Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-13T02:51:38.658Z Has data issue: false hasContentIssue false

6 - Geomagnetic and Electromagnetic Observations at Ground Level

from Part II - Geomagnetic Field

Published online by Cambridge University Press:  25 October 2019

Mioara Mandea
Affiliation:
Centre National d'études Spatiales, France
Monika Korte
Affiliation:
GeoforschungsZentrum, Helmholtz-Zentrum, Potsdam
Andrew Yau
Affiliation:
University of Calgary
Eduard Petrovsky
Affiliation:
Academy of Sciences of the Czech Republic, Prague
Get access

Summary

In Chapter 6.1 we briefly review the main instruments used in today’s ground-based geomagnetic observations, focusing on their performances and working principles (from a user’s point of view). Next, the major measurement methods and systems currently in use will be introduced, with a focus on the latest developments in the field. In Chapter 6.2 electromagnetic (EM) methods will be discussed to study the electrical conductivity structure within Earth in a wide depth range and can be measured at the Earth’s surface by magnetometers and telluric electrodes. In Chapter 6.3 a new technique based on differences in instrument responses from ground-based magnetic measurements that extracts the frequency content of the magnetic field with periods ranging from 0.1 to 100 seconds will be discussed. This method enables the study of field line oscillations using the publicly available, worldwide database of geomagnetic observatories.

Type
Chapter
Information
Geomagnetism, Aeronomy and Space Weather
A Journey from the Earth's Core to the Sun
, pp. 54 - 83
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Alken, P., Chulliat, A. & Maus, S. (2013). Longitudinal and seasonal structure of the ionospheric equatorial electric field. J. Geophys. Res. Space Physics, 118, 12981305, doi: 10.1029/2012JA018314.Google Scholar
Alldredge, L. R. & Saldukas, I. (1964). An automatic standard magnetic observatory. J. Geophys. Res., 69(10), 1963–70.Google Scholar
Aschenbrenner, H. & Goubau, G. (1936). Ein Anordnung zur Registrierung rascher magnetischer Störungen. Hochfrequenztechnik Elektroakustik, 47, 177–81.Google Scholar
Bitterly, J., Cantin, J. M., Schlich, R. & Folques, J. (1984). Portable magnetometer theodolite with fluxgate sensor for Earth’s magnetic field component measurements. Geophys. Surv., 6, 233–9.Google Scholar
Bitterly, J. & Lalanne, X. (2003). Observatoire Magnétique Planétaire – Manuel d’opérations / Operation Manual (English translation). Institut de Physique du Globe de Paris, Paris.Google Scholar
Buchanan, A., Finn, C. A., Love, J. J., Worthington, E. W., Lawson, F., Maus, S., Okewunmi, S. & Poedjono, B. (2013). Geomagnetic referencing – the real-time compass for directional drillers. Oilfield Rev., 25(3), 3247.Google Scholar
Bullard, E. C. & Mason, R. G. (1961). The magnetic field astern of a ship. Deep Sea Res., 8(1), 2027, doi: 10.1016/0146-6313(61)90012-0.Google Scholar
Chi, P. J., et al. (2013). Sounding of the plasmasphere by Mid-continent MAgnetoseismic Chain (McMAC) magnetometers. J. Geophys. Res. Space Physics, 118, 3077–86, doi: 10.1002/jgra.50274.Google Scholar
Chulliat, A., Matzka, J., Masson, A. & Milan, S. E. (2017). Key ground-based and space-based assets to disentangle magnetic field sources in the Earth’s environment. Space Sci. Rev., 206, 123–56, doi: 10.1007/s11214-016-0291-y.Google Scholar
Chulliat, A. & Maus, S. (2014). Geomagnetic secular acceleration, jerks, and a localized standing wave at the core surface from 2000 to 2010. J. Geophys. Res. Solid Earth, 119, 1531–43, doi: 10.1002/2013JB010604.CrossRefGoogle Scholar
Chulliat, A., Savary, J., Telali, K. & Lalanne, X. (2009). Acquisition of 1-second data in IPGP magnetic observatories. US Geol. Surv. Open-File Rep., 2009–1226, 54–9.Google Scholar
Chulliat, A. & Telali, K. (2007). World monthly means database project. Publs. Inst. Geophys. Pol. Acad. Sc., C-99(398), 268–74.Google Scholar
