and El-Baz, F. (eds.) (1978). Apollo Over the Moon: A View from Orbit. NASA Spec. Pap., SP–362, Washington, DC.Google Scholar
McEwen, A. S., Malin, M. C., Carr, M. H., and Hartmann, W. K. (1999). Voluminous volcanism on early Mars revealed in Valles Marineris. Nature, 397, 584–6.CrossRefGoogle Scholar
McGill, G. E. (1971). Attitude of fractures bounding straight and arcuate lunar rilles. Icarus, 14, 53–8.CrossRefGoogle Scholar
McGill, G. E. and Stromquist, A. W. (1974). A model for graben formation by subsurface flow: Canyonlands National Park, Utah. Department of Geology and Geography Contribution 15. Amherst: University of Massachusetts.
McGill, G. E. and Stromquist, A. W. (1975). Origin of graben in the Needles District, Canyonlands National Park, Utah. In Canyonlands Country, ed. Fassett, J. E., 8th Field Conference, Guidebook. Durango: Four Corners Geological Society, pp. 235–43.Google Scholar
McGill, G. E. and Stromquist, A. M. (1979). The grabens of Canyonlands National Park, Utah: geometry, mechanics, and kinematics. Journal of Geophysical Research, 84, 4547–63.CrossRefGoogle Scholar
McGill, G. E., Schultz, R. A., and Moore, J. M. (2000). Fault growth by segment linkage: an explanation for scatter in maximum displacement and trace length data from the Canyonlands Grabens of SE Utah: discussion. Journal of Structural Geology, 22, 135–40.CrossRefGoogle Scholar
McKenzie, D. and Nimmo, F. (1999). The generation of Martian floods by the melting of ground ice above dykes. Nature, 397, 231–3.CrossRefGoogle ScholarPubMed
McLeod, A. E., Dawers, N. H., and Underhill, J. R. (2000). The propagation and linkage of normal faults: insights from the Strathsprey-Brent-Statfjord fault array, northern North Sea. Basin Research, 12, 263–84.CrossRefGoogle Scholar
Mège, D. and Masson, P. (1996). A plume tectonics model for the Tharsis province, Mars. Planetary & Space Science, 44, 1499–546.CrossRefGoogle Scholar
Mège, D., Cook, A. C., Garel, E., Lagabrielle, Y., and Cormier, M. -H. (2003). Volcanic rifting at Martian graben. Journal of Geophysical Research, 108, 5044, doi: 10.1029/2002JE001852.CrossRefGoogle Scholar
Melosh, H. J. (1989). Impact Cratering: A Geologic Process. New York: Oxford University Press.Google Scholar
Melosh, H. J. and Williams, C. A. Jr. (1989). Mechanics of graben formation in crustal rocks: a finite element analysis. Journal of Geophysical Research, 94, 13961–73.CrossRefGoogle Scholar
Moore, J. M. and Schultz, R. A. (1999). Processes of faulting in jointed rocks of Canyonlands National Park, Utah. Geological Society of America Bulletin, 111, 808–22.2.3.CO;2>CrossRefGoogle Scholar
Moore, J. M., Schultz, R. A., Grosfils, E. B.et al. (1997). The 1996 Canyonlands initiative: field study of small planetary grabens (abstract). Lunar and Planetary Science, XXVIII, 975–6.Google Scholar
Morley, C. K. (1999). Patterns of displacement along large normal faults: implications for basin evolution and fault propagation, based on examples from East Africa., American Association of Petroleum Geologists Bulletin, 83, 613–34.Google Scholar
Morley, C. K., Nelson, R. A., Patton, T. L., and Munn, S. G. (1990). Transfer zones in the East African rift system and their relevance to hydrocarbon exploration in rifts. American Association of Petroleum Geologists Bulletin, 74, 1234–53.Google Scholar
Nicol, A., Walsh, J. J., Watterson, J., and Bretan, P. G. (1995). Three-dimensional geometry and growth of conjugate normal faults. Journal of Structural Geology, 17, 847–62.CrossRefGoogle Scholar
