Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T11:26:18.490Z Has data issue: false hasContentIssue false

Part II - Geomagnetic Field

Sources and Observations

Published online by Cambridge University Press:  25 October 2019

Mioara Mandea
Affiliation:
Centre National d'études Spatiales, France
Monika Korte
Affiliation:
GeoforschungsZentrum, Helmholtz-Zentrum, Potsdam
Andrew Yau
Affiliation:
University of Calgary
Eduard Petrovsky
Affiliation:
Academy of Sciences of the Czech Republic, Prague
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Geomagnetism, Aeronomy and Space Weather
A Journey from the Earth's Core to the Sun
, pp. 39 - 112
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Baker, D. N. (2000) Effects of the Sun on the Earth’s environment, J. Atmos. Sol. Terr. Phys., 62, 1669–81.Google Scholar
Baker, D. N., et al. (1996) The neutral line model of substorms: Past results and present view, J. Geophys. Rev., 101, 12,99513,010.Google Scholar
Birkeland, K. (1908) The Norwegian Aurora Polaris Expedition, 1902–1903, H. Aschehoug, Christania, Norvège.Google Scholar
Campbell, W. N. (2003) Introduction to Geomagnetic Fields, 2nd edn., Cambridge University Press, Cambridge.Google Scholar
Chapman, S. and Bartels, J. (1940) Geomagnetism, Oxford University Press, New York.Google Scholar
Chapman, S. and Ferraro, V. C. A. (1931) New theory of magnetic storms, Terr. Magn. Atm. Elec., 36, 77.CrossRefGoogle Scholar
Cole, K. D. (1966) Magnetic storms and associated phenomena, Space Sci. Rev., 5, 699770.Google Scholar
Cowley, S. W. H. (1991) The structure and length of tail-associated phenomena in the solar wind downstream from the Earth, Planet. Space Sci., 39, 1039–43.Google Scholar
Dungey, J. W. (1961) Interplanetary magnetic field and the auroral zones, Phys. Rev. Lett., 6, 47.CrossRefGoogle Scholar
Gauss, C. F. (1839) Allgemeine Theorie des Erdmagnetismus, in Resultate aus den Beobachtungen des magnetischen Vereins im Jahre 1838, Ed. Gauss, C. F. and Weber, W., 157, Weidmannsche Buchhandlung, Leipzig.Google Scholar
Glassmeier, K.-H. T. and Tsurutani, B. (2014). Carl Friedrich Gauss – General Theory of Terrestrial Magnetism – a revised translation of the German text. Hist. Geor. Space Sci., 5, 11-62. doi: 10.5194/hgss-5-11-2014.Google Scholar
Glatzmaier, G. A. and Roberts, P. H. (1995) A three-dimensional self-consistent computer simulation of a geomagnetic field reversal, Nature, 377, 203–9.Google Scholar
Hultqvist, B., Oieroset, M., Paschmann, G. and Treumann, R. (Eds.) (1999) Magnetospheric Plasma Sources and Losses, Space Science Series 6, Kluwer Academic, Dordrecht.CrossRefGoogle Scholar
Iijima, T. and Potemra, T. A. (1978) Large scale characteristics of field-aligned currents associated with substorms, J. Geophys. Res., 83, 599615.Google Scholar
Jacobs, J. A. (Ed.) (1987) Geomagnetism, vols. 1 and 2, Academic Press, New York.Google Scholar
Jacobs, J. A. (Ed.) (1991) Geomagnetism, vol. 4, Academic Press, New York.Google Scholar
Sibeck, D. G. and Lin, R.-Q. (2014) Size and shape of the distant magnetotail, J. Geophys. Res., 119, 1028–43.Google Scholar
Tsyganenko, N. A. (1989) Magnetospheric magnetic field with a warped tail current sheet. Planet. Space Sci., 73, 5.Google Scholar
Tsyganenko, N. A. and Stern, D. P. (1996) Modeling the global magnetic field of the large scale Birkeland current system, J. Geophys. Res., 101, 187–98.Google Scholar

References

Biggin, A., van Hinsbergen, D., Langereis, C., Straathof, G., & Deenen, M. (2008). Geomagnetic secular variation in the Cretaceous Normal Superchron and in the Jurassic. Physics of the Earth and Planetary Interiors, 169(1–4), 319.Google Scholar
Bloxham, J. & Gubbins, D. (1985). The secular variation of Earth’s magnetic field. Nature 317, 777–81.Google Scholar
Coe, R. S. (1967). The determination of paleo-intensities of the Earth’s magnetic field with emphasis on mechanisms which could cause nonideal behavior in Thellier’s method. Journal of Geomagnetism and Geoelectricity, 19(3), 157–79.Google Scholar
Constable, C. G. & Parker, R. L. (1988). Statistics of the geomagnetic secular variation for the past 5 m.y. Journal of Geophysical Research, 93(B10), 11569–81.CrossRefGoogle Scholar
Courtillot, V. & Besse, J. (1987). Magnetic field reversals, polar wander, and core–mantle coupling. Science, 237(4819), 1140–47.Google Scholar
Courtillot, V. & Besse, J. (2004). A long-term octupolar component in the geomagnetic field? (0–200 million years BP), in Timescales of the Paleomagnetic Field, edited by Channell, J. E. T., Kent, D. V., Lowrie, W. & Meert, J. G., AGU, Washington, DC.Google Scholar
Courtillot, V. & Olson, P. L. (2007). Mantle plumes link magnetic superchrons to phanerozoic mass depletion events. Earth and Planetary Science Letters, 260(3–4), 495504.Google Scholar
Cox, A. (1962). Analysis of present geomagnetic field for comparison with paleomagnetic results. Journal of Geomagnetism and Geoelectricity, 13, 113–19.Google Scholar
Cox, A. (1969). Confidence limits for the precision parameter k. Geophysical Journal of Royal Astronomical Society, 18, 545–9.Google Scholar
Cox, A. (1970). Latitude dependence of the angular dispersion of the geomagnetic field. Geophysical Journal of the Royal Astronomical Society, 20(3), 253–69.Google Scholar
Cox, A. (1975). The frequency of geomagnetic reversals and the symmetry of the nondipole field. Reviews of Geophysics and Space Physics, 13(3), 3551.Google Scholar
Creer, K., Irving, E. & Nairn, A. (1959). Palaeomagnetism of the Great Whin Sill. Geophysical Journal of the Royal Astronomical Society, 2, 306–23.Google Scholar
Cronin, M., Tauxe, L., Constable, C., Selkin, P. & Pick, T. (2001). Noise in the quiet zone. Earth and Planetary Science Letters, 190(1–2), 1330.Google Scholar
de Groot, L. V., Biggin, A. J., Dekkers, M. J., Langereis, C. G. & Herrero-Bervera, E. (2013). Rapid regional perturbations to the recent global geomagnetic decay revealed by a new Hawaiian record. Nature Communications, 4, 17.Google Scholar
de Groot, L. V., Pimentel, A. & di Chiara, A. (2016). The multimethod palaeointensity approach applied to volcanics from Terceira: Full-vector geomagnetic data for the past 50 kyr. Geophysical Journal International, 206(1), 590604.Google Scholar
Driscoll, P. E. & Evans, D. A. D. (2016). Frequency of Proterozoic geomagnetic superchrons. Earth and Planetary Science Letters, 437, 914.Google Scholar
Driscoll, P. E. & Olson, P. L. (2011). Superchron cycles driven by variable core heat flow. Geophysical Research Letters, 38(9), L09304.Google Scholar
Eide, E. & Torsvik, T. (1996). Paleozoic supercontinental assembly, mantle flushing, and genesis of the Kiaman Superchron. Earth and Planetary Science Letters, 144(3–4), 389402.Google Scholar
Elston, D. P., Enkin, R. J., Baker, J. & Kisilevsky, D. K. (2002). Tightening the belt: Paleomagnetic-stratigraphic constraints on deposition, correlation, and deformation of the Middle Proterozoic (ca. 1.4 Ga) Belt-Purcell Supergroup, United States and Canada. Geological Society of America Bulletin, 114(5), 619–38.Google Scholar
Fisher, R. A. (1953). Dispersion on a sphere. Proceedings of the Royal Society of London, Series A, 217, 295305.Google Scholar
Gallet, Y. & Hulot, G. (1997). Stationary and nonstationary behaviour within the geomagnetic polarity time scale. Geophysical Research Letters, 24(15), 1875–8.Google Scholar
Gallet, Y., Pavlov, V. E., Halverson, G. & Hulot, G. (2012). Toward constraining the long-term reversing behavior of the geodynamo: A new ‘Maya’ superchron ~1 billion years ago from the magnetostratigraphy of the Kartochka Formation (southwestern Siberia). Earth and Planetary Science Letters, 339–40, 117–26.Google Scholar
Gilder, S. A., Gomez, J., Chen, Y. & Cogné, J. P. (2008). A new paleogeographic configuration of the Eurasian landmass resolves a paleomagnetic paradox of the Tarim Basin (China). Tectonics, 27, TC1012, doi: 10.1029/2007TC002155.Google Scholar
Glatzmaier, G., Coe, R., Hongre, L. & Roberts, P. (1999). The role of the Earth’s mantle in controlling the frequency of geomagnetic reversals. Nature, 401(6756), 885–90.Google Scholar
Hagstrum, J. T., Fleck, R. J., Evarts, R. C. & Calvert, A. T. (2017). Paleomagnetism and 40Ar/39Ar geochronology of the Plio-Pleistocene Boring volcanic field: Implications for the geomagnetic polarity time scale and paleosecular variation, Phys. Earth Planet. Inter., 262, 101–15.Google Scholar
Harrison, C. (1995). Secular variation of the earth’s magnetic field. Journal of Geomagnetism and Geoelectricity, 47, 131–47.Google Scholar
Heimpel, M. H., Aurnou, J. M., Al-Shamali, F. M. & Gomez-Perez, N. (2005). A numerical study of dynamo action as a function of spherical shell geometry. Earth and Planetary Science Letters, 236(1–2), 542–57.Google Scholar
Hulot, G. & Gallet, Y. (2003). Do superchrons occur without any palaeomagnetic warning? Earth and Planetary Science Letters, 210(1–2), 191201.Google Scholar
Irving, E. & Ward, M. (1964). A statistical model of the geomagnetic field. Pure and Applied Geophysics, 57(1), 4752.Google Scholar
Jackson, A. & Bloxham, J. (1991). Mapping the fluid flow and shear near the core surface using the radial and horizontal components of the magnetic field. Geophysical Journal International, 105(1), 199212.Google Scholar
Jacobs, J. (2001). The cause of superchrons. Astronomy & Geophysics, 42(6), 630.Google Scholar
Landeau, M., Aubert, J. & Olson, P. L. (2017). The signature of inner-core nucleation on the geodynamo. Earth and Planetary Science Letters, 465, 193204.Google Scholar
Larson, R. (1991). Latest pulse of Earth: Evidence for a mid-Cretaceous superplume. Geology, 19(6), 547.Google Scholar
Larson, R. & Olson, P. (1991). Mantle plumes control magnetic reversal frequency. Earth and Planetary Science Letters, 107(3–4), 437–47.Google Scholar
Lhuillier, F. & Gilder, S. A. (2013). Quantifying paleosecular variation: Insights from numerical dynamo simulations. Earth and Planetary Science Letters, 382, 8797.Google Scholar
Lhuillier, F., Gilder, S. A., Wack, M., He, K., Petersen, N., Singer, B. S., Jicha, B. R., Schaen, A. J. & Colon, D. (2016). More stable yet bimodal geodynamo during the Cretaceous superchron? Geophysical Research Letters, 43(12), 6170–7.CrossRefGoogle Scholar
Lhuillier, F., Hulot, G. & Gallet, Y. (2013). Statistical properties of reversals and chrons in numerical dynamos and implications for the geodynamo. Physics of the Earth and Planetary Interiors, 220, 1936.Google Scholar
Lhuillier, F., Shcherbakov, V., Gilder, S. A. & Hagstrum, J. T. (2017). Variability of the 0–3 Ma palaeomagnetic field observed from the Boring Volcanic Field of the Pacific Northwest. Geophysical Journal International, 211, 6979.Google Scholar
Linder, J. & Gilder, S. A. (2011). Geomagnetic secular variation recorded by sediments deposited during the Cretaceous normal superchron at low latitude. Physics of the Earth and Planetary Interiors, 187, 245–60.Google Scholar
Linder, J. M. & Gilder, S. A. (2012). Latitude dependency of the geomagnetic secular variation S parameter: A mathematical artifact. Geophysical Research Letters, 39, L02308, doi: 10.1029/2011GL050330.Google Scholar
Loper, D. & McCartney, K. (1986). Mantle plumes and the periodicity of magnetic field reversals. Geophysical Research Letters, 13(13), 1525–8.Google Scholar
McElhinny, M. & Merrill, R. (1975). Geomagnetic secular variation over the past 5 My. Reviews of Geophysics, 13(5), 687708.Google Scholar
McFadden, P. & McElhinny, M. (1984). A physical model for palaeosecular variation. Geophysical Journal of the Royal Astronomical Society, 78(3), 809–30.Google Scholar
McFadden, R. & Merrill, R. (1986). Geodynamo energy source constraints from palaeomagnetic data. Physics of the Earth and Planetary Interiors, 43(1), 2233.Google Scholar
McFadden, P., Merrill, R. & McElhinny, M. (1988). Dipole/quadrupole family modeling of paleosecular variation. Journal of Geophysical Research, 93(B10), 11583–8.Google Scholar
Olson, P. L. (2007). Gravitational dynamos and the low-frequency geomagnetic secular variation. Proceedings of the National Academy of Sciences of the United States of America, 104(51), 20160–66.Google ScholarPubMed
Olson, P. L. & Amit, H. (2015). Mantle superplumes induce geomagnetic superchrons. Frontiers in Earth Science, 3, 111.Google Scholar
Olson, P. L., Driscoll, P. E. & Amit, H. (2009). Dipole collapse and reversal precursors in a numerical dynamo. Physics of the Earth and Planetary Interiors, 173, 121140.Google Scholar
Olson, P. L., Deguen, R., Hinnov, L. A. & Zhong, S. (2013). Controls on geomagnetic reversals and core evolution by mantle convection in the Phanerozoic. Physics of Earth and Planetary Interiors, 214, 87103.Google Scholar
Olson, P. L., Glatzmaier, G. A. & Coe, R. S. (2011). Complex polarity reversals in a geodynamo model. Earth and Planetary Science Letters, 304(1–2), 168–79.Google Scholar
Pavlov, V. & Gallet, Y. (2005). A third superchron during the Early Paleozoic. Episodes, 28(2), 7884.Google Scholar
Pavlov, V. E. & Gallet, Y. (2010). Variations in geomagnetic reversal frequency during the Earth’s middle age. Geochemistry, Geophysics, Geosystems, 11(1), Q01Z10, doi: 10.1029/2009GC002583.Google Scholar
Riisager, J., Perrin, M., Riisager, P. & Vandamme, D. (2001). Paleomagnetic results and paleointensity of Late Cretaceous Madagascan basalt. Journal of African Earth Sciences, 32(3), 503–18.Google Scholar
Roberts, P. H. & Glatzmaier, G. A. (2001). The geodynamo, past, present and future. Geophysical and Astrophysical Fluid Dynamics, 94(1–2), 4784, doi: 10.1080/03091920108204131Google Scholar
Tarduno, J., Cottrell, R. & Smirnov, A. (2002). The Cretaceous superchron geodynamo: Observations near the tangent cylinder. Proceedings of the National Academy of Sciences of the United States of America, 99(22), 14020–25.Google Scholar
Tauxe, L. & Kent, D. V. (2004). A simplified statistical model for the geomagnetic field and the detection of shallow bias, in Timescales of the Paleomagnetic Field, AGU, Washington, DC, pp. 101–15.Google Scholar
Tauxe, L., Pick, T. & Kok, Y. S. (1995). Relative paleointensity in sediments: A pseudo-Thellier approach. Geophysical Research Letters, 22(21), 2885–8.Google Scholar
Tauxe, L. & Staudigel, H. (2004). Strength of the geomagnetic field in the Cretaceous normal superchron: New data from submarine basaltic glass of the Troodos Ophiolite. Geochemistry, Geophysics, Geosystems, 5(2), doi: 10.1029/2003GC000635.Google Scholar
Thellier, E. & Thellier, O. (1959). Sur l’intensité du champ magnétique terrestre dans le passé historique et géologique. Annales de Géophysique, 15, 285376.Google Scholar