Clarke, E., Baillie, O., Reay, S. J. & Turbitt, C. W. (2013). A method for the near real-time production of quasi-definitive magnetic observatory data. Earth Planets Space, 65, 1363–74, doi: 10.5047/eps.2013.10.001.Google Scholar
Duret, D., Léger, J. M., Francès, M., Bonzom, J. & Alcouffe, F. (1996). Performances of the OVH magnetometer for the Danish Oersted satellite. IEEE Trans. Magnetics, 32(5), 4935–7.Google Scholar
Engebretson, M. J., Hughes, W. J., Alford, J. L., Zesta, E., Cahill, L. J. Jr., Arnoldy, R. L. & Reeves, G. D. (1995). Magnetometer array for cusp and cleft studies observations of the spatial extent of broadband ULF magnetic pulsations at cusp/cleft latitudes. J. Geophys. Res., 100(A10), 19371–86, doi: 10.1029/95JA00768.Google Scholar
Engebretson, M. J. & Zesta, E. (2017). The future of ground magnetometer arrays in support of space weather monitoring and research. Space Weather, 15, 1433–41, doi: 10.1002/2017SW001718.Google Scholar
Engels, M., Barckhausen, U. & Gee, J. S. (2008). A new towed marine vector magnetometer: methods and results from a Central Pacific cruise. Geophys. J. Int., 172(1), 115–29, doi: 10.1111/j.1365-246X.2007.03601.x.Google Scholar
Fairhead, J. D. & Green, C. M. (2015). Generating a high-resolution global magnetic model for oil and mineral exploration. The Leading Edge, 34(9), 10961102, doi: 10.1190/tle34091096.1.Google Scholar
Finlay, C. C., Olsen, N., Kotsiaros, S., Gillet, N. & Tøffner-Clausen, L. (2016). Recent geomagnetic secular variation from Swarm and ground observatories as estimated in the CHAOS-6 geomagnetic field model. Earth Planets Space, 68, 112, doi: 10.1186/s40623-016-0486-1.Google Scholar
Freude, D. (2006). Spectroscopy for Physicists. http://home.uni-leipzig.de/energy/freuse.html.Google Scholar
Gjerloev, J. W. (2009). A global ground-based magnetometer initiative. Eos Trans. AGU, 90(27), 230–31, doi: 10.1029/2009EO270002.Google Scholar
Gjerloev, J. W. (2012). The SuperMAG data processing technique. J. Geophys. Res., 117, A09213, doi: 10.1029/2012JA017683.Google Scholar
Hamoudi, M., Quesnel, Y., Dyment, J. & Lesur, V. (2011). Aeromagnetic and marine measurements. In Mandea, M. & Korte, M., eds., Geomagnetic Observations and Models. Springer, pp. 57103.Google Scholar
Hrvoic, I. & Newitt, L. R. (2011). Instruments and methodologies for measurement of the Earth’s magnetic field. In Mandea, M. & Korte, M., eds., Geomagnetic Observations and Models. Springer, pp. 105–26.Google Scholar
Jackson, A., Jonkers, A. R. T. & Walker, M. R. (2000). Four centuries of geomagnetic secular variation from historical records. Philos. Trans. R. Soc. Lond. A, 358, 957–90.CrossRefGoogle Scholar
Jankowski, J. & Sucksdorff, C. (1996). Guide for Magnetic Measurements and Observatory Practice. International Association of Geomagnetism and Aeronomy, Warsaw.Google Scholar
Jonkers, A. R. T., Jackson, A. & Murray, A. (2003). Four centuries of geomagnetic data from historical records. Rev. Geophys., 41, 1006, doi: 10.1029/2002RG000115.Google Scholar
Kernevez, N., Duret, D., Moussavi, M. & Léger, J. M. (1992). Weak field NMR and ESR spectrometers and magnetometers. IEEE Trans. Magnetics, 28(5), 3054–9.Google Scholar
Kim, H., Cai, X., Clauer, C. R., Kunduri, B. S. R., Matzka, J., Stolle, S. & Weimer, D. R. (2013). Geomagnetic response to solar wind dynamic pressure impulse events at high-latitude conjugate points. J. Geophys. Res. Space Physics, 118, 6055–71, doi: 10.1002/jgra.50555.CrossRefGoogle Scholar
Knappe, S., Sander, T. & Trahms, L. (2014). Optically-pumped magnetometers for MEG. In Supek, S. & Aine, C. J., eds., Magnetoencephalography. Springer, Berlin, pp. 993–9.Google Scholar
Léger, J. M., Bertrand, F., Jager, T., Le Prado, M., Fratter, I. & Lalaurie, J. C. (2009). Swarm absolute scalar and vector magnetometer based on helium 4 optical pumping. Procedia Chem., 1, 634–7, doi: 10.1016/j.proche.2009.07.158.Google Scholar