Nicol, A., Watterson, J., Walsh, J. J., and Childs, C. (1996). The shapes, major axis orientations and displacement patterns of fault surfaces. Journal of Structural Geology, 18, 235–48.CrossRefGoogle Scholar
Odonne, F. and Massonnat, G. (1992). Volume loss and deformation around conjugate fractures: comparison between a natural example and analogue experiments. Journal of Structural Geology, 14, 963–72.CrossRefGoogle Scholar
Okubo, C. H. and Schultz, R. A. (2003). Thrust fault vergence directions on Mars: a foundation for investigating global-scale Tharsis-driven tectonics. Geophysical Research Letters, 30, 2154, doi:10.1029/2003GL018664.CrossRefGoogle Scholar
Okubo, C. H. and Schultz, R. A. (2004). Mechanical stratigraphy in the western equatorial region of Mars based on thrust fault-related fold topography and implications for near-surface volatile reservoirs. Geological Society of America Bulletin, 116, 594–605.CrossRefGoogle Scholar
Pappalardo, R. T. and Greeley, R. (1995). A review of the origins of subparallel ridges and troughs: generalized morphological predictions from terrestrial models. Journal of Geophysical Research, 100, 18985–19007.CrossRefGoogle Scholar
Peacock, D. C. P. (2002). Propagation, interaction and linkage in normal fault systems. Earth Science Reviews, 58, 121–42.CrossRefGoogle Scholar
Peacock, D. C. P. and Sanderson, D. (1991). Displacements, segment linkage and relay ramps in normal fault zones. Journal of Structural Geology, 13, 721–33.CrossRefGoogle Scholar
Peacock, D. C. P. and Sanderson, D. (1994). Geometry and development of relay ramps in normal fault systems. American Association of Petroleum Geologists Bulletin, 78, 147–65.Google Scholar
Plescia, J. B. (1991). Graben and extension in northern Tharsis, Mars. Journal of Geophysical Research, 96, 18883–95.CrossRefGoogle Scholar
Pollard, D. D., Delaney, P. T., Duffield, W. A., Endo, E. T., and Okamura, A. T. (1983). Surface deformation in volcanic rift zones. Tectonophysics, 94, 541–84.CrossRefGoogle Scholar
Pollard, D. D. and Segall, P. (1987). Theoretical displacements and stresses near fractures in rock. with applications to faults, joints, dikes, and solution surfaces. In Fracture Mechanics of Rock, ed. Atkinson, B. K.. New York: Academic Press, pp. 277–349.Google Scholar
Reches, Z. (1978). Analysis of faulting in three-dimensional strain field. Tectonophysics, 47, 109–29.CrossRefGoogle Scholar
Reches, Z. (1983). Faulting of rocks in three-dimensional strain fields II. Theoretical analysis. Tectonophysics, 95, 133–56.CrossRefGoogle Scholar
Roberts, A. and Yielding, G. (1994). Continental tectonics. In Continental Deformation, ed. Hancock, P. L.. Pergamon, pp. 223–50.Google Scholar
Rosendahl, B. R. (1987). Architecture of continental rifts with special reference to East Africa. Annual Review of Earth & Planetary Science, 15, 445–503.CrossRefGoogle Scholar
Rubin, A. M. (1992). Dike-induced faulting and graben subsidence in volcanic rift zones. Journal of Geophysical Research, 97, 1839–58.CrossRefGoogle Scholar
Rubin, A. M. (1995). Propagation of magma-filled cracks. Annual Review of Earth & Planetary Science, 23, 287–336.CrossRefGoogle Scholar
Rubin, A. M. and Pollard, D. D. (1988). Dike-induced faulting in rift zones of Iceland and Afar. Geology, 16, 413–17.2.3.CO;2>CrossRefGoogle Scholar
Schonfeld, E. (1979). Origin of Valles Marineris. Proc. 10th Lunar Planetary Science Conference, 11, 3031–8.Google Scholar
Scott, D. H. and Tanaka, K. L. (1986). Geologic map of the western equatorial region of Mars. US Geol. Surv. Misc. Invest. Map I-1802-A.