References

Alken, P., Chulliat, A. & Maus, S. (2013). Longitudinal and seasonal structure of the ionospheric equatorial electric field. J. Geophys. Res. Space Physics, 118, 12981305, doi: 10.1029/2012JA018314.Google Scholar
Alldredge, L. R. & Saldukas, I. (1964). An automatic standard magnetic observatory. J. Geophys. Res., 69(10), 1963–70.Google Scholar
Aschenbrenner, H. & Goubau, G. (1936). Ein Anordnung zur Registrierung rascher magnetischer Störungen. Hochfrequenztechnik Elektroakustik, 47, 177–81.Google Scholar
Bitterly, J., Cantin, J. M., Schlich, R. & Folques, J. (1984). Portable magnetometer theodolite with fluxgate sensor for Earth’s magnetic field component measurements. Geophys. Surv., 6, 233–9.Google Scholar
Bitterly, J. & Lalanne, X. (2003). Observatoire Magnétique Planétaire – Manuel d’opérations / Operation Manual (English translation). Institut de Physique du Globe de Paris, Paris.Google Scholar
Buchanan, A., Finn, C. A., Love, J. J., Worthington, E. W., Lawson, F., Maus, S., Okewunmi, S. & Poedjono, B. (2013). Geomagnetic referencing – the real-time compass for directional drillers. Oilfield Rev., 25(3), 3247.Google Scholar
Bullard, E. C. & Mason, R. G. (1961). The magnetic field astern of a ship. Deep Sea Res., 8(1), 2027, doi: 10.1016/0146-6313(61)90012-0.Google Scholar
Chi, P. J., et al. (2013). Sounding of the plasmasphere by Mid-continent MAgnetoseismic Chain (McMAC) magnetometers. J. Geophys. Res. Space Physics, 118, 3077–86, doi: 10.1002/jgra.50274.Google Scholar
Chulliat, A., Matzka, J., Masson, A. & Milan, S. E. (2017). Key ground-based and space-based assets to disentangle magnetic field sources in the Earth’s environment. Space Sci. Rev., 206, 123–56, doi: 10.1007/s11214-016-0291-y.Google Scholar
Chulliat, A. & Maus, S. (2014). Geomagnetic secular acceleration, jerks, and a localized standing wave at the core surface from 2000 to 2010. J. Geophys. Res. Solid Earth, 119, 1531–43, doi: 10.1002/2013JB010604.Google Scholar
Chulliat, A., Savary, J., Telali, K. & Lalanne, X. (2009). Acquisition of 1-second data in IPGP magnetic observatories. US Geol. Surv. Open-File Rep., 2009–1226, 54–9.Google Scholar
Chulliat, A. & Telali, K. (2007). World monthly means database project. Publs. Inst. Geophys. Pol. Acad. Sc., C-99(398), 268–74.Google Scholar
Clarke, E., Baillie, O., Reay, S. J. & Turbitt, C. W. (2013). A method for the near real-time production of quasi-definitive magnetic observatory data. Earth Planets Space, 65, 1363–74, doi: 10.5047/eps.2013.10.001.Google Scholar
Duret, D., Léger, J. M., Francès, M., Bonzom, J. & Alcouffe, F. (1996). Performances of the OVH magnetometer for the Danish Oersted satellite. IEEE Trans. Magnetics, 32(5), 4935–7.Google Scholar
Engebretson, M. J., Hughes, W. J., Alford, J. L., Zesta, E., Cahill, L. J. Jr., Arnoldy, R. L. & Reeves, G. D. (1995). Magnetometer array for cusp and cleft studies observations of the spatial extent of broadband ULF magnetic pulsations at cusp/cleft latitudes. J. Geophys. Res., 100(A10), 19371–86, doi: 10.1029/95JA00768.Google Scholar
Engebretson, M. J. & Zesta, E. (2017). The future of ground magnetometer arrays in support of space weather monitoring and research. Space Weather, 15, 1433–41, doi: 10.1002/2017SW001718.Google Scholar
Engels, M., Barckhausen, U. & Gee, J. S. (2008). A new towed marine vector magnetometer: methods and results from a Central Pacific cruise. Geophys. J. Int., 172(1), 115–29, doi: 10.1111/j.1365-246X.2007.03601.x.Google Scholar
Fairhead, J. D. & Green, C. M. (2015). Generating a high-resolution global magnetic model for oil and mineral exploration. The Leading Edge, 34(9), 10961102, doi: 10.1190/tle34091096.1.Google Scholar
Finlay, C. C., Olsen, N., Kotsiaros, S., Gillet, N. & Tøffner-Clausen, L. (2016). Recent geomagnetic secular variation from Swarm and ground observatories as estimated in the CHAOS-6 geomagnetic field model. Earth Planets Space, 68, 112, doi: 10.1186/s40623-016-0486-1.Google Scholar
Freude, D. (2006). Spectroscopy for Physicists. http://home.uni-leipzig.de/energy/freuse.html.Google Scholar
Gjerloev, J. W. (2009). A global ground-based magnetometer initiative. Eos Trans. AGU, 90(27), 230–31, doi: 10.1029/2009EO270002.Google Scholar
Gjerloev, J. W. (2012). The SuperMAG data processing technique. J. Geophys. Res., 117, A09213, doi: 10.1029/2012JA017683.Google Scholar
Hamoudi, M., Quesnel, Y., Dyment, J. & Lesur, V. (2011). Aeromagnetic and marine measurements. In Mandea, M. & Korte, M., eds., Geomagnetic Observations and Models. Springer, pp. 57103.Google Scholar
Hrvoic, I. & Newitt, L. R. (2011). Instruments and methodologies for measurement of the Earth’s magnetic field. In Mandea, M. & Korte, M., eds., Geomagnetic Observations and Models. Springer, pp. 105–26.Google Scholar
Jackson, A., Jonkers, A. R. T. & Walker, M. R. (2000). Four centuries of geomagnetic secular variation from historical records. Philos. Trans. R. Soc. Lond. A, 358, 957–90.Google Scholar
Jankowski, J. & Sucksdorff, C. (1996). Guide for Magnetic Measurements and Observatory Practice. International Association of Geomagnetism and Aeronomy, Warsaw.Google Scholar
Jonkers, A. R. T., Jackson, A. & Murray, A. (2003). Four centuries of geomagnetic data from historical records. Rev. Geophys., 41, 1006, doi: 10.1029/2002RG000115.Google Scholar
Kernevez, N., Duret, D., Moussavi, M. & Léger, J. M. (1992). Weak field NMR and ESR spectrometers and magnetometers. IEEE Trans. Magnetics, 28(5), 3054–9.Google Scholar
Kim, H., Cai, X., Clauer, C. R., Kunduri, B. S. R., Matzka, J., Stolle, S. & Weimer, D. R. (2013). Geomagnetic response to solar wind dynamic pressure impulse events at high-latitude conjugate points. J. Geophys. Res. Space Physics, 118, 6055–71, doi: 10.1002/jgra.50555.Google Scholar
Knappe, S., Sander, T. & Trahms, L. (2014). Optically-pumped magnetometers for MEG. In Supek, S. & Aine, C. J., eds., Magnetoencephalography. Springer, Berlin, pp. 993–9.Google Scholar
Léger, J. M., Bertrand, F., Jager, T., Le Prado, M., Fratter, I. & Lalaurie, J. C. (2009). Swarm absolute scalar and vector magnetometer based on helium 4 optical pumping. Procedia Chem., 1, 634–7, doi: 10.1016/j.proche.2009.07.158.Google Scholar
Lichtenberger, J., Clilverd, M., Heilig, B., Vellante, M., Manninen, J., Rodger, C., Collier, A., Jørgensen, A., Reda, J., Holzworth, R. & Friedel, R. (2013). The plasmasphere during a space weather event: first results from the PLASMON project, J. Space Weather Space Clim., 3, A23, doi: 10.1051/swsc/201304.Google Scholar
Love, J. J. & Chulliat, A. (2013). An international network of magnetic observatories. Eos Trans. AGU, 9(4), 373–4, doi: 10.1002/2013EO420001.Google Scholar
Love, J. J. & Finn, C. A. (2011). The USGS geomagnetism program and its role in space weather monitoring. Space Weather, 9, S07001, doi: 10.1029/2011SW000684.Google Scholar
Macmillan, S. & Olsen, N. (2013). Observatory data and the Swarm mission. Earth Planets Space, 65, 1355–62, doi: 10.5047/eps.2013.07.011.Google Scholar
Marusenkov, A. (2017). Possibilities of further improvement of 1 s fluxgate variometers. Geosci. Instrum. Method. Data Syst., 6, 301–9, doi: 10.5194/gi-6-301-2017.Google Scholar
Matzka, J. (2012). Preparation of quasi-definitive (QD) data for the observatories Narsarsuaq, Qeqertarsuaq and Tristan da Cunha. In Hejda, P., Chulliat, A. & Catalan, M., eds., Proceedings of the XVth IAGA Workshop on Geomagnetic Observatory Instruments, Data Acquisition, and Processing, Real Instituto Y Observatorio de la Armada en San Fernando, San Fernando, Boletin Roa No. 03/13, pp. 5053.Google Scholar
Matzka, J., Chulliat, A., Mandea, M., Finlay, C. C. & Qamili, E. (2010). Geomagnetic observations for main field studies: From ground to space. Space Sci. Rev., 155, 2964, doi: 10.1007/s11214-010-9693-4.Google Scholar
Meyer, B., Chulliat, A. & Saltus, R. (2017). Derivation and error analysis of the Earth magnetic anomaly grid at 2 arc min resolution Version 3 (EMAG2v3). Geochem. Geophys. Geosys., 18, 4522–37, doi: 10.1002/2017GC007280.Google Scholar
Miles, P. J., Partner, R. T., Keeler, K. R. & McConnell, T. J. (2008). Unmanned airborne vehicle for geophysical surveying. U.S. patent US2008/0125920 A1, published 29 May.Google Scholar
Mohr, P. J., Taylor, B. N. & Newell, D. B. (2008). CODATA recommended values of the fundamental physical constants: 2006. Rev. Mod. Phys., 80, 633730, doi: 10.1103/RevModPhys.80.633.Google Scholar
Nabighian, M. N., Grauch, V. J. S., Hansen, R. O., LaFehr, T. R., Li, Y., Peirce, J. W., Phillips, J. D. & Ruder, M. E. (2005). The historical development of the magnetic method in exploration. Geophysics, 70(6), 3361, doi: 10.1190/1.2133784.Google Scholar