Lichtenberger, J., Clilverd, M., Heilig, B., Vellante, M., Manninen, J., Rodger, C., Collier, A., Jørgensen, A., Reda, J., Holzworth, R. & Friedel, R. (2013). The plasmasphere during a space weather event: first results from the PLASMON project, J. Space Weather Space Clim., 3, A23, doi: 10.1051/swsc/201304.Google Scholar
Love, J. J. & Chulliat, A. (2013). An international network of magnetic observatories. Eos Trans. AGU, 9(4), 373–4, doi: 10.1002/2013EO420001.Google Scholar
Love, J. J. & Finn, C. A. (2011). The USGS geomagnetism program and its role in space weather monitoring. Space Weather, 9, S07001, doi: 10.1029/2011SW000684.Google Scholar
Macmillan, S. & Olsen, N. (2013). Observatory data and the Swarm mission. Earth Planets Space, 65, 1355–62, doi: 10.5047/eps.2013.07.011.Google Scholar
Marusenkov, A. (2017). Possibilities of further improvement of 1 s fluxgate variometers. Geosci. Instrum. Method. Data Syst., 6, 301–9, doi: 10.5194/gi-6-301-2017.Google Scholar
Matzka, J. (2012). Preparation of quasi-definitive (QD) data for the observatories Narsarsuaq, Qeqertarsuaq and Tristan da Cunha. In Hejda, P., Chulliat, A. & Catalan, M., eds., Proceedings of the XVth IAGA Workshop on Geomagnetic Observatory Instruments, Data Acquisition, and Processing, Real Instituto Y Observatorio de la Armada en San Fernando, San Fernando, Boletin Roa No. 03/13, pp. 5053.Google Scholar
Matzka, J., Chulliat, A., Mandea, M., Finlay, C. C. & Qamili, E. (2010). Geomagnetic observations for main field studies: From ground to space. Space Sci. Rev., 155, 2964, doi: 10.1007/s11214-010-9693-4.Google Scholar
Meyer, B., Chulliat, A. & Saltus, R. (2017). Derivation and error analysis of the Earth magnetic anomaly grid at 2 arc min resolution Version 3 (EMAG2v3). Geochem. Geophys. Geosys., 18, 4522–37, doi: 10.1002/2017GC007280.Google Scholar
Miles, P. J., Partner, R. T., Keeler, K. R. & McConnell, T. J. (2008). Unmanned airborne vehicle for geophysical surveying. U.S. patent US2008/0125920 A1, published 29 May.Google Scholar
Mohr, P. J., Taylor, B. N. & Newell, D. B. (2008). CODATA recommended values of the fundamental physical constants: 2006. Rev. Mod. Phys., 80, 633730, doi: 10.1103/RevModPhys.80.633.Google Scholar
Nabighian, M. N., Grauch, V. J. S., Hansen, R. O., LaFehr, T. R., Li, Y., Peirce, J. W., Phillips, J. D. & Ruder, M. E. (2005). The historical development of the magnetic method in exploration. Geophysics, 70(6), 3361, doi: 10.1190/1.2133784.CrossRefGoogle Scholar
Narod, B. B., Bennest, J. R., Strom-Olsen, J. O., Nezil, F. & Dunlap, R. A. (1985). An evaluation of the noise performance of Fe, Co, Si, and B amorphous alloys in ring-core fluxgate magnetometers. Can. J. Phys., 63(11), 1468–72, doi: 10.1139/p85-246.Google Scholar
Newitt, L. R., Barton, C. E. & Bitterly, J. (1996). Guide for Magnetic Repeat Stations. International Association of Geomagnetism and Aeronomy, Boulder, CO.Google Scholar
Nielsen, O. V., Petersen, J. R., Primdahl, F., Brauer, P., Hernando, B., Fernandez, A., Merayo, J. M. G. & Ripka, P. (1995). Development, construction and analysis of the ‘Ørsted’ fluxgate magnetometer. Meas. Sci. Technol., 6, 10991115.Google Scholar
Olsen, N., Ravat, D., Finlay, C. C. & Kother, L. K. (2017). LCS-1: A high-resolution global model of the lithospheric magnetic field derived from CHAMP and Swarm satellite observationsGeophys. J. Int., 211(3), 1461–77, doi: 10.1093/gji/ggx381.Google Scholar
Overhauser, A. W. (1953). Paramagnetic relaxation in metals. Phys. Rev., 89, 689700, doi: 10.1103/PhysRev.92.411.CrossRefGoogle Scholar
Packard, M. E. (1958). Gyromagnetic resonance magnetometer. U.S. patent 2,856,579, issued 14 October.Google Scholar
Peltier, A. & Chulliat, A. (2010). On the feasibility of promptly producing quasi-definitive magnetic observatory data. Earth Planets Space, 62, e5e8, doi: 10.5047/eps.2010.02.002.Google Scholar
