Published online by Cambridge University Press: 18 September 2009
Introduction
Solidified lava flow morphologies are a consequence of complex interactions between the moving, cooling lava and its environment. Because no active Martian lava flow has been observed, eruption and emplacement parameters must be determined from the resulting volcanic morphologies. Griffiths and Fink (1992a, b) demonstrated the effects that ambient conditions exert on the gross morphology of lava flows with Newtonian rheologies. Through the use of analog experiments, they concluded that typical lava flow morphologies are created by a balance between the rate at which heat is advected within the flow and the cooling rate – a ratio they quantified with the dimensionless parameter Ψ (Fink and Griffiths, 1990). Gregg and Fink (2000) examined the effect of underlying slope on lava flow morphologies, and concluded that increasing slope has a similar effect to increasing effusion rate. However, Gregg and Smith (2003) show that this relationship breaks down somewhat on slopes steeper than about 20°. Griffiths and Fink (1997) and Fink and Griffiths (1998) examined the effect of ambient conditions on laboratory flows with a Bingham rheology, and observed a similar dependence of morphology with Ψ.
Thus, the main parameters that appear to control lava flow morphologies for lavas with Newtonian or Bingham rheologies are effusion rate, eruption temperature, lava viscosity, underlying slope, and ambient conditions (e.g., Fink and Griffiths, 1990, 1998; Gregg and Fink, 2000).
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.