Narod, B. B., Bennest, J. R., Strom-Olsen, J. O., Nezil, F. & Dunlap, R. A. (1985). An evaluation of the noise performance of Fe, Co, Si, and B amorphous alloys in ring-core fluxgate magnetometers. Can. J. Phys., 63(11), 1468–72, doi: 10.1139/p85-246.Google Scholar
Newitt, L. R., Barton, C. E. & Bitterly, J. (1996). Guide for Magnetic Repeat Stations. International Association of Geomagnetism and Aeronomy, Boulder, CO.Google Scholar
Nielsen, O. V., Petersen, J. R., Primdahl, F., Brauer, P., Hernando, B., Fernandez, A., Merayo, J. M. G. & Ripka, P. (1995). Development, construction and analysis of the ‘Ørsted’ fluxgate magnetometer. Meas. Sci. Technol., 6, 10991115.CrossRefGoogle Scholar
Olsen, N., Ravat, D., Finlay, C. C. & Kother, L. K. (2017). LCS-1: A high-resolution global model of the lithospheric magnetic field derived from CHAMP and Swarm satellite observationsGeophys. J. Int., 211(3), 1461–77, doi: 10.1093/gji/ggx381.Google Scholar
Overhauser, A. W. (1953). Paramagnetic relaxation in metals. Phys. Rev., 89, 689700, doi: 10.1103/PhysRev.92.411.Google Scholar
Packard, M. E. (1958). Gyromagnetic resonance magnetometer. U.S. patent 2,856,579, issued 14 October.Google Scholar
Peltier, A. & Chulliat, A. (2010). On the feasibility of promptly producing quasi-definitive magnetic observatory data. Earth Planets Space, 62, e5e8, doi: 10.5047/eps.2010.02.002.Google Scholar
Poncelet, A., Gonsette, A. & Rasson, J. (2017). Several years of experience with automatic DI-flux systems: theory, validation and results. Geosci. Instrum. Method. Data Syst., 6, 353–60, doi: 10.5194/gi-6-353-2017.Google Scholar
Primdahl, F. (1979). The fluxgate magnetometer. J. Phys. E Sci. Instrum., 12, 241–53.Google Scholar
Rasmussen, O. & Kring Lauridsen, E. (1990). Improving baseline drift in fluxgate magnetometers caused by foundation movements, using band suspended fluxgate sensors. Phys. Earth Planet. Inter., 59, 7881.Google Scholar
Reeves, C. (2005). Aeromagnetic Surveys – Principles, Practice and Interpretation. Geosoft (http://www.geosoft.com).Google Scholar
Schiffler, M., Queitsch, M., Stolz, R., Chwala, A., Krech, W., Meyer, H.-G. & Kukowski, N. (2014). Calibration of SQUID vector magnetometers in full tensor gradiometry systems. Geophys. J. Int., 198, 954–64, doi: 10.1093/gji/ggu173.Google Scholar
Schnepf, N., Manoj, C., Kuvshinov, A., Toh, H. & Maus, S. (2014). Tidal signals in ocean-bottom magnetic measurements of the Northwestern Pacific: observation versus prediction. Geophys. J. Int., 198, 1096–110, doi: 10.1093/gji/ggu190.Google Scholar
Serson, P. H. & Hannaford, W. L. W. (1956). A portable electrical magnetometer. Can. J. Technol., 34, 232–43.Google Scholar
Sheng, D., Li, S., Dural, N. & Romalis, M. V. (2013). Subfemtotesla scalar atomic magnetometry using multipass cells. Phys. Rev. Lett., 110, 160802, doi: 10.1103/PhysRevLett.110.160802.Google Scholar
St Louis, B., ed. (2012). INTERMAGNET Technical Reference Manual, version 4.6.Google Scholar
Stuart, W. F. (1972). Earth’s field magnetometry. Rep. Prog. Phys., 35, 803–81.Google Scholar
Tanskanen, E. I. (2009). A comprehensive high-throughput analysis of substorms observed by IMAGE magnetometer network: Years 1993–2003 examined. J. Geophys. Res., 114, A05204, doi: 10.1029/2008JA013682.Google Scholar
Toh, H., Hamano, Y. & Ichiki, M. (2006). Long-term seafloor geomagnetic station in the northwest Pacific: A possible candidate for a seafloor geomagnetic observatory. Earth Planets Space, 58, 697705.Google Scholar
Toh, H., Satake, K., Hamano, Y., Fujii, Y. & Goto, T. (2011). Tsunami signals from the 2006 and 2007 Kuril earthquakes detected at a seafloor geomagnetic observatory. J. Geophys. Res., 116, B02104, doi: 10.1029/2010JB007873.Google Scholar
Torta, J. M., Pavón-Carrasco, F. J., Marsal, S. & Finlay, C. C. (2015). Evidence for a new geomagnetic jerk in 2014. Geophys. Res. Lett., 42, 7933–40, doi: 10.1002/2015GL065501.Google Scholar
Turner, G. M., Rasson, J. L. & Reeves, C. V. (2009). Observation and measurement techniques. In Schubert, G. & Kono, M., eds., Treatise on Geophysics – Geomagnetism. Elsevier, Amsterdam, pp. 93146.Google Scholar
Van Loo, S. A. & Rasson, J. L. (2007). Presentation of the prototype of an automated DIFlux. Publs. Inst. Geophys. Pol. Acad. Sc., C-99(398), 7786.Google Scholar
Varian, R. H. (1951). Method and means for correlating nuclear properties of atoms and magnetic fields. US patent 2,561,490, issued 24 July.Google Scholar
Weygand, J. M., Amm, O., Viljanen, A., Angelopoulos, V., Murr, D., Engebretson, M. J., Gleisner, H. & Mann, I. (2011). Application and validation of the spherical elementary currents systems technique for deriving ionospheric equivalent currents with the North American and Greenland ground magnetometer arrays. J. Geophys. Res., 116, A03305, doi: 10.1029/2010JA016177.Google Scholar
Xu, Z., Hartinger, M. D., Clauer, C. R., Peek, T. & Behlke, R. (2017). A comparison of the ground magnetic responses during the 2013 and 2015 St. Patrick’s Day geomagnetic storms. J. Geophys. Res. Space Physics, 122, 4023–36, doi: 10.1002/2016JA023338.Google Scholar
Yizengaw, E., Moldwin, M. B., Zesta, E., Biouele, C. M., Damtie, B., Mebrahtu, A., Rabiu, B., Valladares, C. F. & Stoneback, R. (2014). The longitudinal variability of equatorial electrojet and vertical drift velocity in the African and American sectors. Ann. Geophys., 32, 231–8, doi: 10.5194/angeo-32-231-2014.Google Scholar
Yumoto, K. (2006). MAGDAS project and its application for space weather. ILWS Workshop 2006, Goa, 19–24 February.Google Scholar
Yumoto, K., & CPMN Group (2001). Characteristics of Pi 2 magnetic pulsations observed at the CPMN stations: A review of the STEP results. Earth Planets Space, 53, 981–92.Google Scholar

References

Becken, M. & Ritter, O. (2012). Magnetotelluric studies at the San Andreas Fault Zone: Implications for the role of fluids. Surv. Geophys., 33, 65105, doi: 10.1007/s10712-011-9144-0.Google Scholar
Constable, C. (2016). Earth’s electromagnetic environment. Surv. Geophys., 37, 2745, doi: 10.1007/s10712-015-9351-1.Google Scholar
Everett, M. (2012). Theoretical developments in electromagnetic induction geophysics with selected applications in the near surface. Surv. Geophys., 33, 2963, doi: 10.1007/s10712-011-9138-y.Google Scholar
Key, K. (2012). Marine electromagnetic studies of seafloor resources and tectonics. Surv. Geophys., 33, 135–67, doi: 10.1007/s10712-011-9139-x.Google Scholar
Kuvshinov, A. V. (2012). Deep electromagnetic studies from land, sea, and space: Progress status in the past 10 years. Surv. Geophys., 33, 169209, doi: 10.1007/s10712-011-9118-2.Google Scholar
Ledo, J. (2006). 2-D versus 3-D magnetotelluric data interpretation. Surv. Geophys., 27, 511–43, doi: 10.1007/s10712-005-1757-8.Google Scholar
Miensopust, M. (2017). Application of 3-D electromagnetic inversion in practice: Challenges, pitfalls and solution approaches. Surv. Geophys., 38, 869933, doi: 10.1007/s10712-017-9435-1.Google Scholar
Muñoz, G. (2014). Exploring for geothermal resources with electromagnetic methods. Surv. Geophys., 35, 101–22, doi: 10.1007/s10712-013-9236-0.Google Scholar
Neska, A. (2016). Conductivity anomalies in Central Europe. Surv. Geophys., 37, 526, doi: 10.1007/s10712-015-9349-8.Google Scholar
Patro, P. (2017). Magnetotelluric studies for hydrocarbon and geothermal resources: Examples from the Asian region. Surv. Geophys., 38, 1005–41, doi: 10.1007/s10712-017-9439-x.Google Scholar
Selway, K. (2014). On the causes of electrical conductivity anomalies in tectonically stable lithosphere. Surv. Geophys., 35, 219–57, doi: 10.1007/s10712-013-9235-1.Google Scholar
Smith, R. (2014). Electromagnetic induction methods in mining geophysics from 2008 to 2012. Surv. Geophys., 35, 123–56, doi: 10.1007/s10712-013-9227-1.Google Scholar
Strack, K. (2014). Future directions of electromagnetic methods for hydrocarbon applications. Surv. Geophys., 35, 157–77, doi: 10.1007/s10712-013-9237-z.Google Scholar
Streich, R. (2016). Controlled-source electromagnetic approaches for hydrocarbon exploration and monitoring on land. Surv. Geophys., 37, 4780, doi: 10.1007/s10712-015-9336-0.Google Scholar
Tezkan, B. (1999). A review of environmental applications of quasi-stationary electromagnetic techniques. Surv. Geophys., 20, 279308, doi: 10.1023/A:1006669218545.Google Scholar
Unsworth, M. (2010). Magnetotelluric studies of active continent-continent collisions. Surv. Geophys., 31, 137–61, doi: 10.1007/s10712-009-9086-y.Google Scholar
Weckmann, U. (2012). Making and breaking of a continent: following the scent of geodynamic imprints on the African continent using electromagnetics. Surv. Geophys., 33, 107–34, doi: 10.1007/s10712-011-9147-x.Google Scholar
Zang, L. (2017). A review of recent developments in the study of regional lithospheric electrical structure of the Asian continent. Surv. Geophys., 38, 1043–96, doi: 10.1007/s10712-017-9439-x.Google Scholar