Poncelet, A., Gonsette, A. & Rasson, J. (2017). Several years of experience with automatic DI-flux systems: theory, validation and results. Geosci. Instrum. Method. Data Syst., 6, 353–60, doi: 10.5194/gi-6-353-2017.Google Scholar
Primdahl, F. (1979). The fluxgate magnetometer. J. Phys. E Sci. Instrum., 12, 241–53.Google Scholar
Rasmussen, O. & Kring Lauridsen, E. (1990). Improving baseline drift in fluxgate magnetometers caused by foundation movements, using band suspended fluxgate sensors. Phys. Earth Planet. Inter., 59, 7881.Google Scholar
Reeves, C. (2005). Aeromagnetic Surveys – Principles, Practice and Interpretation. Geosoft (http://www.geosoft.com).Google Scholar
Schiffler, M., Queitsch, M., Stolz, R., Chwala, A., Krech, W., Meyer, H.-G. & Kukowski, N. (2014). Calibration of SQUID vector magnetometers in full tensor gradiometry systems. Geophys. J. Int., 198, 954–64, doi: 10.1093/gji/ggu173.Google Scholar
Schnepf, N., Manoj, C., Kuvshinov, A., Toh, H. & Maus, S. (2014). Tidal signals in ocean-bottom magnetic measurements of the Northwestern Pacific: observation versus prediction. Geophys. J. Int., 198, 1096–110, doi: 10.1093/gji/ggu190.Google Scholar
Serson, P. H. & Hannaford, W. L. W. (1956). A portable electrical magnetometer. Can. J. Technol., 34, 232–43.Google Scholar
Sheng, D., Li, S., Dural, N. & Romalis, M. V. (2013). Subfemtotesla scalar atomic magnetometry using multipass cells. Phys. Rev. Lett., 110, 160802, doi: 10.1103/PhysRevLett.110.160802.Google Scholar
St Louis, B., ed. (2012). INTERMAGNET Technical Reference Manual, version 4.6.Google Scholar
Stuart, W. F. (1972). Earth’s field magnetometry. Rep. Prog. Phys., 35, 803–81.Google Scholar
Tanskanen, E. I. (2009). A comprehensive high-throughput analysis of substorms observed by IMAGE magnetometer network: Years 1993–2003 examined. J. Geophys. Res., 114, A05204, doi: 10.1029/2008JA013682.Google Scholar
Toh, H., Hamano, Y. & Ichiki, M. (2006). Long-term seafloor geomagnetic station in the northwest Pacific: A possible candidate for a seafloor geomagnetic observatory. Earth Planets Space, 58, 697705.Google Scholar
Toh, H., Satake, K., Hamano, Y., Fujii, Y. & Goto, T. (2011). Tsunami signals from the 2006 and 2007 Kuril earthquakes detected at a seafloor geomagnetic observatory. J. Geophys. Res., 116, B02104, doi: 10.1029/2010JB007873.Google Scholar
Torta, J. M., Pavón-Carrasco, F. J., Marsal, S. & Finlay, C. C. (2015). Evidence for a new geomagnetic jerk in 2014. Geophys. Res. Lett., 42, 7933–40, doi: 10.1002/2015GL065501.Google Scholar
Turner, G. M., Rasson, J. L. & Reeves, C. V. (2009). Observation and measurement techniques. In Schubert, G. & Kono, M., eds., Treatise on Geophysics – Geomagnetism. Elsevier, Amsterdam, pp. 93146.Google Scholar
Van Loo, S. A. & Rasson, J. L. (2007). Presentation of the prototype of an automated DIFlux. Publs. Inst. Geophys. Pol. Acad. Sc., C-99(398), 7786.Google Scholar
Varian, R. H. (1951). Method and means for correlating nuclear properties of atoms and magnetic fields. US patent 2,561,490, issued 24 July.Google Scholar
Weygand, J. M., Amm, O., Viljanen, A., Angelopoulos, V., Murr, D., Engebretson, M. J., Gleisner, H. & Mann, I. (2011). Application and validation of the spherical elementary currents systems technique for deriving ionospheric equivalent currents with the North American and Greenland ground magnetometer arrays. J. Geophys. Res., 116, A03305, doi: 10.1029/2010JA016177.Google Scholar
Xu, Z., Hartinger, M. D., Clauer, C. R., Peek, T. & Behlke, R. (2017). A comparison of the ground magnetic responses during the 2013 and 2015 St. Patrick’s Day geomagnetic storms. J. Geophys. Res. Space Physics, 122, 4023–36, doi: 10.1002/2016JA023338.Google Scholar
Yizengaw, E., Moldwin, M. B., Zesta, E., Biouele, C. M., Damtie, B., Mebrahtu, A., Rabiu, B., Valladares, C. F. & Stoneback, R. (2014). The longitudinal variability of equatorial electrojet and vertical drift velocity in the African and American sectors. Ann. Geophys., 32, 231–8, doi: 10.5194/angeo-32-231-2014.CrossRefGoogle Scholar