Schultz, R. A. (1989). Do pit-crater chains grow up to be Valles Marineris canyons? (abstract). In Proceedings of MEVTV Workshop on Tectonic Features on Mars, ed. Watters, T. R., and Golombek, M. P., Lunar and Planetary Institute Technical Report 89–06, pp. 49–50.Google Scholar
Schultz, R. A. (1991). Structural development of Coprates Chasm and western Ophir Planum, Valles Marineris, Mars. Planetary & Space Science, 43, 1561–6.CrossRefGoogle Scholar
Schultz, R. A. (1992). Studies of faulting on the Earth and other planets. Trends in Geophysical Research, 1, 97–111.Google Scholar
Schultz, R. A. (1995). Gradients in extension and strain at Valles Marineris rift, Mars. Journal of Geophysical Research, 96, 22777–92.CrossRefGoogle Scholar
Schultz, R. A. (1997). Displacement-length scaling for terrestrial and Martian faults: implications for Valles Marineris and shallow planetary grabens. Journal of Geophysical Research, 102, 12009–15.CrossRefGoogle Scholar
Schultz, R. A. (1999). Understanding the process of faulting: selected challenges and opportunities at the edge of the 21st century. Journal of Structural Geology, 21, 985–93.CrossRefGoogle Scholar
Schultz, R. A. (2000). Fault-population statistics at the Valles Marineris Extensional Province, Mars: implications for segment linkage, crustal strains, and its geodynamical development. Tectonophysics, 316, 169–93.CrossRefGoogle Scholar
Schultz, R. A. (2003). Seismotectonics of the Amenthes Rupes thrust fault population, Mars. Geophysical Research Letters, 30, 1303, doi:10.1029/2002GL016475.CrossRefGoogle Scholar
Schultz, R. A. and Fori, A. N. (1996). Fault-length statistics and implications of graben sets at Candor Mensa, Mars. Journal of Structural Geology, 18, 373–83.CrossRefGoogle Scholar
Schultz, R. A. and Lin, J. (2001). Three-dimensional normal faulting models of Valles Marineris, Mars, and geodynamic implications. Journal of Geophysical Research, 106, 16549–66.CrossRefGoogle Scholar
Schultz, R. A. and Moore, J. M. (1996). New observations of grabens from the Needles District, Canyonlands National Park, Utah. In Geology and Resources of the Paradox Basin, ed. Huffman, A. C. Jr., Lund, W. R., and Godwin, L. H.. Utah Geological Association Guidebook 25, pp. 295–302.Google Scholar
Schultz, R. A. and Watters, T. R. (2001). Forward mechanical modeling of the Amenthes Rupes thrust fault on Mars. Geophysical Research Letters, 28, 4659–62.CrossRefGoogle Scholar
Schultz, R. A. and Zuber, M. T. (1994). Observations, models, and mechanisms of failure of surface rocks surrounding planetary surface loads. Journal of Geophysical Research, 99, 14691–702.CrossRefGoogle Scholar
Schultz, R. A., Okubo, C. H., Goudy, C. L., and Wilkins, S. J. (2004). Igneous dikes on Mars revealed by Mars Orbiter Laser Altimeter topography. Geology, 32, 889–92.CrossRefGoogle Scholar
Schultz-Ela, D. D. and Walsh, P. (2002). Modeling of grabens extending above evaporates in Canyonlands National Park, Utah. Journal of Structural Geology, 24, 247–75.CrossRefGoogle Scholar
Schultz-Ela, D. D., Jackson, M. P. A., and Vendeville, B. C. (1993). Mechanics of active salt diapirism. Tectonophysics, 228, 275–312.CrossRefGoogle Scholar
Sibson, R. H. (1989). Earthquake faulting as a structural process. Journal of Structural Geology, 11, 1–14.CrossRefGoogle Scholar
Soderblom, L. A. and Wenner, D. B. (1978). Possible fossil H2O liquid-ice interfaces in the Martian crust. Icarus, 34, 622–37.CrossRefGoogle Scholar
Soliva, R. (2004). Normal fault growth in layered rocks: the role of vertical restriction and linkage on scaling laws and fault spatial distribution. Ph.D. dissertation (in French), Université Paris-Sud, Orsay, France.
Soliva, R. and Benedicto, A. (2004). A linkage criterion for segmented normal faults. Journal of Structural Geology, 26, 2251–67.CrossRefGoogle Scholar
Squyres, S. W. and Carr, M. H. (1986). Geomorphic evidence for the distribution of ground ice on Mars. Science, 231, 249–52.CrossRefGoogle ScholarPubMed
Squyres, S. W., Clifford, S. M., Kuzmin, R. O., Zimbelman, J. R., and Costard, F. M. (1992). Ice in the Martian regolith. In Mars, ed. Kieffer, H. H., Jakosky, B. M., Snyder, C. W., and Matthews, M. S.. Tucson: Univ. Arizona Press, pp. 523–54.Google Scholar
Stromquist, A. W. (1976). Geometry and growth of grabens, Lower Red Lake Canyon area, Canyonlands National Park, Utah, Department of Geology and Geography Contribution 28. Amherst: University of Massachusetts.