References

Allan, W., Poulter, E. M. & White, S. P. (1986). Hydromagnetic wave coupling in the magnetosphere: Plasmapause effects on impulse-excited resonances. Planet. Space Sci., 34, 11891200.Google Scholar
Allan, W. & Poulter, E. M. (1992). ULF waves-their relationship to the structure of the Earth’s magnetosphere. Rep. Prog. Phys., 55, 533–98.Google Scholar
Auster, H. U. (2008). How to measure Earth’s magnetic field. Phys. Today, 61, 7677.Google Scholar
Baumjohann, W. & Treumann, R. A. (2012). Basic Space Plasma Physics, rev. edn., Imperial College Press, London.Google Scholar
Campbell, W. H. (1997). Introduction to Geomagnetic Fields, Cambridge Univ. Press, Cambridge.Google Scholar
Chen, C. H. K., Horbury, T. S., Schekochihin, A. A., Wicks, R. T., Alexandrova, O. & Mitchell, J. (2010). Anisotropy of solar wind turbulence between ion and electron scales. Phys. Rev. Lett., 104, 255002, doi: 10.1103/PhysRevLett.104.255002.Google Scholar
Chi, P.J. & Russell, C. T. (2001). On two methods using magnetometer-array data for studying magnetic pulsations. Terrestrial Atmos. Ocean Sci., 12, 649–62.Google Scholar
Clausen, L. B. N., Yeoman, T. K., Fear, R. C., Behlke, R., Lucek, E. A. & Engebretson, M. J. (2009). First simultaneous measurements of waves generated at the bow shock in the solar wind, the magnetosphere and on the ground. Ann. Geophys., 27, 357–71.Google Scholar
Crooker, N. U., Feynman, J. & Gosling, J. T. (1977). On the high correlation between long-term averages of solar wind speed and geomagnetic activity. J. Geophys. Res., 82, 1933–7.Google Scholar
Desai, M. I., Mason, G. M., Müller-Mellin, R., Korth, A., Mall, U., Dwyer, J. R. & von Rosenvinge, T. T. (2008). The spatial distribution of upstream ion events from the Earth’s bow shock measured by ACE, Wind, and STEREO. J. Geophys. Res., 113, A08103, doi: 10.1029/2007JA012909.Google Scholar
Dimmock, A. P., Nykyri, K. & Pulkkinen, T. I. (2014). A statistical study of magnetic field fluctuations in the dayside magnetosheath and their dependence on upstream solar wind conditions. J. Geophys. Res., A119, 6231–48, doi: 10.1002/2014JA020009.Google Scholar
Engebretson, M. J., Zanetti, L. J., Potemra, T. A., Baumjohann, W., Lühr, H. & Acuña, M. H. (1987). Simultaneous observation of Pc 3–4 pulsations in the solar wind and in the Earth’s magnetosphere. J. Geophys. Res., 92, 10,05362.Google Scholar
Feynman, J. (1982). Geomagnetic and solar wind cycles, 1900–1975. J. Geophys. Res., 87, 6153–62.Google Scholar
Garrett, H. B., Dessler, A. J. & Hill, T. W. (1974). Influence of solar wind variability on geomagnetic activity. J. Geophys. Res., 79, 4603–10.Google Scholar
Goldstein, M. L., Eastwood, J. P., Treumann, R. A., Lucek, E. A., Pickett, J. & Décréau, P. (2005). The near-Earth solar wind. Space Sci. Rev., 118, 739.Google Scholar
Gonzalez, W. D., Tsurutani, B. T. & Clúa de Gonzalez, A. L. (1999). Interplanetary origin of geomagnetic storms. Space Sci. Rev., 88, 529–62.Google Scholar
Heilig, B., Lühr, H. & Rother, M. (2007). Comprehensive study of ULF upstream waves observed in the topside ionosphere by CHAMP and on the ground. Ann. Geophys., 25, 737–54.Google Scholar
Hirshberg, J. & Colburn, D. S. (1969). Interplanetary field and geomagnetic variations – a unified view. Planet. Space Sci., 17, 11831205.Google Scholar
Horbury, T. S., Wicks, R. T. & Chen, C. H. K. (2011). Anisotropy in space plasma turbulence: solar wind observations. Space Sci. Rev., 172, 325–42, doi: 10.1007/s11214-011-9821-9.Google Scholar
Kappler, K. N., Morrison, H. F. & Egbert, G. D. (2010). Long-term monitoring of ULF electromagnetic fields at Parkfield, California. J. Geophys. Res., 115, B04406, doi: 10.1029/2009JB006421.Google Scholar
Keiling, A. D., Lee, H. & Nakariakov, V. (eds.) (2016). Low-Frequency Waves in Space Plasmas. American Geophysical Union, Washington, DC.Google Scholar
Kepko, L., Spence, H. E. & Singer, H. J. (2002). ULF waves in the solar wind as direct drivers of magnetospheric pulsations. Geophys. Res. Lett., 29, 1197, doi: 10.1029/2001GL014405.Google Scholar
Kepko, L. & Spence, H. E. (2003). Observations of discrete, global magnetospheric oscillations directly driven by solar wind density variations. J. Geophys. Res., 108, 1257, doi: 10.1029/2002JA009676.Google Scholar
Kivelson, M. G., Cao, M., McPherron, R. L. & Walker, R. J. (1997). A possible signature of magnetic cavity mode oscillations in ISEE spacecraft observations. J. Geomagn. Geoelectr., 49, 1079–98.Google Scholar
Lee, D. H. & Lysak, R. L. (1991). Monochromatic ULF wave excitation in the dipole magnetosphere. J. Geophys. Res., A96, 5811–17.Google Scholar
Le Mouël, J. L., Kossobokov, V. & Courtillot, V. (2005). On long-term variations of simple geomagnetic indices and slow changes in magnetospheric currents: The emergence of anthropogenic global warming after 1990? Earth Planet. Sci. Lett., 232, 273–86, doi: 10.1016/j.epsl.2004.07.046.Google Scholar
Mathie, R. A., Menk, F. W., Mann, I. R. & Orr, D. (1999). Discrete field line resonances and the Alfvén continuum in the outer magnetosphere. Geophys. Res. Lett., 26, 659–62.Google Scholar
Mayaud, P. N. (1980). Derivation, Meaning, and Use of Geomagnetic Indices. Geophysical Monograph 22. American Geophysical Union, Washington, DC.Google Scholar
McPherron, R. L. (2005). Magnetic pulsations: Their sources and relation to solar wind and geomagnetic activity. Surv. Geophys., 26, 545–92.Google Scholar
Menk, F. W. (1988). Spectral structure of mid-latitude Pc3-4 geomagnetic pulsations. J. Geomagn. Geoelectr., 40, 3361.Google Scholar
Menk, F. W., Waters, C. L. & Fraser, B. J. (2000). Field line resonances and waveguide modes at low latitudes 1. Observations. J. Geophys. Res., A105, 7747–61.Google Scholar
Menk, F. W., Yeoman, T. K., Wright, D. M., Lester, M. & Honary, F. (2003). High-latitude observations of impulse-driven ULF pulsations in the ionosphere and on the ground. Ann. Geophys., 21, 559–76.Google Scholar
Menk, F. W. & Waters, C. L. (2013). Magnetoseismology. Wiley-VCH, Weinheim, Germany.Google Scholar
Qian, L. Y., Burns, A. G., Solomon, S. C. & Chamberlin, P. C. (2012). Solar flare impacts on ionospheric electrodyamics. Geophys. Res. Lett., 39, L06101, doi: 10.1029/2012GL051102.Google Scholar
Perri, S., Yordanova, E., Carbone, V., Veltri, P., Sorriso-Valvo, L., Bruno, R. & André, M. (2009). Magnetic turbulence in space plasmas: Scale-dependent effects of anisotropy, J. Geophys. Res., 114, A02102, doi: 10.1029/2008JA013491.Google Scholar
Pham Thi Thu, H., Amory-Mazaudier, C. & Le Huy, M. (2011). Sq field characteristics at Phu Thuy, Vietnam, during solar cycle 23: Comparisons with Sq field in other longitude sectors. Ann. Geophys., 29, 117, doi: 10.5194/angeo-29-1-2011.Google Scholar
Plaschke, F., Glassmeier, K. H., Sibeck, D. G., Auster, H. U., Constantinescu, O. D., Angelopoulos, V. & Magnes, W. (2009). Magnetopause surface oscillation frequencies at different solar wind conditions. Ann. Geophys., 27, 4521–32.Google Scholar
Poulter, E. M. & Nielsen, E. (1982). The hydromagnetic oscillation of individual shells of the geomagnetic field. J. Geophys. Res., 87, 10432–8.Google Scholar
Potapov, A. S. (2013). ULF wave activity in high-speed streams of the solar wind: Impact on the magnetosphere. J. Geophys. Res., 118, 6465–77, doi: 10.1002/2013JA019119.Google Scholar
Potemra, T. A., Lühr, H., Zanetti, L. J., Takahashi, K., Erlandson, R. E., Marklund, G. T., Block, L. P., Blomberg, L. G. & Lepping, R. P. (1989). Multisatellite and ground-based observations of transient ULF waves. J. Geophys. Res., 94, 2543–54.Google Scholar
Russell, C. T. & Fleming, B. K. (1976). Magnetic pulsations as a probe of the interplanetary magnetic field: A test of the Borok B Index. J. Geophys. Res., 81, 5882–6.Google Scholar
Sakurai, T., Tonegawa, Y., Kitagawa, T., Yumoto, K., Yamamoto, T., Kokubun, S., Mukai, T. & Tsuruda, K. (1999). Dayside magnetopause Pc 3 and Pc 5 ULF waves observed by the GEOTAIL Satellite. Earth Planets Space, 51, 965–78.Google Scholar
Southwood, D. J. (1974). Some features of field line resonances in the magnetosphere. Planet. Space Sci., 22, 483491.Google Scholar
St Louis, B. (2008). INTERMAGNET Technical Reference Manual, version 4.4. Internal publication. INTERMAGNET, Edinburgh.Google Scholar
Takahashi, K. & McPherron, R. L. (1982). Harmonic structure of Pc 3–4 pulsations. J. Geophys. Res., A87, 1504–16.Google Scholar
Takahashi, K., Chi, P. J., Denton, R. E. & Lysak, R. L. (eds.) (2006). Magnetospheric ULF Waves: Synthesis and New Directions, American Geophysical Union, Washington, DC.Google Scholar
Takahashi, K. & Ukhorskiy, A. Y. (2008). Timing analysis of the relationship between solar wind parameters and geosynchronous Pc5 amplitude. J. Geophys. Res., A113, A12204, doi: 10.1029/2008JA013327.Google Scholar
Tamao, T. (1964). The structure of three-dimensional hydromagnetic waves in a uniform cold plasma. J. Geomagn. Geoelectr., 16, 89114.Google Scholar
Troitskaya, V. A. & Gul’elmi, A. V. (1967). Geomagnetic micropulsations and diagnostics of the magnetosphere. Space Sci. Rev., 7, 689768.Google Scholar
Tsurutani, B. T., Ho, C. M., Smith, E. J., Neugebauer, M., Goldstein, B. E., Mok, J. S., Arballo, J. K., Balogh, A., Southwood, D. J. & Feldman, W. C. (1994). The relationship between interplanetary discontinuities and Alfvén waves: Ulysses observations. Geophys. Res. Lett., 21, 2267–70.Google Scholar
Tsurutani, B. T., Gonzalez, W. D., Gonzalez, A. L. C., Tang, F., Arballo, J. K. & Okada, M. (1995). Interplanetary origin of geomagnetic activity in the declining phase of the solar cycle. J. Geophys. Res., A100, 33.Google Scholar
Tsurutani, B.T., Gonzalez, W. D., Gonzalez, A. L. C., Guarnieri, F. L., Gopalswamy, N., Grande, M., Kamide, Y., Kasahara, Y., Lu, G., Mann, I., McPherron, R., Soraas, F. & Vasyliunas, V. (2006). Corotating solar wind streams and recurrent geomagnetic activity: A review. J. Geophys. Res., A111, A07S01, doi: 10.1029/2005JA011273.Google Scholar
Vellante, M., Lühr, H., Zhang, T. L., Wesztergom, V., Villante, U., De Lauretis, M., Piancatelli, A., Rother, M., Schwingenschuh, K., Koren, W. & Magnes, W. (2004). Ground/satellite signatures of field line resonance: A test of theoretical predictions. J. Geophys. Res., A109, A06210, doi: 10.1029/2004JA010392.Google Scholar
Verö, J., Zieger, B., Szendröi, J., Vellante, M., Stresgtik, J., Lühr, H., Best, A., Körmendi, A., Lichtenberger, J., Ménesi, T., Bencze, P., Märcz, F. & Wesztergom, V. (2000). Connections between whistlers and pulsation activity. Ann. Geophys., 18, 866–73.Google Scholar
Walker, D. M. (2002). Excitation of field line resonances by MHD waves originating in the solar wind. J. Geophys. Res., A107, 1481, doi: 10.1029/2001JA009188.Google Scholar
Weimer, D. R., Clauer, C. R., Engebretson, M. J., Hansen, T. L., Gleisner, H., Mann, I. & Yumoto, K. (2010). Statistical maps of geomagnetic perturbations as a function of the interplanetary magnetic field. J. Geophys. Res., 115, A10320, doi: 10.1029/2010JA015540.Google Scholar
Wilcox, J. M., Schatten, K. H. & Ness, N. F. (1967). Influence of interplanetary magnetic field and plasma on geomagnetic activity during quiet-Sun conditions. J. Geophys. Res., 72, 1926.Google Scholar
Willson, R. C. & Hudson, H. S. (1991). The Sun’s luminosity over a complete solar cycle. Nature, 351, 42–4, doi: 10.1038/351042a0.Google Scholar
Xystouris, G., Sigala, E. & Mavromichalaki, H. (2014). A Complete Catalogue of High-Speed Solar Wind Streams during Solar Cycle 23. Solar Phys., 289, 9951012, doi: 10.1007/s11207-013-0355-z.Google Scholar
Zieger, B. (1991). Long-term variations in pulsation activity and their relationship to solar wind velocity, geomagnetic activity and F2 region electron density. J. Geophys. Res., 96, 21,11523.Google Scholar
Zimbardo, G., Greco, A., Sorriso-Valvo, L., Perri, S., Vörös, Z., Aburjania, G., Chargazia, K. & Alexandrova, O. (2010). Magnetic turbulence in the geospace environment. Space Sci. Rev., 156, 89134, doi: 10.1007/s11214-010-9692-5.Google Scholar