Yumoto, K. (2006). MAGDAS project and its application for space weather. ILWS Workshop 2006, Goa, 19–24 February.Google Scholar
Yumoto, K., & CPMN Group (2001). Characteristics of Pi 2 magnetic pulsations observed at the CPMN stations: A review of the STEP results. Earth Planets Space, 53, 981–92.CrossRefGoogle Scholar

References

Becken, M. & Ritter, O. (2012). Magnetotelluric studies at the San Andreas Fault Zone: Implications for the role of fluids. Surv. Geophys., 33, 65105, doi: 10.1007/s10712-011-9144-0.Google Scholar
Constable, C. (2016). Earth’s electromagnetic environment. Surv. Geophys., 37, 2745, doi: 10.1007/s10712-015-9351-1.Google Scholar
Everett, M. (2012). Theoretical developments in electromagnetic induction geophysics with selected applications in the near surface. Surv. Geophys., 33, 2963, doi: 10.1007/s10712-011-9138-y.Google Scholar
Key, K. (2012). Marine electromagnetic studies of seafloor resources and tectonics. Surv. Geophys., 33, 135–67, doi: 10.1007/s10712-011-9139-x.Google Scholar
Kuvshinov, A. V. (2012). Deep electromagnetic studies from land, sea, and space: Progress status in the past 10 years. Surv. Geophys., 33, 169209, doi: 10.1007/s10712-011-9118-2.Google Scholar
Ledo, J. (2006). 2-D versus 3-D magnetotelluric data interpretation. Surv. Geophys., 27, 511–43, doi: 10.1007/s10712-005-1757-8.CrossRefGoogle Scholar
Miensopust, M. (2017). Application of 3-D electromagnetic inversion in practice: Challenges, pitfalls and solution approaches. Surv. Geophys., 38, 869933, doi: 10.1007/s10712-017-9435-1.Google Scholar
Muñoz, G. (2014). Exploring for geothermal resources with electromagnetic methods. Surv. Geophys., 35, 101–22, doi: 10.1007/s10712-013-9236-0.Google Scholar
Neska, A. (2016). Conductivity anomalies in Central Europe. Surv. Geophys., 37, 526, doi: 10.1007/s10712-015-9349-8.CrossRefGoogle Scholar
Patro, P. (2017). Magnetotelluric studies for hydrocarbon and geothermal resources: Examples from the Asian region. Surv. Geophys., 38, 1005–41, doi: 10.1007/s10712-017-9439-x.Google Scholar
Selway, K. (2014). On the causes of electrical conductivity anomalies in tectonically stable lithosphere. Surv. Geophys., 35, 219–57, doi: 10.1007/s10712-013-9235-1.Google Scholar
Smith, R. (2014). Electromagnetic induction methods in mining geophysics from 2008 to 2012. Surv. Geophys., 35, 123–56, doi: 10.1007/s10712-013-9227-1.Google Scholar
Strack, K. (2014). Future directions of electromagnetic methods for hydrocarbon applications. Surv. Geophys., 35, 157–77, doi: 10.1007/s10712-013-9237-z.CrossRefGoogle Scholar
Streich, R. (2016). Controlled-source electromagnetic approaches for hydrocarbon exploration and monitoring on land. Surv. Geophys., 37, 4780, doi: 10.1007/s10712-015-9336-0.Google Scholar
Tezkan, B. (1999). A review of environmental applications of quasi-stationary electromagnetic techniques. Surv. Geophys., 20, 279308, doi: 10.1023/A:1006669218545.Google Scholar
Unsworth, M. (2010). Magnetotelluric studies of active continent-continent collisions. Surv. Geophys., 31, 137–61, doi: 10.1007/s10712-009-9086-y.Google Scholar
Weckmann, U. (2012). Making and breaking of a continent: following the scent of geodynamic imprints on the African continent using electromagnetics. Surv. Geophys., 33, 107–34, doi: 10.1007/s10712-011-9147-x.Google Scholar
Zang, L. (2017). A review of recent developments in the study of regional lithospheric electrical structure of the Asian continent. Surv. Geophys., 38, 1043–96, doi: 10.1007/s10712-017-9439-x.Google Scholar

References

Allan, W., Poulter, E. M. & White, S. P. (1986). Hydromagnetic wave coupling in the magnetosphere: Plasmapause effects on impulse-excited resonances. Planet. Space Sci., 34, 11891200.Google Scholar