Tanaka, K. L. and Golombek, M. P. (1989). Martian tension fractures and the formation of grabens and collapse depressions in Valles Marineris. Proc.19th Lunar Planetary Science Conference, pp. 383–96.Google Scholar
Tanaka, K. L., Golombek, M. P., and Banerdt, W. B. (1991). Reconciliation of stress and structural histories of the Tharsis region of Mars. Journal of Geophysical Research, 96, 15617–33.CrossRefGoogle Scholar
Thomas, P. G. and Allemand, P. (1993). Quantitative analysis of the extensional tectonics of the Tharsis bulge, Mars: geodynamic implications. Journal of Geophysical Research, 98, 13097–108.CrossRefGoogle Scholar
Trudgill, B. and Cartwright, J. (1994). Relay-ramp forms and normal-fault linkages, Canyonlands National Park, Utah. Geological Society of America Bulletin, 106, 1143–57.2.3.CO;2>CrossRefGoogle Scholar
Turcotte, D. L. and Schubert, G. (1982). Geodynamics: Applications of Continuum Physics to Geological Problems. Wiley.Google Scholar
Urrita-Fucugauchi, J., Marin, L., and Trejo-Garcia, A. (1996). UNAM scientific drilling program of Chicxulub impact structure: evidence for a 300 kilometer crater diameter. Geophysical Research Letters, 23, 1565– 8.Google Scholar
Vendeville, B. C. and Jackson, M. P. A. (1992). The rise of diapirs during thin-skinned extension. Marine Petroleum Geology, 9, 331–53.CrossRefGoogle Scholar
Walsh, J. J. and Watterson, J. (1987). Distributions of cumulative displacement and seismic slip on a single normal fault surface. Journal of Structural Geology, 9, 1039–46.CrossRefGoogle Scholar
Walsh, P. and Schultz-Ela, D. D. (2003). Mechanics of graben evolution in Canyonlands National Park, Utah. Geological Society of America Bulletin, 115, 259–70.2.0.CO;2>CrossRefGoogle Scholar
Watters, T. R., Schultz, R. A., Robinson, M. S., and Cook, A. C. (2002). The mechanical and thermal structure of Mercury's early lithosphere. Geophysical Research Letters, 29, doi:10.1029/2001GL014308.CrossRefGoogle Scholar
Watterson, J., Nicol, A., Walsh, J. J., and Meier, D. (1998). Strains at the intersections of synchronous conjugate normal faults. Journal of Structural Geology, 20, 363–70.CrossRefGoogle Scholar
Weissel, J. K. and Karner, G. D. (1989). Flexural uplift of rift flanks due to mechanical unloading of the lithosphere during extension. Journal of Geophysical Research, 94, 13919–50.CrossRefGoogle Scholar
Wilkins, S. J. and Gross, M. R. (2002). Normal fault growth in layered rocks at Split Mountain, Utah: influence of mechanical stratigraphy on dip linkage, fault restriction and fault scaling. Journal of Structural Geology, 24, 1413–29.CrossRefGoogle Scholar
Wilkins, S. J. and Schultz, R. A. (2003). Cross faults in extensional settings: stress triggering, displacement localization, and implications for the origin of blunt troughs in Valles Marineris, Mars. Journal of Geophysical Research, 108, 5056, doi:10.1029/2002JE001968.CrossRefGoogle Scholar
Wilkins, S. J., Schultz, R. A., Anderson, R. C., Dohm, J. M., and Dawers, N. C. (2002). Deformation rates from faulting at the Tempe Terra extensional province, Mars. Geophysical Research Letters, 29, 1884, doi: 10.1029/2002GL015391.CrossRefGoogle Scholar
Willemse, E. J. M. (1997). Segmented normal faults: correspondence between three-dimensional mechanical models and field data. Journal of Geophysical Research, 102, 675–92.CrossRefGoogle Scholar
Williams, J. K., Paige, D. A., and Manning, C. E. (2003). Layering in the wall rock of Valles Marineris: intrusive and extrusive magmatism. Geophysical Research Letters, 30, 1623, doi: 10.1029/2003GL017662.CrossRefGoogle Scholar
Wilson, L. and Head, J. W. (2002). Tharsis-radial graben systems as the surface manifestation of plume-related dike intrusion complexes: models and implications. Journal of Geophysical Research, 107, doi: 10.1029/2001JE001593.CrossRefGoogle Scholar
Wise, D. U. (1976). Faulting and stress trajectories near Alba volcano, northern Tharsis ridge of Mars. Geol. Romana, 15, 430–3.Google Scholar
Wise, D. U., Golombek, M. P., and McGill, G. E. (1979). Tharsis province of Mars: geologic sequence, geometry, and a deformation mechanism. Icarus, 38, 456–72.CrossRefGoogle Scholar
Wise, D. U., Golombek, M. P., and McGill, G. E. (1982). Tectonic evolution of Mars. Journal of Geophysical Research, 84, 7934–9.CrossRefGoogle Scholar
Woodward-Clyde Consultants (1983). Overview of the regional geology of the Paradox Basin study region. Battelle Memorial Institute Office of Nuclear Waste Isolation, ONWI-92.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×