References

Aubert, J. & Fournier, A., 2011. Inferring internal properties of Earth’s core dynamics and their evolution from surface observations and a numerical geodynamo model, Nonlinear Process. Geophys., 18, 657–74.Google Scholar
Backus, G., 1970. Inference from Inadequate and Inaccurate Data, I, Proc. Natl. Acad. Sci. USA, 65, 17.Google Scholar
Backus, G. E., 1988a. Bayesian inference in geomagnetism, Geophys. J. R. Astron. Soc., 92, 125–42.Google Scholar
Backus, G. E., 1988b. Comparing hard and soft prior bounds in geophysical inverse problems, Geophys. J. R. Astron. Soc., 94, 249–61.Google Scholar
Backus, G. E., 1989. Confidence set interference with a prior quadratic bound, Geophys. J. R. Astron. Soc., 97, 119–50.Google Scholar
Baerenzung, J., 2018. Sequential assimilation of the Earths magnetic field, 16. Symposium on Study of the Earth’s Deep Interior.Google Scholar
Baratchart, L. & Gerhards, C., 2017. On the recovery of core and crustal components of geomagnetic potential fields. Unpublished manuscript.Google Scholar
Beggan, C. D., Saarimäki, J., Whaler, K. A. & Simons, F. J., 2013. Spectral and spatial decomposition of lithospheric magnetic field models using spherical Slepian functions, Geophys. J. Int., 193, 136–48.Google Scholar
Cain, J. C., Wang, Z., Kluth, C. & Schmitz, D. R., 1989. Derivation of a geomagnetic model to n = 63, Geophys. J. R. Astron. Soc., 97, 431–41.Google Scholar
Calderwood, A., Roberts, P. & Jones, C., 2003. Energy fluxes and ohmic dissipation in the Earth’s core, in Earth’s Core and Lower Mantle, pp. 100129, ed. Zhang, K., Soward, A. & Jones, C., CRC Press, Boca Raton, FL.Google Scholar
Chambodut, A., Panet, I., Mandea, M., Diament, M., Holschneider, M. & Jamet, O., 2005. Wavelet frames: An alternative to spherical harmonic representation of potential fields, Geophys. J. Int., 163, 875–99.Google Scholar
Chapman, S. & Ferraro, V. C. A., 1940. The theory of the first phase of a geomagnetic storm, J. Geophys. Res., 45, 245.Google Scholar
Chapman, S. & Ferraro, V. C. A., 1941. The geomagnetic ring current: I. Its radial stability, J. Geophys. Res., 46, 1.Google Scholar
Chiao, L.-Y., Chen, Y.-N. & Gung, Y., 2014. Constructing empirical resolution diagnostics for kriging and minimum curvature gridding, J. Geophys. Res., 119, 3939–54.Google Scholar
Donoho, D. L., 1988. One-sided inference about functionals of a density, Ann. Stat., 16, 13901420.Google Scholar
Finlay, C. C., Lesur, V., Thébault, E., Vervelidou, F., Morschhauser, A. & Shore, R., 2017. Challenges handling magnetospheric and ionospheric signals in internal geomagnetic field modelling, Space Sci. Rev., 206, 157–89.Google Scholar
Finlay, C. C., Olsen, N., Kotsiaros, S., Gillet, N. & Tøffner-Clausen, L., 2016. Recent geomagnetic secular variation from Swarm and ground observatories as estimated in the CHAOS-6 geomagnetic field model, Earth Planets Space, 68, 112.Google Scholar
Fournier, A., Aubert, J. & Thebault, E., 2011. Inference on core surface flow from observations and 3-D dynamo modelling, Geophys. J. Int., 186, 118–36.Google Scholar
Fournier, A., Aubert, J. & Thébault, E., 2015. A candidate secular variation model for IGRF-12 based on Swarm data and inverse geodynamo modelling, Earth Planets Space, 67, 81.Google Scholar
Fournier, A., Hulot, G., Jault, D., Kuang, W., Tangborn, A., Gillet, N., Canet, E., Aubert, J. & Lhuillier, F., 2010. An introduction to data assimilation and predictability in geomagnetism, Space Sci. Rev., 155, 247–91.Google Scholar
Franklin, J. N., 1970. Well-posed stochastic extension of ill-posed problems, Geophys. J. R. Astron. Soc., 23, 125–8.Google Scholar
Gauss, C. F., 1839. Allgemeine Theorie des Erdmagnetismus, in Resultate aus den Beobachtungen des magnetischen Vereins im Jahre 1838, pp. 157, ed. Gauss, C. F. & Weber, W., Leipzig.Google Scholar
Goossens, S., 2010. Applying spectral leakage corrections to gravity field determination from satellite tracking data, Geophys. J. Int., 181, 1459–72.Google Scholar
Gubbins, D., 1975. Can the Earth’s magnetic field be sustained by core oscillations?, Geophys. Res. Lett., 2, 409–12.Google Scholar
Gubbins, D., 1983. Geomagnetic field analysis – I. Stochastic inversion, Geophys. J. R. Astron. Soc., 73, 641–52.Google Scholar
Gubbins, D., 2004. Time Series Analysis and Inverse Theory for Geophysicists, Cambridge University Press, Cambridge.Google Scholar
Gubbins, D. & Bloxham, J., 1985. Geomagnetic field analysis – III. Magnetic fields on the core-mantle boundary, Geophys. J. R. Astron. Soc., 80, 695713.Google Scholar
Helffrich, G. & Kaneshima, S., 2010. Outer-core compositional stratification from observed core wave speed profiles, Nature, 468, 807–10.Google Scholar
Holme, R. & Bloxham, J., 1995. Alleviation of the Backus effect in geomagnetic field modelling, Geophys. Res. Lett., 22, 1641–4.Google Scholar
Holme, R. & Bloxham, J., 1996. The magnetic fields of Uranus and Neptune: Methods and models, J. Geophys. Res., 101, 21772200.Google Scholar
Holschneider, M., Lesur, V., Mauerberger, S. & Baerenzung, J., 2016. Correlation-based modeling and separation of geomagnetic field components, J. Geophys. Res., 121, 3142–60.Google Scholar
Jackson, A., Jonkers, A. R. T. & Walker, M. R., 2000. Four centuries of geomagnetic secular variation from historical records, Philos. Trans. R. Soc. London, Ser. A, 358, 957–90.Google Scholar
Jackson, D. D., 1979. The use of a priori data to resolve nonuniqueness in linear inversion, Geophys. J. R. Astron. Soc., 57, 137–57.Google Scholar
Jekeli, C., 1996. Spherical harmonic analysis, aliasing, and filtering, J. Geod., 70, 214–23.Google Scholar
Kaneshima, S. & Matsuzawa, T., 2015. Stratification of Earth’s outermost core inferred from SmKS array data, Prog. Earth Planet. Sci., 2, 15.Google Scholar
Khokhlov, A., Hulot, G. & Le Mouel, J.-L., 1999. On the Backus effect – II, Geophys. J. Int., 137, 816–20.Google Scholar
Korte, M. & Constable, C. G., 2005. Continuous geomagnetic field models for the past 7 millennia: 2. CALS7 K, Geochem. Geophys. Geosyst., 6, Q02H16, doi: 10.1029/2004GC000801.Google Scholar
Kotsiaros, S., Finlay, C. C. & Olsen, N., 2015. Use of along-track magnetic field differences in lithospheric field modelling, Geophys. J. Int., 200, 878–87.Google Scholar
Langel, R. A., 1987. The main geomagnetic field, in Geomagnetism, vol. 1, ed. Jacobs, J. A., chapter 4, Academic, San Diego, CA.Google Scholar
Langel, R. A. & Estes, R. H., 1985. Large-scale, near-field magnetic fields from external sources and the corresponding induced internal field, J. Geophys. Res., 90, 2487–94.Google Scholar
Lesur, V., Hamoudi, M., Choi, Y., Dyment, J. & Th´ebault, E., 2016. Building the second version of the World Digital Magnetic Anomaly Map (WDMAM), Earth Planets Space, 68, 27.Google Scholar
Lesur, V., Rother, M., Vervelidou, F., Hamoudi, M. & Th´ebault, E., 2013. Post-processing scheme for modelling the lithospheric magnetic field, Solid Earth, 4, 105–18.Google Scholar
Lesur, V., Wardinski, I., Baerenzung, J. & Holschneider, M., 2017. On the frequency spectra of the core magnetic field Gauss coefficients, Phys. Earth Planet. Inter., 2, 164–8.Google Scholar
Lesur, V., Wardinski, I. & Hamoudi, M., 2011. Third Version of the GFZ Reference Internal Magnetic Model: GRIMM-3, 25th IUGG General Assembly, Melbourne, Australia.Google Scholar
Lesur, V., Wardinski, I., Hamoudi, M. & Rother, M., 2010. The second generation of the GFZ Reference Internal Magnetic Model: GRIMM-2, Earth Planets Space, 62, 765–73.Google Scholar
Lesur, V., Whaler, K. A. & Wardinski, I., 2015. Are geomagnetic data consistent with stably stratified flow at the core-mantle boundary?, Geophys. J. Int., 201, 929–46.Google Scholar