Allan, W. & Poulter, E. M. (1992). ULF waves-their relationship to the structure of the Earth’s magnetosphere. Rep. Prog. Phys., 55, 533–98.Google Scholar
Auster, H. U. (2008). How to measure Earth’s magnetic field. Phys. Today, 61, 7677.Google Scholar
Baumjohann, W. & Treumann, R. A. (2012). Basic Space Plasma Physics, rev. edn., Imperial College Press, London.Google Scholar
Campbell, W. H. (1997). Introduction to Geomagnetic Fields, Cambridge Univ. Press, Cambridge.Google Scholar
Chen, C. H. K., Horbury, T. S., Schekochihin, A. A., Wicks, R. T., Alexandrova, O. & Mitchell, J. (2010). Anisotropy of solar wind turbulence between ion and electron scales. Phys. Rev. Lett., 104, 255002, doi: 10.1103/PhysRevLett.104.255002.Google Scholar
Chi, P.J. & Russell, C. T. (2001). On two methods using magnetometer-array data for studying magnetic pulsations. Terrestrial Atmos. Ocean Sci., 12, 649–62.Google Scholar
Clausen, L. B. N., Yeoman, T. K., Fear, R. C., Behlke, R., Lucek, E. A. & Engebretson, M. J. (2009). First simultaneous measurements of waves generated at the bow shock in the solar wind, the magnetosphere and on the ground. Ann. Geophys., 27, 357–71.Google Scholar
Crooker, N. U., Feynman, J. & Gosling, J. T. (1977). On the high correlation between long-term averages of solar wind speed and geomagnetic activity. J. Geophys. Res., 82, 1933–7.Google Scholar
Desai, M. I., Mason, G. M., Müller-Mellin, R., Korth, A., Mall, U., Dwyer, J. R. & von Rosenvinge, T. T. (2008). The spatial distribution of upstream ion events from the Earth’s bow shock measured by ACE, Wind, and STEREO. J. Geophys. Res., 113, A08103, doi: 10.1029/2007JA012909.Google Scholar
Dimmock, A. P., Nykyri, K. & Pulkkinen, T. I. (2014). A statistical study of magnetic field fluctuations in the dayside magnetosheath and their dependence on upstream solar wind conditions. J. Geophys. Res., A119, 6231–48, doi: 10.1002/2014JA020009.Google Scholar
Engebretson, M. J., Zanetti, L. J., Potemra, T. A., Baumjohann, W., Lühr, H. & Acuña, M. H. (1987). Simultaneous observation of Pc 3–4 pulsations in the solar wind and in the Earth’s magnetosphere. J. Geophys. Res., 92, 10,05362.Google Scholar
Feynman, J. (1982). Geomagnetic and solar wind cycles, 1900–1975. J. Geophys. Res., 87, 6153–62.Google Scholar
Garrett, H. B., Dessler, A. J. & Hill, T. W. (1974). Influence of solar wind variability on geomagnetic activity. J. Geophys. Res., 79, 4603–10.Google Scholar
Goldstein, M. L., Eastwood, J. P., Treumann, R. A., Lucek, E. A., Pickett, J. & Décréau, P. (2005). The near-Earth solar wind. Space Sci. Rev., 118, 739.Google Scholar
Gonzalez, W. D., Tsurutani, B. T. & Clúa de Gonzalez, A. L. (1999). Interplanetary origin of geomagnetic storms. Space Sci. Rev., 88, 529–62.Google Scholar
Heilig, B., Lühr, H. & Rother, M. (2007). Comprehensive study of ULF upstream waves observed in the topside ionosphere by CHAMP and on the ground. Ann. Geophys., 25, 737–54.Google Scholar
Hirshberg, J. & Colburn, D. S. (1969). Interplanetary field and geomagnetic variations – a unified view. Planet. Space Sci., 17, 11831205.Google Scholar
Horbury, T. S., Wicks, R. T. & Chen, C. H. K. (2011). Anisotropy in space plasma turbulence: solar wind observations. Space Sci. Rev., 172, 325–42, doi: 10.1007/s11214-011-9821-9.Google Scholar
Kappler, K. N., Morrison, H. F. & Egbert, G. D. (2010). Long-term monitoring of ULF electromagnetic fields at Parkfield, California. J. Geophys. Res., 115, B04406, doi: 10.1029/2009JB006421.Google Scholar
Keiling, A. D., Lee, H. & Nakariakov, V. (eds.) (2016). Low-Frequency Waves in Space Plasmas. American Geophysical Union, Washington, DC.Google Scholar
Kepko, L., Spence, H. E. & Singer, H. J. (2002). ULF waves in the solar wind as direct drivers of magnetospheric pulsations. Geophys. Res. Lett., 29, 1197, doi: 10.1029/2001GL014405.Google Scholar
Kepko, L. & Spence, H. E. (2003). Observations of discrete, global magnetospheric oscillations directly driven by solar wind density variations. J. Geophys. Res., 108, 1257, doi: 10.1029/2002JA009676.Google Scholar