Levenberg, K., 1944. A method for the solution of certain non-linear problems in least squares, Q. Appl. Math., 2, 164–8.Google Scholar
Livermore, P. W., Hollerbach, R. & Finlay, C. C., 2017. An accelerating high-latitude jet in Earth’s core, Nat. Geosci., 10, 62–8.Google Scholar
Lowes, F. J., 1966. Mean-square values on sphere of spherical harmonic vector fields, J. Geophys. Res., 71, 2179.Google Scholar
Lowes, F. J. & Olsen, N., 2004. A more realistic estimate of the variances and systematic errors in spherical harmonic geomagnetic field models, Geophys. J. Int., 157, 1027–44.Google Scholar
Mauersberger, P., 1956. Das Mittel der Energiedichte des geomagnetischen Hauptfeldes an der Erdoberfläche und seine säkulare Änderung, Gerlands Beiträge Geophys., 65, 207–15.Google Scholar
Maus, S. & Haak, V., 2003. Magnetic field annihilators: Invisible magnetization at the magnetic equator, Geophys. J. Int., 155, 509–13.Google Scholar
Maus, S. & Kuvshinov, A., 2004. Ocean tidal signals in observatory and satellite magnetic measurements, Geophys. Res. Lett., 31, 15313.Google Scholar
Maus, S., Rother, M., Hemant, K., Stolle, C., Lühr, H., Kuvshinov, A. & Olsen, N., 2006. Earth’s lithospheric magnetic field determined to spherical harmonic degree 90 from CHAMP satellite measurements, Geophys. J. Int., 164, 319–30.Google Scholar
Maus, S., Yin, F., Lühr, H., Manoj, C., Rother, M., Rauberg, J., Michaelis, I., Stolle, C. & Müller, R. D., 2008. Resolution of direction of oceanic magnetic lineations by the sixth-generation lithospheric magnetic field model from CHAMP satellite magnetic measurements, Geochem. Geophys. Geosyst., 9, Q07021.Google Scholar
McLeod, M. G., 1986. Stochastic processes on a sphere, Phys. Earth Planet. Inter., 43, 283–99.Google Scholar
McLeod, M. G., 1996. Spatial and temporal power spectra of the geomagnetic field, J. Geophys. Res., 101, 2745–64.Google Scholar
Menke, W., 1989. Geophysical Data Analysis: Discrete Inverse Theory, Academic Press, New York.Google Scholar
Olsen, N., Glassmeier, K.-H. & Jia, X., 2010a. Separation of the magnetic field into external and internal parts, Space Sci. Rev., 152, 135–57.Google Scholar
Olsen, N., Hulot, G., Lesur, V., Finlay, C. C., Beggan, C., Chul- liat, A., Sabaka, T. J., Floberghagen, R., Friis-Christensen, E., Haagmans, R., Kotsiaros, S., Lühr, H., Tøffner-Clausen, L. & Vigneron, P., 2015. The swarm initial field model for the 2014 geomagnetic field, Geophys. Res. Lett., 42, 1092–8.Google Scholar
Olsen, N., Lühr, H., Finlay, C. C., Sabaka, T. J., Michaelis, I., Rauberg, J. & Tøffner-Clausen, L., 2014. The CHAOS-4 geomagnetic field model, Geophys. J. Int., 197, 815–27.Google Scholar
Olsen, N., Mandea, M., Sabaka, T. J. & Tøffner-Clausen, L., 2010b. The CHAOS-3 geomagnetic field model and candidates for the 11th generation IGRF, Earth Planets Space, 62, 719–27.Google Scholar
Olsen, N., Sabaka, T. J. & Lowes, F., 2005. New parameterization of external and induced fields in geomagnetic field modeling, and a candidate model for IGRF 2005, Earth Planets Space, 57, 1141–9.Google Scholar
Ou, J., Du, A. & Finlay, C. C., 2017. Quasi-biennial oscillations in the geomagnetic field: Their global characteristics and origin, J. Geophys. Res., 122, 5043–58.Google Scholar
Sabaka, T. J., Olsen, N. & Langel, R. A., 2002. A comprehensive model of the quiet-time, near-Earth magnetic field: Phase 3, Geophys. J. Int., 151, 3268.Google Scholar
Sabaka, T. J., Olsen, N. & Purucker, M. E., 2004. Extending comprehensive models of the Earth’s magnetic field with Ørsted and CHAMP data, Geophys. J. Int., 159, 521–47.Google Scholar
Sabaka, T. J., Olsen, N., Tyler, R. H. & Kuvshinov, A., 2015. CM5, a pre-Swarm comprehensive geomagnetic field model derived from over 12 yr of CHAMP, Ørsted, SAC-C and observatory data, Geophys. J. Int., 200, 15961626.Google Scholar
Sabaka, T. J., Tyler, R. H. & Olsen, N., 2016. Extracting ocean-generated tidal magnetic signals from Swarm data through satellite gradiometry, Geophys. Res. Lett., 43, 3237–45.Google Scholar
Schott, J. J. & Thébault, E., 2011. Modelling the Earths magnetic field from global to regional scales, in Geomagnetic Observations and Models, vol. 1, pp. 229–64, Springer, Netherlands.Google Scholar
Schwarte, J., Lühr, H. & Holme, R., 2003. Improved parameterization of external magnetic field from CHAMP measurements, in First CHAMP Mission Results for Gravity, Magnetic and Atmospheric Studies, pp. 240–44, Springer, Berlin.Google Scholar
Silva, L., Jackson, L. & Mound, J., 2012. Assessing the importance and expression of the 6 year geomagnetic oscillation, J. Geophys. Res., 117, 10101.Google Scholar
Spetzler, J. & Trampert, J., 2003. Implementing spectral leakage corrections in global surface wave tomography, Geophys. J. Int., 155, 532–8.Google Scholar
Stark, P. B., 1992. Inference in infinite-dimensional inverse problems: Discretization and duality, J. Geophys. Res., 97, 14055–82.Google Scholar
Stern, D. P., Langel, R. A. & Mead, G. D., 1980. Backus effect observed by Magsat, Geophys. Res. Lett., 7, 941–4.Google Scholar
Stockmann, R., Finlay, C. C. & Jackson, A., 2009. Imaging Earth’s crustal magnetic field with satellite data: A regularized spherical triangle tessellation approach, Geophys. J. Int., 179, 929–44.Google Scholar
Strang, G., 1988. Linear Algebra and Its Applications, Harbourt Brace Jovanovisch, San Diego.Google Scholar
Sugiura, M. & Kamei, T., 1991. Equatorial DST – index 1957–1986, IAGA Bull., 40.Google Scholar
Tarantola, A., 1987. Inverse Problem Theory: Methods for Data Fitting and Model Parameter Estimation, Elsevier, Amsterdam.Google Scholar
Thébault, E., Finlay, C. C., Alken, P., Beggan, C. D., Canet, E., Chulliat, A., Langlais, B., Lesur, V., Lowes, F. J., Manoj, C., Rother, M. & Schachtschneider, R., 2015. Evaluation of candidate geomagnetic field models for IGRF-12, Earth Planets Space, 67, 112.Google Scholar
Thébault, E., Langlais, B., Oliveira, J. S., Amit, H. & Leclercq, L., 2018. A time-averaged regional model of the Hermean magnetic field, Phys. Earth Planet. Inter., 276, 93105.Google Scholar
Thébault, E., Lesur, V., Kauristie, K. & Shore, R., 2017. Magnetic field data correction in space for modelling the lithospheric magnetic field, Space Sci. Rev., 206, 191223.Google Scholar
Thébault, E., Vervelidou, F., Lesur, V. & Hamoudi, M., 2012. The satellite along-track analysis in planetary magnetism, Geophys. J. Int., 188, 891907.Google Scholar
Thomson, A. W. P. & Lesur, V., 2007. An improved geomagnetic data selection algorithm for global geomagnetic field modelling, Geophys. J. Int., 169, 951–63.Google Scholar
Trampert, J. & Snieder, R., 1996. Model estimations biased by truncated expansions: Possible artifacts in seismic tomography, Science, 271, 1257–60.Google Scholar
Tyler, R. H., Maus, S. & Lühr, H., 2003. Satellite observations of magnetic fields due to ocean tidal flow, Science, 299, 239–41.Google Scholar
Wardinski, I. & Lesur, V., 2012. An extended version of the C3 FM geomagnetic field model: Application of a continuous frozen-flux constraint, Geophys. J. Int., 189, 1409–29.Google Scholar
Whaler, K. A., 1980. Does the whole of the Earth’s core convect?, Nature, 287, 528–30.Google Scholar
Whaler, K. A. & Gubbins, D., 1981. Spherical harmonic analysis of the geomagnetic field: An example of a linear inverse problem, Geophys. J., 65, 645–93.Google Scholar
Wiese, D. N., Killett, B., Watkins, M. M. & Yuan, D.-N., 2016. Antarctic tides from GRACE satellite accelerations, J. Geophys. Res., 121, 2874–86.Google Scholar
Zhang, H. & Thurber, C. H., 2007. Estimating the model resolution matrix for large seismic tomography problems based on Lanczos bidiagonalization with partial reorthogonalization, Geophys. J. Int., 170, 337–45.Google Scholar