Kivelson, M. G., Cao, M., McPherron, R. L. & Walker, R. J. (1997). A possible signature of magnetic cavity mode oscillations in ISEE spacecraft observations. J. Geomagn. Geoelectr., 49, 1079–98.CrossRefGoogle Scholar
Lee, D. H. & Lysak, R. L. (1991). Monochromatic ULF wave excitation in the dipole magnetosphere. J. Geophys. Res., A96, 5811–17.Google Scholar
Le Mouël, J. L., Kossobokov, V. & Courtillot, V. (2005). On long-term variations of simple geomagnetic indices and slow changes in magnetospheric currents: The emergence of anthropogenic global warming after 1990? Earth Planet. Sci. Lett., 232, 273–86, doi: 10.1016/j.epsl.2004.07.046.Google Scholar
Mathie, R. A., Menk, F. W., Mann, I. R. & Orr, D. (1999). Discrete field line resonances and the Alfvén continuum in the outer magnetosphere. Geophys. Res. Lett., 26, 659–62.Google Scholar
Mayaud, P. N. (1980). Derivation, Meaning, and Use of Geomagnetic Indices. Geophysical Monograph 22. American Geophysical Union, Washington, DC.Google Scholar
McPherron, R. L. (2005). Magnetic pulsations: Their sources and relation to solar wind and geomagnetic activity. Surv. Geophys., 26, 545–92.Google Scholar
Menk, F. W. (1988). Spectral structure of mid-latitude Pc3-4 geomagnetic pulsations. J. Geomagn. Geoelectr., 40, 3361.Google Scholar
Menk, F. W., Waters, C. L. & Fraser, B. J. (2000). Field line resonances and waveguide modes at low latitudes 1. Observations. J. Geophys. Res., A105, 7747–61.Google Scholar
Menk, F. W., Yeoman, T. K., Wright, D. M., Lester, M. & Honary, F. (2003). High-latitude observations of impulse-driven ULF pulsations in the ionosphere and on the ground. Ann. Geophys., 21, 559–76.Google Scholar
Menk, F. W. & Waters, C. L. (2013). Magnetoseismology. Wiley-VCH, Weinheim, Germany.Google Scholar
Qian, L. Y., Burns, A. G., Solomon, S. C. & Chamberlin, P. C. (2012). Solar flare impacts on ionospheric electrodyamics. Geophys. Res. Lett., 39, L06101, doi: 10.1029/2012GL051102.Google Scholar
Perri, S., Yordanova, E., Carbone, V., Veltri, P., Sorriso-Valvo, L., Bruno, R. & André, M. (2009). Magnetic turbulence in space plasmas: Scale-dependent effects of anisotropy, J. Geophys. Res., 114, A02102, doi: 10.1029/2008JA013491.Google Scholar
Pham Thi Thu, H., Amory-Mazaudier, C. & Le Huy, M. (2011). Sq field characteristics at Phu Thuy, Vietnam, during solar cycle 23: Comparisons with Sq field in other longitude sectors. Ann. Geophys., 29, 117, doi: 10.5194/angeo-29-1-2011.Google Scholar
Plaschke, F., Glassmeier, K. H., Sibeck, D. G., Auster, H. U., Constantinescu, O. D., Angelopoulos, V. & Magnes, W. (2009). Magnetopause surface oscillation frequencies at different solar wind conditions. Ann. Geophys., 27, 4521–32.Google Scholar
Poulter, E. M. & Nielsen, E. (1982). The hydromagnetic oscillation of individual shells of the geomagnetic field. J. Geophys. Res., 87, 10432–8.Google Scholar
Potapov, A. S. (2013). ULF wave activity in high-speed streams of the solar wind: Impact on the magnetosphere. J. Geophys. Res., 118, 6465–77, doi: 10.1002/2013JA019119.Google Scholar
Potemra, T. A., Lühr, H., Zanetti, L. J., Takahashi, K., Erlandson, R. E., Marklund, G. T., Block, L. P., Blomberg, L. G. & Lepping, R. P. (1989). Multisatellite and ground-based observations of transient ULF waves. J. Geophys. Res., 94, 2543–54.Google Scholar
Russell, C. T. & Fleming, B. K. (1976). Magnetic pulsations as a probe of the interplanetary magnetic field: A test of the Borok B Index. J. Geophys. Res., 81, 5882–6.Google Scholar
Sakurai, T., Tonegawa, Y., Kitagawa, T., Yumoto, K., Yamamoto, T., Kokubun, S., Mukai, T. & Tsuruda, K. (1999). Dayside magnetopause Pc 3 and Pc 5 ULF waves observed by the GEOTAIL Satellite. Earth Planets Space, 51, 965–78.Google Scholar
Southwood, D. J. (1974). Some features of field line resonances in the magnetosphere. Planet. Space Sci., 22, 483491.Google Scholar