References

Abbo, L., Antonucci, E., Mikić, Z., Linker, J. A., Riley, P., Lonello, R. (2010), Characterization of the slow wind in the outer corona, Adv. Space Res., 46, 1400, doi: 10.1016/j.asr.2010.08.008.Google Scholar
Abbo, L., Ofman, L., Antiochos, S. K., Hansteen, V. H., Harra, L., Ko, Y.-K., Lapenta, G., Li, B., Riley, P., Strachan, L., von Steiger, R. and Wang, Y.-M. (2016), Slow solar wind: Observations and modeling, Space Science Reviews, 201, 55, doi: 10.1007/s11214-016-0264-1.Google Scholar
André, M., and Cully, C. M. (2012), Low-energy ions: A previously hidden solar system particle population, Geophys. Res. Lett., 39, L03101, doi: 10.1029/2011GL050242.Google Scholar
Artemyev, A. V., Petrukovich, A. A., Nakamura, R. and Zelenyi, L. M. (2011), Cluster statistics of thin current sheets in the Earth magnetotail: Specifics of the dawn flank, proton temperature profiles and electrostatic effects, J. Geophys. Res., 116, A09233, doi: 10.1029/2011JA016801.Google Scholar
Chi, Y., et al. (2016), Statistical study of the interplanetary coronal mass ejections from 1995 to 2015, Sol. Phys., 291, 2419, doi: 10.1007/s11207-016-0971-5.Google Scholar
Cnossen, I., Wiltberger, M. and Ouellette, J. E. (2012), The effects of seasonal and diurnal variations in the Earth’s magnetic dipole orientation on solar wind–magnetosphere–ionosphere coupling, J. Geophys. Res., 117, A11211, doi: 10.1029/2012JA017825.Google Scholar
Crooker, N. U. (1979), Dayside merging and cusp geometry, J. Geophys. Res., 84(A3), 951–9, doi: 10.1029/JA084iA03p00951.Google Scholar
Dasso, S., Mandrini, C. H., Démoulin, P. and Luoni, M. L. (2006), A new model-independent method to compute magnetic helicity in magnetic clouds, A&A, 455, 349–59, doi: 10.1051/0004-6361:20064806.Google Scholar
Davies, J. A., Perry, C. H., Trines, R. M. G. M., Harrison, R. A., Lugaz, N., Möstl, C., Liu, Y. D. and Steed, K. (2013), Establishing a stereoscopic technique for determining the kinematic properties of solar wind transients based on a generalized self-similarly expanding circular geometry, Astrophys. J., 777(2), doi: 10.1088/0004-637X/777/2/167.Google Scholar
Démoulin, P., Janvier, M. and Dasso, S. (2016), Magnetic flux and helicity of magnetic clouds, Sol. Phys., 291, 531, doi: 10.1007/s11207-015-0836-3.Google Scholar
Dungey, J. W. (1961), Interplanetary magnetic field and the auroral zones, Phys. Rev. Lett., 6(2), 748, doi: 10.1103/PhysRevLett.6.47.Google Scholar
Dungey, J. W. (1963), The structure of the exosphere or adventures in velocity space, in Geophysics: The Earth’s Environment, edited by Dewitt, C., Hieblot, J., and Lebeau, A., pp. 505–50, Gordon and Breach, New York.Google Scholar
Dunlop, M. W., Balogh, A., Glassmeier, K.-H. and Robert, P. (2002), Four-point Cluster application of magnetic field analysis tools: The Curlometer, J. Geophys. Res., 107, 1384, doi: 10.1029/2001JA005088.Google Scholar
Dušík, Š., Granko, G., Šafránková, J., Němeček, Z. and Jelínek, K. (2010), IMF cone angle control of the magnetopause location: Statistical study, Geophys. Res. Lett., 37, L19103, doi: 10.1029/2010GL044965.Google Scholar
Echer, E., Tsurutani, B. T. and Gonzalez, W. D. (2013), Interplanetary origins of moderate (−100 nT < Dst ≤ −50 nT) geomagnetic storms during solar cycle 23 (1996–2008), J. Geophys. Res., 118, 385–92, doi: 10.1029/2012JA018086.Google Scholar
Fuselier, S. A., Trattner, K. J. and Petrinec, S. M. (2011), Antiparallel and component reconnection at the dayside magnetopause, J. Geophys. Res., 116, A10227, doi: 10.1029/2011JA016888.Google Scholar
Gonzalez, W.D., and Mozer, F. S. (1974). A quantitative model for the potential resulting from reconnection with an arbitrary interplanetary magnetic field. J. Geophys. Res., 79, doi: 10.1029/JA079i028p04186.Google Scholar
Good, S. W., and Forsyth, R. J. (2016), Interplanetary coronal mass ejections observed by MESSENGER and Venus Express, Sol. Phys., 291, 239, doi: 10.1007/s11207-015-0828-3.Google Scholar
Gopalswamy, N., Akiyama, S., Yashiro, S., Xie, H., Mäkelä, P. and Michalek, G. (2014), Anomalous expansion of coronal mass ejections during solar cycle 24 and its space weather implications, Geophys. Res. Lett., 41, 2673–80, doi: 10.1002/2014GL059858.Google Scholar
Gopalswamy, N., Mäkelä, P., Xie, H., Akiyama, S. and Yashiro, S. (2009), CME interactions with coronal holes and their interplanetary consequences, J. Geophys. Res., 114, A00A22, doi: 10.1029/2008JA013686.Google Scholar
Gopalswamy, N., Yashiro, S., Xie, H., Akiyama, S. and Mäkelä, P. (2015), Properties and geoeffectiveness of magnetic clouds during solar cycles 23 and 24, J. Geophys. Res., 120, 9221–45, doi: 10.1002/2015JA021446.Google Scholar
Gulisano, A. M., Démoulin, P., Dasso, S. and Rodriguez, L. (2012), Expansion of magnetic clouds in the outer heliosphere, A&A, 543, A107, doi: 10.1051/0004-6361/201118748.Google Scholar
Haaland, S., and Gjerloev, J. (2013), On the relation between asymmetries in the ring current and magnetopause current, J. Geophys. Res., 118, 75937604, doi: 10.1002/2013JA019345.Google Scholar
Haaland, S., Reistad, J., Tenfjord, P., Gjerloev, J., Maes, L., DeKeyser, J., Maggiolo, R., Anekallu, C. and Dorville, N. (2014), Characteristics of the flank magnetopause: Cluster observations, J. Geophys. Res., 119, 9019–37, doi: 10.1002/2014JA020539.Google Scholar
Hoilijoki, S., Souza, V. M., Walsh, B. M., Janhunen, P. and Palmroth, M. (2014), Magnetopause reconnection and energy conversion as influenced by the dipole tilt and the IMF Bx, J. Geophys. Res., 119, 4484–94, doi: 10.1002/2013JA019693.Google Scholar
Hwang, K.-J., Goldstein, M. L., Kuznetsova, M. M., Wang, Y., Viñas, A. F. and Sibeck, D. G. (2012), The first in situ observation of Kelvin–Helmholtz waves at high-latitude magnetopause during strongly dawnward interplanetary magnetic field conditions, J. Geophys. Res., 117, A08233, doi: 10.1029/2011JA017256.Google Scholar
Hwang, K.‐J., Kuznetsova, M. M., Sahraoui, F., Goldstein, M. L., Lee, E. and Parks, G. K. (2011), Kelvin–Helmholtz waves under southward interplanetary magnetic field, J. Geophys. Res., 116, A08210, doi: 10.1029/2011JA016596.Google Scholar
Iju, T., Tokumaru, M. and Fujiki, K. (2013), Radial speed evolution of interplanetary coronal mass ejections during solar cycle 23, Sol. Phys., 288, 331, doi: 10.1007/s11207-013-0297-5.Google Scholar
Isavnin, A., Vourlidas, A. and Kilpua, E. K. J. (2014), Three-dimensional evolution of flux-rope CMEs and its relation to the local orientation of the heliospheric current sheet, Sol. Phys., 289, 2141, doi: 10.1007/s11207-013-0468-4.Google Scholar
Janvier, M., Démoulin, P. and Dasso, S. (2013), Global axis shape of magnetic clouds deduced from the distribution of their local axis orientation, A&A, 556, A50, doi: 10.1051/0004-6361/201321442.Google Scholar
Kilpua, E. K. J., Luhmann, J. G., Gosling, J., Li, Y., Elliott, H., Russell, C.T., Jian, L., Galvin, A. B., Larson, D., Schroeder, P., Simunac, K. and Petrie, G. (2009), Small solar wind transients and their connection to the large-scale coronal structure, Sol. Phys., 256, 327, doi: 10.1007/s11207-009-9366-1.Google Scholar
Kilpua, E. K. J., Olspert, N., Grigorievskiy, A., Käpylä, M. J., Tanskanen, E. I., Miyahara, H., Kataoka, R., Pelt, J. and Liu, Y. D. (2015), Statistical study of strong and extreme geomagnetic disturbances and solar cycle characteristics, Astrophys. J., 806(2), doi: 10.1088/0004-637X/806/2/272.Google Scholar
Kim, R.-S., Gopalswamy, N., Cho, K.-S., Moon, Y.-J. and Yashiro, S. (2013), Propagation characteristics of CMEs associated with magnetic clouds and ejecta, Sol. Phys., 284, 7788, doi: 10.1007/s11207-013-0230-y.Google Scholar
Kitamura, N., et al. (2016), Shift of the magnetopause reconnection line to the winter hemisphere under southward IMF conditions: Geotail and MMS observations, Geophys. Res. Lett., 43, 5581–8, doi: 10.1002/2016GL069095.Google Scholar
Kliem, B., Török, T. and Thompson, W. T. (2012), A parametric study of erupting flux rope rotation: Modeling the ‘cartwheel CME’ on 9 April 2008, Sol. Phys., 281, 137, doi: 10.1007/s11207-012-9990-z.Google Scholar
Komar, C. M., Fermo, R. L. and Cassak, P. A. (2015), Comparative analysis of dayside magnetic reconnection models in global magnetosphere simulations, J. Geophys. Res., 120, 276–94, doi: 10.1002/2014JA020587.Google Scholar
Lavraud, B. and Borovsky, J. E. (2008), Altered solar wind–magnetosphere interaction at low Mach numbers: Coronal mass ejections, J. Geophys. Res., 113, A00B08, doi: 10.1029/2008JA013192.Google Scholar
Lavraud, B., et al. (2013), Asymmetry of magnetosheath flows and magnetopause shape during low Alfvén Mach number solar wind, J. Geophys. Res., 118, 10891100, doi: 10.1002/jgra.50145.Google Scholar
Lavraud, B., Ruffenach, A., Rouillard, A. P., Kajdic, P., Manchester, W. B. and Lugaz, N. (2014), Geo-effectiveness and radial dependence of magnetic cloud erosion by magnetic reconnection, J. Geophys. Res., 119, 2635, doi: 10.1002/2013JA019154.Google Scholar
Lee, D.-Y., Kim, H.-S., Ohtani, S. and Park, M. Y. (2012), Statistical characteristics of plasma flows associated with magnetic dipolarizations in the near-tail region of r < 12 RE, J. Geophys. Res., 117, A01207, doi: 10.1029/2011JA017246.Google Scholar
Lepping, R. C., Wu, C.-C., Berdichevsky, D.B. and Szabo, A. (2011), Magnetic clouds at/near the 2007–2009 solar minimum: Frequency of occurrence and some unusual properties, Sol. Phys., 274, 345, doi: 10.1007/s11207-010-9646-9.Google Scholar
Lin, D., Wang, C., Li, W., Tang, B., Guo, X. and Peng, Z. (2014), Properties of Kelvin–Helmholtz waves at the magnetopause under northward interplanetary magnetic field: Statistical study, J. Geophys. Res., 119, 7485–94, doi: 10.1002/2014JA020379.Google Scholar
Liu, Y. D., et al. (2013), On Sun-to-Earth propagation of coronal mass ejections, Astrophys. J., 769(1), doi: 10.1088/0004-637X/769/1/45.Google Scholar
Liu, Y. D., Yang, Z., Wang, R., Luhmann, J. G., Richardson, J. D. and Lugaz, N. (2014), Sun-to-Earth characteristics of two coronal mass ejections interacting near 1 AU: Formation of a complex ejecta and generation of a two-step geomagnetic storm, Astrophys. J. Lett., 793(2), doi: 10.1088/2041-8205/793/2/L41.Google Scholar
Lugaz, N., Farrugia, C. J., Davies, J. A., Möstl, C., Davis, C. J., Roussev, I. I. and Temmer, M. (2012), The deflection of the two interacting coronal mass ejections of 2010 May 23–24 as revealed by combined in situ measurements and heliospheric imaging, Astrophys. J., 759(1), doi: 10.1088/0004-637X/759/1/68.Google Scholar
Lynch, B. J., Antiochos, S. K., Li, Y., Luhmann, J. G. and DeVore, C. R. (2009), Rotation of coronal mass ejections during eruption, Astrophys. J., 697(2), doi: 10.1088/0004-637X/697/2/1918.Google Scholar
McComas, D. J., Elliott, H. A., Schwadron, N. A., Gosling, J. T., Skoug, R. M. and Goldstein, B. E. (2003), The three-dimensional solar wind around solar maximum, Geophys. Res. Lett., 30, 1517, doi: 10.1029/2003GL017136.Google Scholar
McComas, D. J., Angold, N., Elliott, H. A., Livadiotis, G., Schwadron, N. A., Skoug, R. M. and Smith, C. W., Weakest solar wind of the space age and the current ‘mini’ solar maximum (2013), Astrophys. J., 779(1), doi: 10.1088/0004-637X/779/1/2.Google Scholar