St Louis, B. (2008). INTERMAGNET Technical Reference Manual, version 4.4. Internal publication. INTERMAGNET, Edinburgh.Google Scholar
Takahashi, K. & McPherron, R. L. (1982). Harmonic structure of Pc 3–4 pulsations. J. Geophys. Res., A87, 1504–16.Google Scholar
Takahashi, K., Chi, P. J., Denton, R. E. & Lysak, R. L. (eds.) (2006). Magnetospheric ULF Waves: Synthesis and New Directions, American Geophysical Union, Washington, DC.Google Scholar
Takahashi, K. & Ukhorskiy, A. Y. (2008). Timing analysis of the relationship between solar wind parameters and geosynchronous Pc5 amplitude. J. Geophys. Res., A113, A12204, doi: 10.1029/2008JA013327.Google Scholar
Tamao, T. (1964). The structure of three-dimensional hydromagnetic waves in a uniform cold plasma. J. Geomagn. Geoelectr., 16, 89114.Google Scholar
Troitskaya, V. A. & Gul’elmi, A. V. (1967). Geomagnetic micropulsations and diagnostics of the magnetosphere. Space Sci. Rev., 7, 689768.Google Scholar
Tsurutani, B. T., Ho, C. M., Smith, E. J., Neugebauer, M., Goldstein, B. E., Mok, J. S., Arballo, J. K., Balogh, A., Southwood, D. J. & Feldman, W. C. (1994). The relationship between interplanetary discontinuities and Alfvén waves: Ulysses observations. Geophys. Res. Lett., 21, 2267–70.Google Scholar
Tsurutani, B. T., Gonzalez, W. D., Gonzalez, A. L. C., Tang, F., Arballo, J. K. & Okada, M. (1995). Interplanetary origin of geomagnetic activity in the declining phase of the solar cycle. J. Geophys. Res., A100, 33.Google Scholar
Tsurutani, B.T., Gonzalez, W. D., Gonzalez, A. L. C., Guarnieri, F. L., Gopalswamy, N., Grande, M., Kamide, Y., Kasahara, Y., Lu, G., Mann, I., McPherron, R., Soraas, F. & Vasyliunas, V. (2006). Corotating solar wind streams and recurrent geomagnetic activity: A review. J. Geophys. Res., A111, A07S01, doi: 10.1029/2005JA011273.Google Scholar
Vellante, M., Lühr, H., Zhang, T. L., Wesztergom, V., Villante, U., De Lauretis, M., Piancatelli, A., Rother, M., Schwingenschuh, K., Koren, W. & Magnes, W. (2004). Ground/satellite signatures of field line resonance: A test of theoretical predictions. J. Geophys. Res., A109, A06210, doi: 10.1029/2004JA010392.Google Scholar
Verö, J., Zieger, B., Szendröi, J., Vellante, M., Stresgtik, J., Lühr, H., Best, A., Körmendi, A., Lichtenberger, J., Ménesi, T., Bencze, P., Märcz, F. & Wesztergom, V. (2000). Connections between whistlers and pulsation activity. Ann. Geophys., 18, 866–73.Google Scholar
Walker, D. M. (2002). Excitation of field line resonances by MHD waves originating in the solar wind. J. Geophys. Res., A107, 1481, doi: 10.1029/2001JA009188.Google Scholar
Weimer, D. R., Clauer, C. R., Engebretson, M. J., Hansen, T. L., Gleisner, H., Mann, I. & Yumoto, K. (2010). Statistical maps of geomagnetic perturbations as a function of the interplanetary magnetic field. J. Geophys. Res., 115, A10320, doi: 10.1029/2010JA015540.Google Scholar
Wilcox, J. M., Schatten, K. H. & Ness, N. F. (1967). Influence of interplanetary magnetic field and plasma on geomagnetic activity during quiet-Sun conditions. J. Geophys. Res., 72, 1926.Google Scholar
Willson, R. C. & Hudson, H. S. (1991). The Sun’s luminosity over a complete solar cycle. Nature, 351, 42–4, doi: 10.1038/351042a0.Google Scholar
Xystouris, G., Sigala, E. & Mavromichalaki, H. (2014). A Complete Catalogue of High-Speed Solar Wind Streams during Solar Cycle 23. Solar Phys., 289, 9951012, doi: 10.1007/s11207-013-0355-z.Google Scholar
Zieger, B. (1991). Long-term variations in pulsation activity and their relationship to solar wind velocity, geomagnetic activity and F2 region electron density. J. Geophys. Res., 96, 21,11523.Google Scholar
Zimbardo, G., Greco, A., Sorriso-Valvo, L., Perri, S., Vörös, Z., Aburjania, G., Chargazia, K. & Alexandrova, O. (2010). Magnetic turbulence in the geospace environment. Space Sci. Rev., 156, 89134, doi: 10.1007/s11214-010-9692-5.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×