Marchaudon, A., Cerisier, J.-C., Bosqued, J.-M., Dunlop, M. W., Wild, J. A., Décréau, P. M., Förster, E., Fontaine, D. and Laakso, H. (2004), Transient plasma injections in the dayside magnetosphere: One-to-one correlated observations by Cluster and SuperDARN, Ann. Geophys., 22, 141–58, doi: 10.5194/angeo-22-141-2004.Google Scholar
Mitsakou, E., and Moussas, X. (2014), Statistical study of ICMEs and their sheaths during solar cycle 23 (1996–2008), Sol. Phys., 289, 3137, doi: 10.1007/s11207-014-0505-y.Google Scholar
Möstl, C., et al. (2014), Connecting speeds, directions and arrival times of 22 coronal mass ejections from the Sun to 1 AU, Astrophys. J., 787(2), doi: 10.1088/0004-637X/787/2/119.Google Scholar
Möstl, C., et al. (2015), Strong coronal channelling and interplanetary evolution of a solar storm up to Earth and Mars, Nat. Commun., 6(7135), doi: 10.1038/ncomms8135.Google Scholar
Möstl, C., Temmer, M., Rollett, T., Farrugia, C. J., Liu, Y., Veronig, A. M., Leitner, M., Galvin, A. B. and Biernat, H. K. (2010), STEREO and Wind observations of a fast ICME flank triggering a prolonged geomagnetic storm on 5–7 April 2010, Geophys. Res. Lett., 37, L24103, doi: 10.1029/2010GL045175.Google Scholar
Nykyri, K., and Otto, A. (2001), Plasma transport at the magnetospheric boundary due to reconnection in Kelvin‐Helmholtz vortices, Geophys. Res. Lett., 28, 3565, doi: 10.1029/2001GL013239.Google Scholar
Owens, M. J., Cargill, P. J., Pagel, C., Siscoe, G. L. and Crooker, N. U. (2005), Characteristic magnetic field and speed properties of interplanetary coronal mass ejections and their sheath regions. J. Geophys. Res., 110, A01105, doi: 10.1029/2004JA010814.Google Scholar
Owens, M. J., Démoulin, P., Savani, N. P., Lavraud, B. and Ruffenach, A. (2012), Implications of non-cylindrical flux ropes for magnetic cloud reconstruction techniques and the interpretation of double flux rope events, Sol. Phys., 278, 435, doi: 10.1007/s11207-012-9939-2.Google Scholar
Palmroth, M., Fear, R. C. and Honkonen, I. (2012), Magnetopause energy transfer dependence on the interplanetary magnetic field and the Earth’s magnetic dipole axis orientation, Ann. Geophys., 30, 515–26, doi: 10.5194/angeo-30-515-2012.Google Scholar
Parker, E. N. (1958), Dynamics of the interplanetary gas and magnetic fields, Astrophys. J., 128, 664.Google Scholar
Paularena, K. I., Richardson, J. D., Kolpak, M. A., Jackson, C. R. and Siscoe, G. L. (2001), A dawn–dusk density asymmetry in Earth’s magnetosheath, J. Geophys. Res., 106(A11), 2537725394, doi: 10.1029/2000JA000177.Google Scholar
Petrukovich, A., Artemyev, A., Vasko, I., Nakamura, R. and Zelenyi, L. (2015), Current sheets in the Earth magnetotail: Plasma and magnetic field structure with Cluster project observations, Space Sci. Rev., 188, 311–37, doi: 10.1007/s11214-014-0126-7.Google Scholar
Pi, G., Shue, J.-H., Grygorov, K., Li, H.-M., Němeček, Z., Šafránková, J., Yang, Y.-H. and Wang, K. (2017), Evolution of the magnetic field structure outside the magnetopause under radial IMF conditions, J. Geophys. Res., 122, 4051–63, doi: 10.1002/2015JA021809.Google Scholar
Rong, Z. J., Wan, W. X., Shen, C., Li, X., Dunlop, M. W., Petrukovich, A. A., Zhang, T. L. and Lucek, E. (2011), Statistical survey on the magnetic structure in magnetotail current sheets, J. Geophys. Res., 116, A09218, doi: 10.1029/2011JA016489.Google Scholar
Rouillard, A. P., et al. (2010a), Intermittent release of transients in the slow solar wind: 1. Remote sensing observations, J. Geophys. Res., 115, A04103, doi: 10.1029/2009JA014471.Google Scholar
Rouillard, A. P., et al. (2010b), Intermittent release of transients in the slow solar wind: 2. In situ evidence, J. Geophys. Res., 115, A04104, doi: 10.1029/2009JA014472.Google Scholar
Ruffenach, A., et al. (2015), Statistical study of magnetic cloud erosion by magnetic reconnection, J. Geophys. Res., 120, 4360, doi: 10.1002/2014JA020628.Google Scholar
Ruffenach, A., et al. (2012), Multispacecraft observation of magnetic cloud erosion by magnetic reconnection during propagation, J. Geophys. Res., 117, A09101, doi: 10.1029/2012JA017624.Google Scholar
Samsonov, A. A., Němeček, Z., Šafránková, J. and Jelínek, K. (2012), Why does the subsolar magnetopause move sunward for radial interplanetary magnetic field?, J. Geophys. Res., 117, A05221, doi: 10.1029/2011JA017429.Google Scholar
Sanchez-Diaz, E., Rouillard, A. P., Lavraud, B., Segura, K., Tao, C., Pinto, R., Sheeley, N. R. Jr and Plotnikov, I. (2016), The very slow solar wind: Properties, origin and variability, J. Geophys. Res., 121, 2830–41, doi: 10.1002/2016JA022433.Google Scholar
Shen, C., Li, X., Dunlop, M., Liu, Z. X., Balogh, A., Baker, D. N., Hapgood, M. and Wang, X. (2003), Analyses on the geometrical structure of magnetic field in the current sheet based on Cluster measurements, J. Geophys. Res., 108(A5), 1168, doi: 10.1029/2002JA009612.Google Scholar
Sergeev, V. A., Angelopoulos, V. and Nakamura, R. (2012), Recent advances in understanding substorm dynamics, Geophys. Res. Lett., 39, L05101, doi: 10.1029/2012GL050859.Google Scholar
Sergeev, V., Runov, A., Baumjohann, W., Nakamura, R., Zhang, T. L., Balogh, A., Louarn, P., Sauvaud, J. and Reme, H. (2004), Orientation and propagation of current sheet oscillations, Geophys. Res. Lett., 31, 5807, doi: 10.1029/2003GL019346.Google Scholar
Suvorova, A. V., and Dmitriev, A. V. (2015), Magnetopause inflation under radial IMF: Comparison of models, Earth Space Sci., 2, 107–14, doi: 10.1002/2014EA000084.Google Scholar
Suvorova, A. V., Shue, J.‐H., Dmitriev, A. V., Sibeck, D. G., McFadden, J. P., Hasegawa, H., Ackerson, K., Jelínek, K., Šafránková, J. and Němeček, Z. (2010), Magnetopause expansions for quasi‐radial interplanetary magnetic field: THEMIS and Geotail observations, J. Geophys. Res., 115, A10216, doi: 10.1029/2010JA015404.Google Scholar
Taylor, M. G., et al. (2012), Spatial distribution of rolled up Kelvin–Helmholtz vortices at Earth’s dayside and flank magnetopause, Ann. Geophys., 30, 1025–35, doi: 10.5194/angeo-30-1025-2012.Google Scholar
Toledo-Redondo, S., André, M., Vaivads, A., Khotyaintsev, Yu. V., Lavraud, B., Graham, D. B., Divin, A. and Aunai, N. (2016), Cold ion heating at the dayside magnetopause during magnetic reconnection, Geophys. Res. Lett., 43, 5866, doi: 10.1002/2015GL067187.Google Scholar
Toledo-Redondo, S., Vaivads, A., André, M. and Khotyaintsev, Y. V. (2015), Modification of the Hall physics in magnetic reconnection due to cold ions at the Earth’s magnetopause, Geophys. Res. Lett., 42, 6146–54, doi: 10.1002/2015GL065129.Google Scholar
Trattner, K. J., Mulcock, J. S., Petrinec, S. M. and Fuselier, S. A. (2007), Probing the boundary between anti-parallel and component reconnection during southwards interplanetary magnetic field conditions, J. Geophys. Res., 112, A08210, doi: 10.1029/2007JA012270.Google Scholar
Trattner, K. J., Petrinec, S. M., Fuselier, S. A. and Phan, T. D. (2012), The location of reconnection at the magnetopause: Testing the maximum magnetic shear model with THEMIS observations, J. Geophys. Res., 117, A01201, doi: 10.1029/2011JA016959.Google Scholar
Turc, L., Escoubet, C. P., Fontaine, D., Kilpua, E. K. J. and Enestam, S. (2016), Cone angle control of the interaction of magnetic clouds with the Earth’s bow shock, Geophys. Res. Lett., 43, 4781–9, doi: 10.1002/2016GL068818.Google Scholar
Turc, L., Fontaine, D., Savoini, P. and Kilpua, E. K. J. (2014), Magnetic clouds’ structure in the magnetosheath as observed by Cluster and Geotail: four case studies, Ann. Geophys., 32, 1247–61, doi: 10.5194/angeo-32-1247-2014.Google Scholar
Turc, L., Fontaine, D., Savoini, P. and Modolo, R. (2015), 3D hybrid simulations of the interaction of a magnetic cloud with a bow shock, J. Geophys. Res., 120, 6133–51, doi: 10.1002/2015JA021318.Google Scholar
Vasko, I. Y., Artemyev, A. V., Petrukovich, A. A., Nakamura, R. and Zelenyi, L. M. (2014), The structure of strongly tilted current sheets in the Earth magnetotail, Ann. Geophys., 32, 133, doi: 10.5194/angeo-32-133-2014.Google Scholar
Vasko, I. Y., Petrukovich, A. A., Artemyev, A. V., Nakamura, R. and Zelenyi, L. M. (2015), Earth’s distant magnetotail current sheet near and beyond lunar orbit, J. Geophys. Res., 120, 8663–80, doi: 10.1002/2015JA021633.Google Scholar
Walsh, B. M., Phan, T. D., Sibeck, D. G. and Souza, V. M. (2014), The plasmaspheric plume and magnetopause reconnection, Geophys. Res. Lett., 41, 223–8, doi: 10.1002/2013GL058802.Google Scholar
Walsh, B. M., Sibeck, D. G., Nishimura, Y. and Angelopoulos, V. (2013), Statistical analysis of the plasmaspheric plume at the magnetopause, J. Geophys. Res., 118, 4844–51, doi: 10.1002/jgra.50458.Google Scholar
Walsh, B. M., Sibeck, D. G., Wang, Y. and Fairfield, D. H. (2012), Dawn–dusk asymmetries in the Earth’s magnetosheath, J. Geophys. Res., 117, A12211, doi: 10.1029/2012JA018240.Google Scholar
Walsh, B. M., Thomas, E. G., Hwang, K.-J., Baker, J. B. H., Ruohoniemi, J. M. and Bonnell, J. W. (2015), Dense plasma and Kelvin–Helmholtz waves at Earth’s dayside magnetopause, J. Geophys. Res., 120, 5560–73, doi: 10.1002/2015JA021014.Google Scholar
Wang, S., Kistler, L. M., Mouikis, C. G., Liu, Y. and Genestreti, K. J. (2014), Hot magnetospheric O+ and cold ion behavior in magnetopause reconnection: Cluster observations, J. Geophys. Res., 119, 9601–23, doi: 10.1002/2014JA020402.Google Scholar
Wang, S., Kistler, L. M., Mouikis, C. G. and Petrinec, S. M. (2015), Dependence of the dayside magnetopause reconnection rate on local conditions, J. Geophys. Res., 120, 63866408, doi: 10.1002/2015JA021524.Google Scholar
Winchester, W., Kilpua, E. K. J., Liu, Y. D., Lugaz, N., Riley, P., Török, T. and Vršnak, B. (2017), The physical processes of CME/ICME evolution, Space Sci. Rev., 212, 1159, doi: 10.1007/s11214-017-0394-0.Google Scholar
Winslow, R. M., Lugaz, N., Philpott, L. C., Schwadron, N. A., Farrugia, C. J., Anderson, B. J. and Smith, C. W. (2015), Interplanetary coronal mass ejections from MESSENGER orbital observations at Mercury, J. Geophys. Res., 120, 6101–18, doi: 10.1002/2015JA021200.Google Scholar
Wu, C.-C., and Lepping, R. P. (2007), Comparison of the characteristics of magnetic clouds and magnetic cloud-like structures for the events of 1995–2003, Sol. Phys., 242, 159, doi: 10.1007/s11207-007-0323-6.Google Scholar
Wu, C.-C., and Lepping, R. P. (2011), Statistical comparison of magnetic clouds with interplanetary coronal mass ejections for solar cycle 23, Sol. Phys., 269, 141, doi: 10.1007/s11207-010-9684-3.Google Scholar
Yan, G. Q., Mozer, F. S., Shen, C., Chen, T., Parks, G. K., Cai, C. L. and McFadden, J. P. (2014), Kelvin–Helmholtz vortices observed by THEMIS at the duskside of the magnetopause under southward interplanetary magnetic field, Geophys. Res. Lett., 41, 4427–34, doi: 10.1002/2014GL060589.Google Scholar
Yurchyshyn, V. (2008), Relationship between EIT posteruption arcades, coronal mass ejections, the coronal neutral line, and magnetic clouds, Astrophys. J. Lett., 675(1), doi: 10.1086/533413.Google Scholar
Zhang, T. L., Baumjohann, W., Nakamura, R., Balogh, A. and Glassmeier, K. (2002), A wavy twisted neutral sheet observed by CLUSTER, Geophys. Res. Lett., 29, 1899, doi: 10.1029/2002GL015544.Google Scholar
Zhu, C. B., Zhang, H., Ge, Y. S., Pu, Z. Y., Liu, W. L., Wan, W. X., Liu, L. B., Chen, Y. D., Le, H. J. and Wang, Y. F. (2015), Dipole tilt angle effect on magnetic reconnection locations on the magnetopause, J. Geophys. Res., 120, 5344–54, doi: 10.1002/2015JA020989.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×